Methodology for indole-3-acetic acid: Sample preparation, extraction, and purification techniques
Authors
R. KammereckC. Nishijima
George C. Martin
Authors Affiliations
R. Kammereck was a research technologist at the Tree Fruit Research Center, Washington State University, Wenatchee, WA 98801; C. Nishijima was a staff research associate, Department of Pomology, University of California, Davis, CA 95616; George C. Martin was a professor, Department of Pomology, University of California, Davis, CA 95616.Publication Information
Hilgardia 54(6):1-35. DOI:10.3733/hilg.v54n06p015. September 1986.
PDF of full article, Cite this article
Abstract
Indole-3-acetic acid (IAA) has been implicated as a regulating agent in numerous plant-growth phenomena. In an attempt to assess its role in plants, identification and quantification are necessary. Estimating the amount of IAA in plant samples is difficult because this molecule degrades rapidly during most extraction-purification systems. A method is presented which reduces IAA degradation to a minimum by drying the sample at about 10-5 torr of oxygen and subsequently extracting with anhydrous solvent. A review of earlier methods is included.
Literature Cited
Abbas M. F. Association between branching in maiden apple trees and levels of endogenous auxins. Acta Hort. 1978. 80:59-61.
Archbold D. D., Dennis F. G. Jr. Quantification of free ABA and free and conjugated IAA in strawberry achene and receptacle tissue during fruit development. J. Amer. Soc. Hort. Sci. 1984. 109:330-35.
Avery G. S. Jr., Burkholder P. R., Creighton H. P. Production and distribution of growth hormone in shoots of Aesculus and Malus, and its probable role in stimulating cambial activity. Amer. J. Bot. 1937. 24:51-58. DOI: 10.2307/2436958 [CrossRef]
Bandurski R. S., Schulze A. Concentration of indole-3-acetic acid and its ester in Avena and Zea. Plant Physiol. 1974. 54:257-62. DOI: 10.1104/pp.54.3.257 [CrossRef]
Bandurski R. S., Schulze A. Concentration of indole-3-acetic acid and its derivatives in plants. Plant Physiol. 1977. 60:211-13. DOI: 10.1104/pp.60.2.211 [CrossRef]
Boysen-Jensen P., Avery G. S. Jr., Burkholder P. R. Growth hormones in plants. 1936. New York: McGraw-Hill. Translated and revised by
Clifford M. N. The use of poly-N-vinylpyrrolidone as the adsorbent for the chromatographic separation of chlorogenic acids and other phenolic compounds. J. Chromatog. 1974. 94:261-66. DOI: 10.1016/S0021-9673(01)92374-X [CrossRef]
Cohen J. D., Bandurski R. S. The bound auxins: protection of indole-3-acetic from peroxidase-catalyzed oxidation. Planta. 1978. 139:203-08. DOI: 10.1007/BF00388631 [CrossRef]
Deming S. N., Parker L. R. Jr. A review of simplex optimization in analytical chemistry. CRC Critical Review Anal. Chem. 1978. 7:187-202. DOI: 10.1080/10408347808085705 [CrossRef]
Fox L. R., Purves W. K., Nakada H. I. The role of horseradish peroxidase in indole-3-acetic acid oxidation. Biochem. 1965. 4:2754-63. DOI: 10.1021/bi00888a028 [CrossRef]
Galston A. W., Hillman W. S. The degradation of auxin. Encyclo. Plant Physiol. 1961. 14:647-70. W. Ruhland, ed
Goodwin P. B., Letham D. S., Goodwin P. B., Higgins J. J. V. Phytohormones and growth and development of organs of the vegetative plant. Phytohormones and Related Compounds: A Comprehensive Treatise. Vol. II. 1978. Amsterdam: Elsevier. p. 31-144.
Gordon S. A. Occurrence, formation, and inactivation of auxins. Ann. Rev. Plant Physiol. 1954. 5:341-78. DOI: 10.1146/annurev.pp.05.060154.002013 [CrossRef]
Hamilton R. H., Meyer H. E., Burke R. E., Feung C., Mumma R. O. Metabolism of indole-3-acetic acid. II. Quindole pathway in Parthenocissus tricuspidata crown-gall tissue cultures. Plant Physiol. 1976. 58:77-81.
Hinman R. L., Bauman C. P. Reactions of 3-bromo-oxindoles. The synthesis of 3-methylene-oxindole. J. Org. Chem. 1964. 29:2431-37.
Hinman R. L., Lang J. Peroxidase-catalyzed oxidation of indole-3-acetic acid. Biochem. 1965. 4:144-58. DOI: 10.1021/bi00877a023 [CrossRef]
Horgan R., Reinhold L., Harborne J. B., Swain T. Modern methods for plant hormone analysis. Progress in Phytochemistry, Vol. VII. 1981. New York: Pergamon Press. p. 137-70.
Iino J., Carr D. J. Estimation of free, conjugated, and diffusible indole-3-acetic acid in etiolated maize shoots by the indolo-$$alpha$$-pyrone fluorescence method. Plant Physiol. 1982. 69:950-56. DOI: 10.1104/pp.69.4.950 [CrossRef]
Iino M., R. St Yu, Carr D. J. Improved procedure for the estimation of nanogram quantities of indole-3-acetic acid in plant extracts using the indolo-$$alpha$$-pyrone fluorescence method. Plant Physiol. 1980. 66:1099-105. DOI: 10.1104/pp.66.6.1099 [CrossRef]
Jamieson W. D., Hutzinger O. Identification of simple naturally occurring indoles by mass spectrometry. Phytochemistry. 1970. 9:2029-36. DOI: 10.1016/S0031-9422(00)85356-X [CrossRef]
Jindal K. K., Dalbro S. Effect of SADH on endogenous auxin level in apple shoots. Physiol. Plant. 1977. 39:119-22.
Jindal K. K., Dalbro S., Andersen A. S., Poll L. Endogenous growth substances in normal and dwarf mutants of Cortland and Golden Delicious apple shoots. Physiol. Plant. 1974. 32:71-77. DOI: 10.1111/j.1399-3054.1974.tb03729.x [CrossRef]
Lau O., John W. W., Yang S. F. Inactivity of oxidation products of indole-3-acetic acid on ethylene production in mung bean hypocotyles. Plant Physiol. 1978. 61:68-71. DOI: 10.1104/pp.61.1.68 [CrossRef]
Lee T. T., Starratt A. N., Jevnicar J. J., Stoessl A. New phenolic inhibitors of the peroxidase-catalyzed oxidation of indole-3-acetic acid. Phytochemistry. 1980. 19:2277-80. DOI: 10.1016/S0031-9422(00)91011-2 [CrossRef]
Libbert E., Kaiser W., Kunert R. Interactions between plants and epiphytic bacteria regarding their auxin metabolism. VI. The influence of the epiphytic bacteria on the content of extractable auxin in the plant. Physiol. Plant. 1969. 22:432-39. DOI: 10.1111/j.1399-3054.1969.tb07395.x [CrossRef]
Link G. K. K., Eggers V., Moulton J. E. The use of frozen vacuum-dried material in auxin and other chemical assays of plant organs. Its extraction with dry either. Bot. Gaz. 1941. 102:590-601.
Mann J. D., Jaworski E. G. Minimizing loss of indole acetic acid during purification of plant extracts. Planta. 1970. 92:285-91.
Martin G. C., Nishijima C., Labavitch J. M. Analysis of indole acetic acid by the nitrogen-phosphorus detector gas Chromatograph. J. Amer. Soc. Hort. Sci. 1980. 105:46-50.
Mcdougall J., Hillman J. R., Hillman J. R. Analysis of indole-3-acetic acid using GC-MS techniques: In: Isolation of plant growth substances. 1978. Cambridge: Cambridge University Press. p. 1-25.
Morton M., Kammereck R., Fetters L. J. Synthesis and properties of blockpolymers. II. Poly ($$alpha$$-methylstyrene)-poly (propylene-sulfide)-poly ($$alpha$$-methylstyrene). Macromolecules. 1971. 4:11-15.
Nakajima R., Yamazaki I. The mechanism of indole-3-acetic acid oxidation by horseradish peroxidases. J. Biol. Chem. 1979. 254:872-78.
Narayanan K. R., Mudge K. W., Poovaiah B. W. Demonstration of auxin binding to strawberry fruit membranes. Plant Physiol. 1981. 68:1289-93. DOI: 10.1104/pp.68.6.1289 [CrossRef]
Penny P., Penny D., Letham D. S., Goodwin P. B., Higgins J. J. V. Rapid responses to phytohormones. Phytohormones and Related Compounds: A Comprehensive Treatise. 1978. II: Amsterdam: Elsevier. p. 537-87.
Phillips I. D. J. Apical dominance. Ann. Rev. Plant Physiol. 1975. 26:341-67. DOI: 10.1146/annurev.pp.26.060175.002013 [CrossRef]
Pryde A., Gilbert M. T., Pryde A., Gilbert M. T. Use of reversed phase HPLC to measure partition coefficients and to predict biological activity. Applications of high performance liquid chromatography. 1979. New York: John Wiley and Sons. p. 6-212.
Raa J. Degradation of indole-3yl-acetic acid in homogenates and segments of cabbage roots. Plant Physiol. 1971. 24:498-505. DOI: 10.1111/j.1399-3054.1971.tb03525.x [CrossRef]
Railton I. D. Purification of plant auxin by polyamide thin-layer chromatography. J. Chromatog. 1972. 70:202-05. DOI: 10.1016/S0021-9673(01)91083-0 [CrossRef]
Ray P. M. The destruction of indole acetic acid. II. Spectrophotometric study of the enzymatic reaction. Arch. Biochem. Biophys. 1956. 64:193-216.
Ray P. M. Destruction of auxin. Ann. Rev. Plant Physiol. 1958. 9:81-118. DOI: 10.1146/annurev.pp.09.060158.000501 [CrossRef]
Ray P. M., Dohrmann U., Hertel R. Specificity of auxin binding sites on maize coleoptile membranes as possible receptor sites for auxin action. Plant Physiol. 1977. 60:585-91. DOI: 10.1104/pp.60.4.585 [CrossRef]
Reeve D. R., Crozier A., MacMillan J. Quantitative analysis of plant hormones. Hormonal Regulation of Development. I: Molecular aspects of plant hormones. 1980. New York: Springer-Verlag. p. 203-80. DOI: 10.1007/978-3-642-67704-5_4 [CrossRef]
MacMillan J. A reply to “Information theory and plant growth substance analysis” by I. M. Scott. Plant, Cell and Environ. 1983. 6:365-68.
Ricard J., Job D. Reaction mechanisms of indole-3-acetate degradation by peroxidases. A stopped-flow and low-temperature spectroscopic study. Eur. J. Biochem. 1974. 44:359-74. DOI: 10.1111/j.1432-1033.1974.tb03493.x [CrossRef]
Rittenberg D., Foster G. L. A new procedure for quantitative analysis by isotope dilution with application to the determination of amino acids and fatty acids. J. Biol. Chem. 1940. 133:737-44.
Robinson J. C., Schwabe W. W. Studies on the regeneration of apple cultivars from root cuttings. II. Carbohydrate and auxin relations. J. Hort. Sci. 1977. 52:221-33.
Rubery P. H. Auxin receptors. Ann. Rev. Plant Physiol. 1981. 32:569-96. DOI: 10.1146/annurev.pp.32.060181.003033 [CrossRef]
Sandberg G., Dunberg A. Precision and accuracy of indole-3-acetic acid analyses performed with the 2-methylindole-$$alpha$$-pyrone fluorescence assay and with a high performance liquid chromatography technique with spectrofluorimetric detection, exemplified on pine tissue (Piuus sylvestris L.). Physiol. Plant. 1982. 55:315-22.
Schneider E. A., Wightman F. Metabolism of auxin in higher plants. Ann. Rev. Plant Physiol. 1974. 25:487-513. DOI: 10.1146/annurev.pp.25.060174.002415 [CrossRef]
Scott I. M. Information theory and plant growth substance analysis. Plant, Cell and Environ. 1982. 5:339-42. DOI: 10.1111/j.1365-3040.1982.tb00931.x [CrossRef]
Scott I. M. An answer to Reeve and Crozier’s reply. Plant, Cell and Environ. 1983. 6:368-69. DOI: 10.1111/j.1365-3040.1983.tb01268.x_1 [CrossRef]
Sembdner G., Gross D., Liebisch H. W., Schneider G., MacMillan J. Biosynthesis and metabolism of plant hormones. Hormonal Regulation of Development. I: Molecular aspects of plant hormones. 1980. New York: Springer-Verlag. 336p. DOI: 10.1007/978-3-642-67704-5_5 [CrossRef]
Sheehan W. F. Chemical kinetics. Physical Chemistry. 1970. Boston: Allyn and Bacon, Inc. p. 412-81. DOI: 10.1063/1.480049 [CrossRef]
Stoddart J. L., Venis M. A., MacMillan J. Molecular and subcellular aspects of hormone action. Hormonal Regulation of Development. I: Molecular aspects of plant hormones. 1980. New York: Springer-Verlag. p. 445-501. DOI: 10.1007/978-3-642-67704-5_6 [CrossRef]
Sweetser P. B., Swartzfager D. G. Indole-3-acetic acid levels of plant tissue as determined by a new high performance liquid chromatographic method. Plant Physiol. 1978. 67:254-58. DOI: 10.1104/pp.61.2.254 [CrossRef]
Szwarc M., Szwarc M. Experimental techniques in kinetic studies. Carbanions, Living Polymers and Electron Transfer Processes. 1968. New York: Interscience Publishers, John Wiley and Sons. p. 151-210.
Trewavas A. How do plant growth substances work?. Plant, Cell and Environ. 1981. 4:203-28.
Waldrum J. D., Davies E. Subcellular localization of IAA oxidase in peas. Plant Physiol. 1981. 68:1303-07. DOI: 10.1104/pp.68.6.1303 [CrossRef]
Walton J. D., Ray P. M. Evidence for receptor function of auxin binding sites in maize. Plant Physiol. 1981. 68:1334-38. DOI: 10.1104/pp.68.6.1334 [CrossRef]
Wareing P. F., Saunders P. F. Hormones and dormancy. Ann. Rev. Plant Physiol. 1971. 22:261-88. DOI: 10.1146/annurev.pp.22.060171.001401 [CrossRef]
Weiler E. W., Jourdan P. S., Conrad W. Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planta. 1981. 153:561-71. DOI: 10.1007/BF00385542 [CrossRef]
Yokota T., Murofushi N., Takahashi N., MacMillan J. Extraction, purification, and identification. Hormonal Regulation of Development. I: Molecular aspects of plant hormones. 1980. New York: Springer-Verlag. p. 113-201. DOI: 10.1007/978-3-642-67704-5_3 [CrossRef]
Also in this issue:
Building the IPM continuumUC IPM: 20 years of progress
IPM leads overhaul of PCA licensing exams
Training helps reduce pesticide risks
UC scientists apply IPM techniques to new eucalyptus pests
Almond and stone fruit growers reduce OP, increase pyrethroid use in dormant sprays
IPM research profiled: 10-year trends
Mass releases of wasps can reduce damage from codling moth
Cotton aphid emerges as major pest in SJV cotton
Integrated strategies offer site-specific control of yellow starthistle
Interplanting grasses into alfalfa controls weeds in older stands
Solarization and biofumigation help disinfest soil
Analysis shows climate-caused decreases in Scott River fall flows
Algal-bacterial treatment facility removes selenium from drainage water
Nutrition lessons improve Hispanic teenage girls' knowledge
Tuolumne County shops capture local dollars
Grading error reduces grower incentives to increase prune quality