Competitive interactions among endophagous parasitoids of potato tuberworm larvae in Southern California
Authors
R. V. FlandersE. R. Oatman
Authors Affiliations
R. V. Flanders was an Entomologist, USDA APHIS Biological Control Laboratory, 2534 S. 11th Street, Niles, MI 49120; E. R. Oatman was Professor and Entomologist, Division of Biological Control, Department of Entomology, University of California, Riverside, CA 92521.Publication Information
Hilgardia 55(1):1-34. DOI:10.3733/hilg.v55n01p034. January 1987.
PDF of full article, Cite this article
Abstract
Field and laboratory studies were conducted to determine how Apanteles scutellaris and Agathis gibbosa (Hymenoptera: Braconidae) coexist as solitary endophagous parasitoids of potato tuberworm (PTW) larvae, Phthorimaea opercullela (Lepidoptera: Gelechiidae), in southern California. The competitive characteristics of Orgilus jennieae (Hymenoptera: Braconidae), an exotic parasitoid of PTW larvae, were compared with those of the native species to determine its potential for establishment. Emergence of the egg-larval parasitoid Chelonus phthorimaeae (Hymenoptera: Braconidae) from field-collected PTW larvae was compared with those of the other parasitoids, but its competitive interactions were not considered. Seasonal density changes, mine characteristics, and within-plant distributions of PTW larvae were studied to determine their possible impacts on parasitoid interactions.
Apanteles scutellaris and A. gibbosa oviposited in similar host instars, similarly responded to vertical distributions of PTW larvae in plants, and were capable of ovipositing in larvae mining in nearly all potato plant tissues. However, A. scutellaris with its short ovipositor more efficiently oviposited in hosts in leaflets and distal portions of petioles, while A. gibbosa with its long ovipositor more efficiently oviposited in hosts in buds, stems, and basal portions of petioles. Females of A. scutellaris also could detect hosts parasitized by A. gibbosa, but A. gibbosa females readily multiply parasitized hosts. Eggs of A. scutellaris appeared to be adversely affected during host paralysis and oviposition by A. gibbosa, but larvae were not affected. Consequently, when nondiscriminating A. gibbosa females oviposited before the eggs of A. scutellaris hatched, A. gibbosa emerged from multiply parasitized hosts; otherwise, A. scutellaris emerged. Results suggest that differences in oviposition efficiencies relative to the location of PTW mines and the discrimination abilities of A. scutellaris are the primary mechanisms that enable these species to coexist. Influences of alternate hosts and PTW densities, along with the evolution of these competitive strategies, are discussed.
Like A. gibbosa, O. jennieae most efficiently oviposited in PTW larvae mining potato buds, stems, and basal portions of petioles of potato plants. In addition, O. jennieae readily multiply parasitized hosts previously parasitized by A. gibbosa, but avoided hosts previously parasitized by A. scutellaris. Neither native species discriminated against hosts previously parasitized by O. jennieae. In multiply parasitized hosts, O. jennieae immatures were nearly always killed by A. gibbosa immatures or during host paralysis, despite oviposition sequences and time intervals between ovipositions. When A. scutellaris multiply parasitized hosts previously parasitized by O. jennieae, the species whose egg hatched first subsequently emerged. Orgilus jennieae exhibited a narrower oviposition preference for younger PTW instars than did the native species, possibly increasing the probability of multiple parasitization by the native species. These results, especially those relating to interactions with A. gibbosa, along with considerations on searching capacities and potential population increases, suggest that O. jennieae is not likely to become permanently established in southern California. Previous failures to establish exotic species of Orgilus in southern California and the importation of exotic parasitoids against other native pests that possess coevolved natural enemy complexes are discussed.
Literature Cited
Arthur A. P., Juillet J. A. The introduced parasites of the European pine-shoot moth, Rhyacionia buoliana (Schiff.) (Lepidoptera: Olethreutidae), with a critical evaluation of their usefulness as control agents. Can. Entomol. 1961. 93:297-312.
Arthur A. P., Stainer J. E., Turnbull A. L. The interaction between Orgilus obscurator (Nees) (Hymenoptera: Braconidae) and Temelucha interruptor (Grav.) (Hymenoptera: Ichneumonidae), parasites of the pine-shoot moth, Rhyacionia buoliana (Schiff.) (Lepidoptera: Olethreutidae). Can. Entomol. 1964. 96:1030-34.
Bacon O. G. Control of the potato tuberworm. J. Econ. Entomol. 1960. 53:868-71. DOI: 10.1007/BF02861666 [CrossRef]
Bartlett B. R., Ball J. C. The developmental biologies of two encyrtid parasites of Coccus hesperidum and their intrinsic competition. Ann. Entomol. Soc. Amer. 1964. 57:496-503.
Broodryk S. W. The biology of Orgilus parcus Turner (Hymenoptera: Braconidae). J. Entomol. Soc. S. Afr. 1969. 32:243-57.
Cardona C., Oatman E. R. Biology and physical ecology of Apanteles subandinus Blanchard (Hymenoptera: Braconidae), with notes on temperature responses of Apanteles scutellaris Muesebeck and its host, the potato tuberworm. Hilgardia. 1975. 43(1):1-51. DOI: 10.3733/hilg.v43n01p001 [CrossRef]
Clements F. E., Shelford V. E. Bio-ecology. 1939. New York: John Wiley and Sons. 425p. DOI: 10.5962/bhl.title.6424 [CrossRef]
Commonwealth Institute of Entomology. Distribution maps of insect pests 1968. p.7. Series A, No. 10-Phthorimaea opercullela. 56 Queens Gate, London, S.W
DeBach P. The competitive displacement and coexistence principles. Ann. Rev. Entomol. 1966. 11:183-212. DOI: 10.1146/annurev.en.11.010166.001151 [CrossRef]
DeBach P., Sundby R. A. Competitive displacement between ecological homologues. Hilgardia. 1963. 34(5):105-66. DOI: 10.3733/hilg.v34n05p105 [CrossRef]
Ehler L. E., Hall R. W. Evidence of competitive exclusion of introduced natural enemies in biological control. Environ. Entomol. 1982. 11:1-4.
Finney G. L., Flanders S. E., Smith H. S. Mass culture of Macrocentrus ancylivorus and its host, the potato tuber moth. Hilgardia. 1947. 17(13):437-83. DOI: 10.3733/hilg.v17n13p437 [CrossRef]
Fisher R. C. A study in insect multiparasitism, II. The mechanism and control of competition for the host. J. Exp. Biol. 1961. 38:605-28.
Fisher R. C. The effect of multiparasitism on populations of two parasites and their host. Ecology. 1962. 43:314-16. DOI: 10.2307/1931987 [CrossRef]
Fisher R. C. Aspects of the physiology of endoparasitic Hymenoptera. Biol. Rev. 1971. 46:243-78. DOI: 10.1111/j.1469-185X.1971.tb01183.x [CrossRef]
Flanders R. V., Oatman E. R. Laboratory studies on the biology of Orgilus jenniae (Hymenoptera: Braconidae), a parasitoid of the potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae). Hilgardia. 1982. 50(8):1-33. DOI: 10.3733/hilg.v50n08p030 [CrossRef]
Flanders S. E. Competition and cooperation among parasitic Hymenoptera related to biological control. Can. Entomol. 1965. 97:409-22. DOI: 10.4039/Ent97409-4 [CrossRef]
Flanders S. E. The circumstances of species replacement among parasitic Hymenoptera. Can. Entomol. 1966. 98:1009-24. DOI: 10.4039/Ent981009-10 [CrossRef]
Force D. C. Competition among four hymenopterous parasites of an endemic insect host. Ann. Entomol. Soc. Am. 1970. 63:1675-88.
Force D. C. Ecology of insect host parasitoid communities. Science. 1974. 184:624-32. DOI: 10.1126/science.184.4137.624 [CrossRef]
Graf J. E. The potato tubermoth. USDA Tech. Bull. 1917. 427:56
Hall R. W., Ehler L. E. Rate of establishment of natural enemies in classical biological control. Bull. Entomol. Soc. Am. 1979. 25:280-82.
Hall R. W., Ehler L. E., Bisabri-Ershadi B. Rate of success in classical biological control of arthropods. Bull. Entomol. Soc. Am. 1980. 26:111-14.
Heatwole H., Davis D. M. Ecology of three sympatric insects of the genus Megarhyssa. Ecology. 1965. 46:140-50.
Hendry L. B., Greany P. D., Gill R. J. Kairomone mediated host finding behavior in the parasitic wasp Orgilus lepidus. Entomol. Exp. Appl. 1973. 16:471-77.
Huffaker C. B., Laing J. E. “Competitive displacement” without a shortage of resources?. Res. Pop. Ecol. 1972. 14:1-17. DOI: 10.1007/BF02511182 [CrossRef]
Juillet J. A. Immature stages, life histories, and behavior of two hymenopterous parasites of the European pine-shoot moth, Rhyacionia buoliana (Schiff.) (Lepidoptera: Olethreutidae). Can. Entomol. 1960. 92:342-46.
Koehler W., Kolk A. Studies on the significance of multiple parasitism in Rhyacionia buoliana Schiff, population dynamics. Prace Inst. Badaw. Lesnictwa. 1969. 374:64-86.
Krombein K. V., Hurd P. D. Jr., Smith D. R., Burks B. D. Catalog of Hymenoptera in America north of Mexico. Vol. I, Symphyta and Apocrita (Parasitica). 1979. Washington, D.C.: Smithsonian. 1198p.
Lloyd D. C. Some South American parasites of the potato tuber moth Phthorimaea operculella (Zeller) and remarks on those in other continents. Comm. Instit. Biol. Cont. Tech. Bull. 1972. pp.35-49.
Luck R. F., Podoler H. Competitive exclusion of Aphytis lingnanensis by A. melinus: potential role of host size. Ecology. 1985. 66:904-13.
May R. M. Stability and complexity in model ecosystems. 1973. Princeton, N.J.: Princeton Univ. Press. 265p. DOI: 10.1109/TSMC.1976.4309488 [CrossRef]
Mayr E. Populations, species, and evolution. 1963. Cambridge, Mass.: Harvard Univ. Press. 453p.
McLeod J. M. A comparison of discrimination and of density responses during oviposition by Exenterus amictorius and Exenterus diprionis (Hymenoptera: Ichneumonidae) parasites of Neodiprion swainei (Hymenoptera: Diprionidae). Can. Entomol. 1972. 104:1313-30.
Miller R. S. Pattern and process in competition. Adv. Ecol. Res. 1967. 4:1-74. DOI: 10.1016/S0065-2504(08)60319-0 [CrossRef]
Milne A., Milthorpe F. L. Definition of competition among animals. Mechanisms in biological competition. Symp. Soc. Exp. Biol. No. 15. 1961. London: Cambridge Univ. Press. p. 40-61.
Nie N. H., Hull C. H., Jenkins J. G., Steinbrenner K., Bent D. H. Statistical package for the social sciences (2nd ed.). 1975. New York: McGraw Hill. 675p.
Oatman E. R. Ecological studies of the tomato pinworm on tomato in southern California. J. Econ. Entomol. 1970. 63:1531-34.
Oatman E. R., Platner G. R. Parasitization of the potato tuberworm in southern California. Environ. Entomol. 1974. 3:262-64.
Oatman E. R., Platner G. R., Greany P. D. The biology of Orgilus lepidus (Hymenoptera: Braconidae), a primary parasite of the potato tuberworm. Ann. Entomol. Soc. Am. 1969. 62:1407-14.
Odebiyi J. A., Oatman E. R. Biology of Agathis gibbosa (Hymenoptera: Braconida), a primary parasite of the potato tuberworm. Ann. Entomol. Soc. Am. 1972. 65:1104-14.
Odebiyi J. A., Oatman E. R. Biology of Agathis unicolor (Schrottky) and Agais gibbosa (Say) (Hymenoptera: Braconidae), primary parasites of the potato tuberworm. Hilgardia. 1977. 45(5):123-51. DOI: 10.3733/hilg.v45n05p123 [CrossRef]
Pemberton C. E., Willard H. F. Interrelations of fruit fly parasites in Hawaii. J. Agric. Res. 1918. 12:285-95.
Pimentel D. Introducing parasites and predators to control native pests. Can. Entomol. 1963. 95:785-92. DOI: 10.4039/Ent95785-8 [CrossRef]
Platner G. R., Oatman E. R. An improved technique for producing potato tuberworm eggs for mass production of natural enemies. J. Econ. Entomol. 1968. 61:1054-57.
Platner G. R., Oatman E. R. Techniques for culturing and mass producing parasites of the potato tuberworm. J. Econ. Entomol. 1972. 65:1336-38.
Platner G. R., Greany P. D., Oatman E. R. Heat extraction technique for recovery of potato tuberworm larvae from potato tubers. J. Econ. Entomol. 1969. 62:271-72.
Powers N. R., Oatman E. R. Biology and temperature responses of Chelonus kellieae and Chelonus phthorimaeae (Hymenoptera: Braconidae) and their host, the potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae). Hilgardia. 1984. 52(9):1-32. DOI: 10.3733/hilg.v52n09p032 [CrossRef]
Quednau F. W. Competition and cooperation between Chrysocharis laricinella and Agathis pumila on larch casebearer Quebec. Can. Entomol. 1970. 102:602-12.
Salt G. Competition among insect parasitoids. Symp. Soc. Exptl. Biol. 1960. 15:96-119.
Schroeder D. A study of the interactions between the internal larval parasites of Rhyacionia buoliana (Lepidoptera: Olethreutidae). Entomophaga. 1974. 19:145-71.
Smith H. S. Multiple parasitism: its relation to the biological control of insect pests. Bull. Entomol. Res. 1929. 20:141-49. DOI: 10.1017/S0007485300021040 [CrossRef]
Sokal R. R., Rohlf F. J. Biometry. 1969. San Francisco: Freeman. 776p.
Syme P. D. Interaction between Pristomerus sp. and Orgilus obscurator, two parasites of the European pine-shoot moth. Can. For. Serv. Bi-Monthly Res. Notes. 1969. 25:30-31.
Syme P. D. Discrimination by Hyssopus thymus (Hymenoptera: Eulophidae) against Orgilus obscurator (Hymenoptera: Braconidae) an internal parasite of the European pine-shoot moth, Rhyacionia buoliana (Lepidoptera: Olethreutidae). Can. Entomol. 1970. 102:1523-27.
Syme P. D. Interaction between three parasites of the European pine-shoot moth. Can. For. Serv. Bi-Monthly Res. Notes. 1974. 30:9-10.
Traynier R. M. M. Field and laboratory experiments on the site of oviposition by the potato moth Phthorimaea operculella (Zell.) (Lepidoptera: Gelechiidae). Bull. Entomol. Res. 1975. 65:391-98.
Turnbull A. L. Population dynamics of exotic insects. Bull. Entomol. Soc. Am. 1967. 13:333-37.
Turnbull A. L., Chant D. A. The practice and theory of biological control of insects in Canada. Can. J. Zool. 1961. 39:697-753. DOI: 10.1139/z61-071 [CrossRef]
van den Bosch R. Comments on population dynamics of exotic insects. Bull. Entomol. Soc. Am. 1968. 14:112-15.
Van Lenteren J. C. The development of host discrimination and the prevention of superparasitism in the parasite Pseudeucoila bochei (Hymenoptera: Braconidae). Neth. J. Zool. 1976. 26:1-83.
Van Lenteren J. C., Bakker K. Discrimination between parasitized and unparasitized hosts in the parasitic wasp Pseudeucoila bochei a matter of learning. Nature (London). 1975. 254:417-19.
Watt K. E. F. Community stability and the strategy of biological control. Can. Entomol. 1965. 97:887-95. DOI: 10.4039/Ent97887-8 [CrossRef]
Also in this issue:
Sudden oak death spurs massive team effortLetters
Science briefs
New pest management center based at UC Davis
Oak killer found in rhododendrons
New pests and diseases: Sudden oak death syndrome fells 3 oak species
Almond advertising yields net benefits to growers
Peach trees perform similarly despite different irrigation scheduling methods
Soil properties change in no-till tomato production
Combining bensulide and pendimethalin controls weeds in onions
Table grapes suffer water loss, stem browning during cooling delays
First-grade gardeners more likely to taste vegetables