University of California

Phosphorus removal from wastewater applied to land


J. C. Ryden
P. F. Pratt

Authors Affiliations

J. C. Ryden was Post-doctoral Student, Department of Soil and Environmental Sciences, Riverside; P. F. Pratt was Professor, Department of Soil and Environmental Sciences, Riverside.

Publication Information

Hilgardia 48(1):1-36. DOI:10.3733/hilg.v48n01p036. January 1980.

PDF of full article, Cite this article


Low concentrations of phosphorus (P) are desired in surface waters to minimize production of organic materials which cause problems in water use. The low P concentrations characteristic of the soil solution suggest that soils represent an appreciable sink for P in wastewaters applied to land. The mechanisms responsible for maintaining low (usually less than 0.5 mg P 1-1 soil-solution P concentrations and for control of the chemical mobility of P in the soil profile appear in most cases, to involve a sorption reaction at soil surfaces with a hydrous oxide structure. Recent work has led to an interpretation of P sorption by soils which has direct relevance to an understanding of P removal from wastewater applied to land. Crops harvested at wastewater treatment sites, also represent a sink for added P. Phosphorus removal of 10% of that applied is typical, but 30 to 40% of the P applied at a rate of 200 to 300 kg P ha-1 yr-1 may be removed by harvested forage crops. Schemes of wastewater application to land involve either infiltration and percolation of the wastewater through the soil profile or overland flow. Most complete P removal is generally observed in infiltration-percolation schemes which permit maximum contact between wastewater and soil, and particularly if wastewater is applied to give a P input comparable to that under normal agricultural practice. Several mathematical models have been developed to predict P movement through a soil profile, but the P sorption data required are dificult to obtain. A simple mass-balance model is proposed, the P sorption parameters of which are easily measured, are independent of soil type, and can be adjusted to account for the kinetics of P sorption, thereby providing an estimate of the longevity of a treatment site for P removal.

Literature Cited

Agricultural Waste Management Field Manual. 1975. U.S. Dept. Agriculture, Soil Conservation Service.

Ames L. L. Jr. A mobile pilot plant for the removal of soluble phosphorus from wastewaters by absorption on alumina columns. 1970. Cincinnati, Ohio: U. S. Dept. Interior, Fed. Water Pollut. Cont. Admin. 31p. Water Pollut. Cont. Research Series 17010 EER 06/70

Ames L. L. JR., Dean R. B. Phosphorus removal from effluents in alumina columns. J. Water Pollut. Control Fed. 1970. 42:R161-72.

Bache B. W. Aluminum and iron phosphate studies relating to soils. I. Solution and hydrolysis of variscite and strengite. J. Soil Sci. 1963. 14:113-23. DOI: 10.1111/j.1365-2389.1963.tb00936.x [CrossRef]

Bache B. W. Aluminum and iron phosphate studies relating to soils. II. Reactions between phosphate and hydrous oxides. J. Soil Sci. 1964. 15:110-16. DOI: 10.1111/j.1365-2389.1964.tb00250.x [CrossRef]

Bache B. W., Williams E. G. A phosphate sorption index for soils. J. Soil Sci. 1971. 22:289-301. DOI: 10.1111/j.1365-2389.1971.tb01617.x [CrossRef]

Baker D. E., Chesnin L. Chemical monitoring of soils for environmental quality and animal and human health. Adv. Agron. 1975. 27:305-74. DOI: 10.1016/S0065-2113(08)70013-0 [CrossRef]

Baker J. L., Campbell K. L., Johnson H. P., Hanway J. J. Nitrate, phosphorus, and sulfate in subsurface drainage water. J. Environ. 1975. Quality 4:406-12.

Barber S. A. J. M. Walker, Vasey E. M. Principles of ion movement through the soil to the plant root. Trans. Joint-Meeting Comm. IV and V. 1963. New Zealand: Intern. Soc. Soil Sci. 1962. 121-4

Barrow N. J., Shaw T. C. Factors affecting the long-term effectiveness of phosphate and molybdate fertilizers. Comm. Soil Sci. Plant Anal. 1974. 5:355-64. DOI: 10.1080/00103627409366515 [CrossRef]

Biggar J. W., Corey R. B. Agricultural drainage and eutrophication. Eutrophication: Causes, Consequences, Correctives. 1969. Washington, D.C.: National Academy of Sciences. p. 404-45.

Bingham F. T., Chapman H. D. Phosphorus. Diagnostic Criteria for Plants and Soils. 1966. Sciences: Univ. of Calif., Division of Agri.

Blanchar R. W., Hossner L. R. Hydrolysis and sorption of ortho-, pyro-, trypoly-, and trimetaphosphate in 32 mid-western soils. Soil Sci. Soc. Amer. Proc. 1967. 33:622-5. DOI: 10.2136/sssaj1969.03615995003300040037x [CrossRef]

Blanchar R. W., Riego D. C. Tripolyphosphate and pyrophosphate hydrolysis in sediments. Soil Sci. Soc. Amer. J. 1976. 40:225-9. DOI: 10.2136/sssaj1976.03615995004000020013x [CrossRef]

Bolton E. F., Aylesworth J. W., Hore F. R. Nutrient losses through tile drains under three cropping systems and two fertility levels on Brookston clay soil. Can J. Soil Sci. 1970. 50:275-9. DOI: 10.4141/cjss70-038 [CrossRef]

Bouwer H., Chaney R. L. Land treatment of wastewater. Adv. Agron. 1974. 26:133-76. DOI: 10.1016/S0065-2113(08)60870-6 [CrossRef]

Bouwer H., Lance J. C., Riggs M. S. High rate land treatment. II. Water quality and economic aspects of the Flushing Meadows project. J. Water Pollut. Cont. Fed. 1974. 46:844-59.

Brown G., And A., Newman C. D. The reactions of soluble aluminum with montmorillonite J. Soil Sci. 1973. 24:339-54. DOI: 10.1111/j.1365-2389.1973.tb00770.x [CrossRef]

Brunauer S., Copeland E. E., Kantro D. L., Flood E. A. The Langmuir and BET theories. The gas-solid interface. 1966. 1: New York: Marcel Dekker. p. 77-85. (ed.)

Calvert D. V. Nitrate, phosphate and potassium movement into drainage lines under three soil management systems J. Environ. Quality. 1975. 4:183-6. DOI: 10.2134/jeq1975.00472425000400020009x [CrossRef]

Carlson C. A., Hunt P. G., Delaney T. B. Jr. Overland flow treatment of wastewater. 1974. Vicksburg, Miss.: U.S. Army Engineering Waterways Experiment Station. Misc. Paper Y-74-3

Carritt D. E., Goodgal S. Sorption reactions and some ecological implications. Deep Sea Research. 1954. 1:224-43. DOI: 10.1016/0146-6313(54)90005-2 [CrossRef]

Chakravarti S. N., Talibudeen C. Phosphate equilibria in acid soils. J. Soil Sci. 1962. 13:231-40. DOI: 10.1111/j.1365-2389.1962.tb00701.x [CrossRef]

Chen Y. R., Butler J. N., Stumm W. Adsorption of phosphate on alumina and kaolinite from dilute aqueous solution. J. Coll. Interface Sci. 1973a. 43:421-36. DOI: 10.1016/0021-9797(73)90388-3 [CrossRef]

Chen Y. R., Butler J. N., Stumm W. Kinetic study of phosphate reaction with aluminum oxide and kaolinite. Environ. Sci. Tech. 1973b. 7:327-32. DOI: 10.1021/es60076a007 [CrossRef]

Clark J. S., Peech M. Solubility criteria for the existence of calcium and aluminum phosphates in soils. Soil Sci. Soc. Amer. Proc. 1955. 19:171-4. DOI: 10.2136/sssaj1955.03615995001900020015x [CrossRef]

Clark J. S., Peech M. Influence of neutral salts on the phosphate ion concentration in the soil solution. Soil Sci. Soc. Amer. Proc. 1960. 24:346-8. DOI: 10.2136/sssaj1960.03615995002400050013x [CrossRef]

Cole C. V., Jackson M. L. Colloidal dihydroxy dihydrogen phosphates of aluminum and iron established by electron and X-ray diffraction. J. Phys. Colloid Chem. 1950a. 54:128-42. DOI: 10.1021/j150475a011 [CrossRef]

Cole C. V., Jackson M. L. Solubility equilibrium constant of dihydroxy aluminium dihydrogen phosphate relating to a mechanism of phosphate fixation in soils. Soil Sci. Soc. Amer. Proc. 1950b. 15:84-9. DOI: 10.2136/sssaj1951.036159950015000C0016x [CrossRef]

Cole C. V., Olsen S. D., Scott C. O. The nature of phosphate sorption by calcium carbonate. Soil Sci. Soc. Amer. Proc. 1953. 17:352-6. DOI: 10.2136/sssaj1953.03615995001700040013x [CrossRef]

de Boer J. H. Atomic forces and adsorption. Advances in Colloid Sci. 1950. 3:1-66.

de Haan F. A. M. The interaction of certain inorganic anions with clays and soils. 1965. Wageningen. Agric. Res. Rep: State Agric. Univ. 655p.

Dean L. A., Rubins E. J. Anion exchange in soils. I. Exchangeable phosphorus and the anion exchange capacity. Soil Sci. 1947. 63:377-87. DOI: 10.1097/00010694-194705000-00005 [CrossRef]

Deb D., Datta N. P. Effect of associating ions on phosphorus retention in soil. 2. Under variable anion concentration. Plant Soil. 1967. 26:432-44. DOI: 10.1007/BF01379564 [CrossRef]

Deshpande T. L., Greenland D. J., Quirk J. P. Changes in soil properties associated with the removal of iron and aluminum oxides. J. Soil Sci. 1968. 19:108-23. DOI: 10.1111/j.1365-2389.1968.tb01525.x [CrossRef]

Ellis B. G., Sopper W. E., Kardos L. T. The soil as a chemical filter. Recycling Municipal Wastewater and Sludge through Forest and Cropland. 1973. University Park, PA: Pennsylvania State Univ. Press. p. 46-70.

Enfield C. G. Rate of phosphorus sorption by five Oklahoma soils. Soil Sci. Soc. Amer. Proc. 1974. 38:404-7. DOI: 10.2136/sssaj1974.03615995003800030013x [CrossRef]

Enfield C. G., Bledsoe B. E. Kinetic model for orthophosphate reactions in mineral soils. EPA-660/2-75-022. 1973. Washington, D.C.: U. S. Government Printing Office. 20402

Enfield C. G., Shew D. C. Comparison of two predictive non-equilibrium models for phosphorus sorption and movement through homogeneous soils. J. Environ. Quality. 1975. 4:198-202. DOI: 10.2134/jeq1975.00472425000400020013x [CrossRef]

Enfield C. G., Harlin C. C. Jr., Bledsoe B. E. Comparison of five kinetic models for orthophosphate reactions in mineral soils. Soil Sci. Soc. Amer. J. 1976. 40:243-49. DOI: 10.2136/sssaj1976.03615995004000020017x [CrossRef]

Evans T. D., Syers J. K. Application of autoradiography to study the fate of 33P labeled orthophosphate added to soil crumbs. Soil Sci. Soc. Amer. Proc. 1971. 35:906-9. DOI: 10.2136/sssaj1971.03615995003500060019x [CrossRef]

Fitter A. H., Sutton C. D. The use of the Freundlich isotherm for soil phosphate sorption data. J. Soil Sci. 1975. 26:241-6. DOI: 10.1111/j.1365-2389.1975.tb01947.x [CrossRef]

Ford M. C. The nature of phosphate fixation in soils. J. Amer. Soc. Agron. 1933. 25:134-44. DOI: 10.2134/agronj1933.00021962002500020009x [CrossRef]

Fox R. L., Kamprath E. J. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Sci. Soc. Amer. Proc. 1972. 34:902-7. DOI: 10.2136/sssaj1970.03615995003400060025x [CrossRef]

Gardner W. R. Movement of nitrogen in soil. Soil Nitrogen 1965. pp.550-72. Bartholomew W. V. Clark F. E.(Eds.). Agron. Monographs No. 10. Amer. Soc. Agron. Madison, Wisconsin

Gardner B. R., Jones J. P. Effects of temperature on phosphate sorption isotherms and phosphate desorption. Comm. Soil Sci. Plant Anal. 1973. 4:83-93. DOI: 10.1080/00103627309366422 [CrossRef]

Gburek J. W., Heald W. R. Soluble P output of an agricultural watershed in Pennsylvania. Water Resources Research. 1974. 10:113-8. DOI: 10.1029/WR010i001p00113 [CrossRef]

Giles C. H. Interpretation and use of sorption isotherms. In Sorption and transport processes in soils. Soc. Chem. Ind. (London) Monograph. 1970. 37:14-32.

Gore A. J. P. The supply of six elements by rain to an upland peat area. J. Ecol. 1968. 56:483-95. DOI: 10.2307/2258246 [CrossRef]

Graham D. The characterization of physical adsorption systems. I. The equilibrium function and the standard free energy of adsorption. J. Phys. Chem. 1953. 57:665-89. DOI: 10.1021/j150508a014 [CrossRef]

Greenberg A. E., Thomas J. F. Sewage effluent reclamation for industrial and agricultural use. Sewage and Ind. Wastes. 1954. 26:761-70.

Greenland D. J. J. M. Oades, Sherwin T. W. Electron-microscope observations of iron oxides in some red soils. J. Soil Sci. 1968. 19:123-6. DOI: 10.1111/j.1365-2389.1968.tb01526.x [CrossRef]

Griffin R. A., Jurinak J. J. Interaction of phosphate with calcite. Soil Sci. Soc. Amer. Proc. 1973. 37:847-850. DOI: 10.2136/sssaj1973.03615995003700060018x [CrossRef]

Gunary D. A new adsorption isotherm for phosphate in soil J. Soil Sci. 1970. 21:72-7. DOI: 10.1111/j.1365-2389.1970.tb01153.x [CrossRef]

Harter R. D., Foster B. B. Computer simulation of phosphorus movement through soils. Soil Sci. Soc. Amer J. 1976. 40:239-42. DOI: 10.2136/sssaj1976.03615995004000020016x [CrossRef]

Haseman J. F., Brown E. H., Whitt C. D. Some reactions of phosphate with clays and hydrous oxides of iron and aluminum. Soil Sci. 1950a. 70:257-71. DOI: 10.1097/00010694-195010000-00002 [CrossRef]

Haseman J. F., Lehr J. R., Smith J. P. Mineralogical character of some iron and aluminum phosphates containing potassium and ammonium. Soil Sci. Soc. Amer. Proc. 1950b. 15:76-84. DOI: 10.2136/sssaj1951.036159950015000C0015x [CrossRef]

Hayes F. R., Mccarter J. A., Cameron M. L., Livingstone D. A. On the kinetics of phosphorus exchange in lakes. J. Ecol. 1952. 40:202-12. DOI: 10.2307/2258030 [CrossRef]

Hingston F. J., Atkinson R. J., Posner A. M., Quirk J. P. Specific adsorption of anions. Nature. 1967. 215:1459-61. DOI: 10.1038/2151459a0 [CrossRef]

Hingston F. J., Posner A. M., Quirk J. P. Specific adsorption of anions on goethite. Trans. Ninth Intern. Cong. Soil Sci. Adelaide. 1968. 1:669-78.

Hingston F. J., Posner A. M., Quirk J. P. Anion adsorption by goethite and gibbsite, I. The role of the proton in determining adsorption envelopes. J. Soil Sci. 1972. 23:177-92. DOI: 10.1111/j.1365-2389.1972.tb01652.x [CrossRef]

Holford I. C. R., And G., Mattingly E. G. The high- and low-energy phosphate adsorbing surfaces in calcareous soils. J. Soil Sci. 1975a. 26:407-17. DOI: 10.1111/j.1365-2389.1975.tb01964.x [CrossRef]

Holford I. C. R., And G., Mattingly E. G. Phosphate sorption by Jurassic Oolitic limestones. Geoderma. 1975b. 13:257-64. DOI: 10.1016/0016-7061(75)90022-1 [CrossRef]

Holford I. C. R., Wedderburn R. W. H., And G., Mattingly E. G. Langmuir two surface equation as a model for P adsorption by soils. J. Soil Sci. 1974. 25:242-56. DOI: 10.1111/j.1365-2389.1974.tb01121.x [CrossRef]

Holt R. F., Timmons D. R., Latterell J. J. Accumulation of phosphate in water J. Agri. Food Chem. 1970. 18:781-84. DOI: 10.1021/jf60171a004 [CrossRef]

Hook J. E., Kardos L. T., Sopper W. E., Sopper W. E., Kardos L. T. Effects of land disposal of wastewater on soil phosphorus relations. Recycling Treated Municipal Wastewater and Sludge through Forest and Cropland. 1973. University Park, PA: Pennsylvania State Univ. Press. p. 200-19.

Hope G. D., Syers J. K. Effects of solution: soil ratio on phosphate sorption by soils J. Soil Sci. 1976. 27:301-6. DOI: 10.1111/j.1365-2389.1976.tb02000.x [CrossRef]

Hsu P. H., Rennie D. A. Reactions of phosphate in aluminum systems. I. Adsorption by X-ray amorphous “aluminum hydroxide”. Can J. Soil Sci. 1962. 42:197-209. DOI: 10.4141/cjss62-025 [CrossRef]

Hsu P. H. Adsorption of phosphate by aluminum and iron in soils. Soil Sci. Soc. Amer. Proc. 1964. 28:474-8. DOI: 10.2136/sssaj1964.03615995002800040009x [CrossRef]

Huffman E. O. Behavior of fertilizer phosphates. Trans. Ninth Intern. Congr. Soil Sci., Adelaide. 1969. 2:745-54.

Huffman E. O., Taylor A. W. The behavior of water soluble phosphate in soil. J. Agric. Food Chem. 1963. 11:182-7. DOI: 10.1021/jf60127a013 [CrossRef]

Hunter J. V., Kotalik T. A., Sopper W. E., Kardos L. T. Chemical and biological quality of treated sewage effluents. Recycling Treated Municipal Wastewater and Sludge through Forest and Cropland. 1976. University Park, PA: Pennsylvania State Univ. Press. p. 6-25.

Jackson M. L. Interlayering of expansible layer silicates in soils by chemical weathering. Clays Clay Minerals. 1963. 11:29-46. DOI: 10.1346/CCMN.1962.0110104 [CrossRef]

Jensen H. E. Phosphate solubility in Danish soils equilibrated with solutions of differing phosphate concentrations J. Soil Sci. 1971. 22:261-6. DOI: 10.1111/j.1365-2389.1971.tb01613.x [CrossRef]

Johnson A. H., Boudlin D. R., Goyette E. A., Hodges A. M. Phosphorus loss by stream transport from a rural watershed: Quantities, processes and sources. J. Environ. Quality. 1976. 5:148-57. DOI: 10.2134/jeq1976.00472425000500020008x [CrossRef]

Jury W. A. Solute travel-time estimates for tile-drained fields. I. Theory. Soil Sci. Soc. Amer. Proc. 1975a. 39:1020-4. DOI: 10.2136/sssaj1975.03615995003900060009x [CrossRef]

Jury W. A. Solute travel-time estimates for tile-drained fields. II. Application to experimental fields. Soil Sci. Soc. Amer. Proc. 1975b. 39:1024-8. DOI: 10.2136/sssaj1975.03615995003900060010x [CrossRef]

Jury W. A., Gardner W. R., Saffigna P. G., Tanner C. B. Model for predicting simultaneous movement of nitrate and water through a loamy sand. Soil Sci. 1976. 122:36-43. DOI: 10.1097/00010694-197607000-00005 [CrossRef]

Kafkafi V., Posner A. M., Quirk J. P. Desorption of phosphate from kaolinite. Soil Sci. Soc. Amer. Proc. 1967. 31:248-53. DOI: 10.2136/sssaj1967.03615995003100030019x [CrossRef]

Kardos L. T., Hook J. E. Phosphorus balance in sewage effluent treated soils. J. Environ. Quality. 1976. 5:87-90. DOI: 10.2134/jeq1976.00472425000500010020x [CrossRef]

Khalid R. A., Patrick W. H. Jr., Delaune R. D. Phosphorus sorption characteristics of flooded soils. Soil Sci. Soc. Amer. J. 1977. 41:305-10. DOI: 10.2136/sssaj1977.03615995004100020026x [CrossRef]

Kirby C. F. Sewage treatment farms. (Post-graduate course in Public Health Engineering) 1971. p.14. Sess. No. 12, Dept. Civil Eng., Univ. of Melbourne, Australia

Kirkham D. Seepage of steady rainfall through soil into drains. Trans. Am. Geophys. Union. 1958. 39:892-908. DOI: 10.1029/TR039i005p00892 [CrossRef]

Kirkman J. H. Amorphous inorganic materials in three soils formed from loess. I. Application of selective dissolution techniques. New Zeal. J. Sci. 1973. 16:79-93.

Kittrick J. A. L., Jackson M. Rate of phosphate reaction with soil minerals and electron microscope observations on the reaction mechanism. Soil Sci. Soc. Amer. Proc. 1955a. 19:292-5. DOI: 10.2136/sssaj1955.03615995001900030012x [CrossRef]

Kittrick J. A. L., Jackson M. The common ion effect on phosphate solubility. Soil Sci. 1955b. 79:415-21. DOI: 10.1097/00010694-195506000-00001 [CrossRef]

Kittrick J. A., Jackson M. L. Electron microscope observation of the reaction of phosphate with minerals leading to a unified theory of phosphate fixation. J. Soil Sci. 1956. 7:81-9. DOI: 10.1111/j.1365-2389.1956.tb00865.x [CrossRef]

Kunishi H. M., Taylor A. W., Heald W. R., Gburek W. J., Weaver R. N. Phosphate movement from an agricultural watershed during two rainstorm periods. J. Agri. Food Chem. 1972. 20:900-5. DOI: 10.1021/jf60182a026 [CrossRef]

Kuo S., Lotse E. G. Kinetics of phosphate adsorption and desorption by hematite and gibbsite. Soil Sci. 1974. 116:400-6. DOI: 10.1097/00010694-197312000-00002 [CrossRef]

Kurtz L. T., Deturk E. E., Bray R. H. Phosphate adsorption by Illinois soils. Soil Sci. 1946. 61:111-24. DOI: 10.1097/00010694-194602000-00001 [CrossRef]

Kutera J. Treatment and disposal of wastewaters of settlements in rural, agricultural and non-urban areas. Progress in Water Tech. 1975. 7:877-84.

Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Amer. Chem. Soc. 1918. 40:1361-403. DOI: 10.1021/ja02242a004 [CrossRef]

Larsen S. Soil Phosphorus. Adv. Agron. 1967. 19:151-210. DOI: 10.1016/S0065-2113(08)60735-X [CrossRef]

Larsen S., Court M. N. Soil phosphate solubility. Nature. 1961. 189:164-5. DOI: 10.1038/189164a0 [CrossRef]

Larsen S., Widdowson A. E. Evidence of dicalcium phosphate precipitation in a calcareous soil. J. Soil Sci. 1970. 21:364-7. DOI: 10.1111/j.1365-2389.1970.tb01186.x [CrossRef]

Larsen S., Widdowson A. E. Aging of phosphate added to soil. J. Soil Sci. 1971. 22:5-7. DOI: 10.1111/j.1365-2389.1971.tb01588.x [CrossRef]

Larson J. E., Langston R., Warren G. F. Studies on the leaching of applied labeled phosphorus in organic soils. Soil Sci. Soc. Amer. Proc. 1958. 22:558-60. DOI: 10.2136/sssaj1958.03615995002200060021x [CrossRef]

Larson V., Axley J. H., Miller G. L. Agricultural wastewater accommodation and utilization of various forages 1974. Tech. Report No. 19. Univ. of Maryland Water Resources Res. Center, College Park, Md

Law J. P. Jr., Thomas R. E., Meyer L. H. Cannery wastewater treatment by high-rate spray on grassland. J. Water Pollut. Control Fed. 1970. 42:1621-31.

Leaver J. P., Russell E. W. The reaction between phosphate and phosphate fixing soils. J. Soil Sci. 1957. 8:113-26. DOI: 10.1111/j.1365-2389.1957.tb01872.x [CrossRef]

Lin Ping-Wha. Wastewater treatment with calcium sulfate from sulfur dioxide removal from waste gas. J. Water Pollut. Control Fed. 1975. 47:2271-80.

Lindsay W. L. Inorganic reactions of sewage wastes with soils. Recycling Municipal Sludges and Effluents on Land. 1973. Washington, D.C.: Natl. Assoc. of State Univ. and Land Grant Colleges.

Lindsay W. L., Moreno E. C. Phosphate phase equilibria in soils. Soil Sci. Soc. Amer. Proc. 1960. 24:177-82. DOI: 10.2136/sssaj1960.03615995002400030016x [CrossRef]

Lindsay W. L., Peech M., Clark J. S. Solubility criteria for the existence of variscite in soils. Soil Sci. Soc. Amer. Proc. 1959. 23:357-60. DOI: 10.2136/sssaj1959.03615995002300050017x [CrossRef]

Lindsay W. L., Frazier A. W., Stephenson H. F. Identification of reaction products from some phosphate fertilizers in soils. Soil Sci. Soc. Amer. Proc. 1962. 26:446-52. DOI: 10.2136/sssaj1962.03615995002600050013x [CrossRef]

Low P. F., Black C. A. Phosphate-induced decomposition of kaolinite. Soil Sci. Soc. Amer. Proc. 1947. 12:180-4. DOI: 10.2136/sssaj1948.036159950012000C0040x [CrossRef]

Mattson S. Anionic and cationic adsorption by soil colloidal materials of varying SiO2/A12O3 + Fe2O3 ratio. Trans. First Intern. Cong. Soil Sci., Washington. Commission. 1927. 2:199-211.

Mcauliffe C. D., Hall N. S., Dean L. A., Hendricks S. B. Exchange reactions between phosphates and soils: hydroxylic surfaces of soil minerals. Soil Sci. Soc. Amer. Proc. 1947. 12:119-23. DOI: 10.2136/sssaj1948.036159950012000C0025x [CrossRef]

Mclaughlin J. R., Ryden J. C., Syers J. K. Development and evaluation of a kinetic model to describe phosphate sorption by hydrous ferric oxide gel. Geoderma. 1977. 18:295-307. DOI: 10.1016/0016-7061(77)90038-6 [CrossRef]

Mitchell D., Farmer V. C., Hardy W. J. Amorphous inorganic materials in soils. Advan. Agron. 1964. 16:327-83. DOI: 10.1016/S0065-2113(08)60028-0 [CrossRef]

Muljadi D., Posner A. M., Quirk J. P. The mechanism of phosphate adsorption by kaolinite, gibbsite and pseudoboehmite. J. Soil Sci. 1966. 17:212-47. DOI: 10.1111/j.1365-2389.1966.tb01467.x [CrossRef]

Munns D. N., Fox R. L. The slow reaction which continues after phosphate adsorption: Kinetics and equilibrium in some tropical soils. Soil Sci. Soc. Amer. J. 1976. 40:46-51. DOI: 10.2136/sssaj1976.03615995004000010016x [CrossRef]

Murrmann R. P., Koutz F. R. Role of soil chemical processes in reclamation of wastewater applied to land. Chapter 4 in Wastewater Management by Disposal on Land. Corps of Engineers. 1972. Hannover, N. H.: U.S. Army. Cold Regions Res. and Eng. Lab.

Murrmann R. P., Peech M. Reaction products of applied phosphate in limed soils. Soil Sci. Soc. Amer. Proc. 1968. 32:493-6. DOI: 10.2136/sssaj1968.03615995003200040022x [CrossRef]

Murrmann R. P., Peech M. Relative significance of labile and crystalline phosphates in soil. Soil Sci. 1969. 107:249-55. DOI: 10.1097/00010694-196904000-00003 [CrossRef]

Nagarajah S., Posner A. M., Quirk J. P. Desorption of phosphate from kaolinite by citrate and bicarbonate. Soil Sci. Soc. Amer. Proc. 1968. 32:507-10. DOI: 10.2136/sssaj1968.03615995003200040025x [CrossRef]

Nagarajah S., Posner A. M., Quirk J. P. Competitive adsorption of phosphate with polygalacturonate and other organic anions on kaolinite and oxide surfaces. Nature. 1970. 228:83-5. DOI: 10.1038/228083a0 [CrossRef]

Neller J. R. Mobility of phosphate in sandy soils. Soil Sci. Soc. Amer. Proc. (1946). 1947. 11:227-30. DOI: 10.2136/sssaj1947.036159950011000C0043x [CrossRef]

Nielsen D. R., Biggar J. W., Erh K. T. Spatial variability of field-measured soil water properties. Hilgardia. 1973. 42:215-59. DOI: 10.3733/hilg.v42n07p215 [CrossRef]

Novak L. T., Adriano D. C., Coulman G. A., Shah D. B. Phosphorus movement in soils: Theoretical aspects. J. Environ. Quality. 1975. 4:93-9. DOI: 10.2134/jeq1975.00472425000400010021x [CrossRef]

Olsen S. R., Mortvedt J. J., Giordano P. M., Lindsay W. L. Micronutrient interactions. Micronutrients in Agriculture. 1972. Madison, Wisc.: Soil Sci. Soc. Amer., Inc.

Olsen S. R., Watanabe F. S. A method to determine a phosphorus adsorption maximum of soils as measured by the Langmuir isotherm. Soil Sci. Soc. Amer. Proc. 1957. 21:144-9. DOI: 10.2136/sssaj1957.03615995002100020004x [CrossRef]

Ozanne P. G. Some nutritional problems characteristic of sandy soils. Trans. Joint Meeting Comm. IV and V Intern. Soc. Soil Sci., New Zealand, 1962 1963. pp.139-43.

Patrick W. H. Jr., Khalid R. A. Phosphate release and sorption by soils and sediments: Effect of aerobic and anaerobic conditions. Science. 1974. 186:53-5. DOI: 10.1126/science.186.4158.53 [CrossRef]

Patrick W. H. Jr., Mahapatra I. C. Transformation and availability to rice of nitrogen and phosphorus in water-logged soils. Advan. Agron. 1968. 20:323-59. DOI: 10.1016/S0065-2113(08)60860-3 [CrossRef]

Philip J. R. The theory of infiltration: 1. The infiltration equation and its significance. Soil Sci. 1957. 83:365-67.

Pierre W. M., Parker F. W. Soil phosphorus studies. II. The concentration of organic and inorganic phosphorus in the soil solution and soil extracts and the availability of organic phosphorus to plants. Soil Sci. 1927. 24:119-28. DOI: 10.1097/00010694-192708000-00005 [CrossRef]

Pomeroy L. R., Smith E. E., Grant G. M. The exchange of phosphate between estuarine waters and sediments. Limnol. Oceanog. 1965. 10:167-72. DOI: 10.4319/lo.1965.10.2.0167 [CrossRef]

Ponnamperuma F. N. The chemistry of submerged soils. Advan. Agron. 1972. 24:29-96. DOI: 10.1016/S0065-2113(08)60633-1 [CrossRef]

Pound C. E., Crites R. W. Characteristics of municipal effluents. Recycling Municipal Sludges and Effluents on Land. 1973. Washington, D.C.: Nat. Assoc. State Univ. and Land Grant Colleges. p. 49-61.

Pratt P. F., Jones W. W., Chapman H. D. Changes in phosphorus in an irrigated soil during 28 years of differential fertilization. Soil Sci. 1956. 82:295-306. DOI: 10.1097/00010694-195610000-00005 [CrossRef]

Pratt P. F., Peterson F. F., Holzhey C. S. Qualitative mineralogy and chemical properties of a few soils from Sao Paulo, Brazil. Turrialba. 1969. 19:491-96.

Pratt P. F., Warneke J. E., Nash P. A. Sampling the unsaturated zone in irrigated field plots. Soil Sci. Soc. Amer. J. 1976. 40:277-79. DOI: 10.2136/sssaj1976.03615995004000020022x [CrossRef]

Rajan S. S. S. Adsorption of divalent phosphate on hydrous aluminum oxide. Nature. 1975a. 253:434-6. DOI: 10.1038/253434a0 [CrossRef]

Rajan S. S. S. Phosphate adsorption and the displacement of structural silicon in an allophanic clay. J. Soil Sci. 1975b. 26:250-6. DOI: 10.1111/j.1365-2389.1975.tb01949.x [CrossRef]

Rajan S. S. S. Changes in net surface charge of hydrous alumina with phosphate adsorption. Nature. 1976. 262:45-6. DOI: 10.1038/262045a0 [CrossRef]

Rajan S. S. S., Fox R. L. Phosphate adsorption by soils. I. Influence of time and ionic environment on phosphate adsorption. Comm. Soil Sci. Plant Anal. 1972. 3:493-504. DOI: 10.1080/00103627209366406 [CrossRef]

Rajan S. S. S., Perrott K. W., And W., Saunders M. H. Identification of phosphate-reaction sites of hydrous alumina from proton consumption during phosphate adsorption at constant pH values. J. Soil Sci. 1974. 25:438-47. DOI: 10.1111/j.1365-2389.1974.tb01139.x [CrossRef]

Recht H. L., Ghassemi M. Kinetics and mechanism of precipitation and nature of precipitate obtained in phosphate removal from waste water using aluminum and iron (III) salts. Water Pollution Control Research Series 17010EK1 04/70. 1970. Washington, D.C.: Federal Water Quality Administration, U.S. Dep. Interior.

Rennie D. A., Mckercher R. B. Adsorption of phosphate by four Saskatchewan soils. Can. J. Soil Sci. 1959. 39:64-75. DOI: 10.4141/cjss59-009 [CrossRef]

Rible J. M., Nash P. A., Pratt P. F., Lund L. J. Sampling the unsaturated zone of irrigated lands for reliable estimates of nitrate. Soil Sci. Soc. Amer. J. 1976. 40:566-70. DOI: 10.2136/sssaj1976.03615995004000040031x [CrossRef]

Rose C. W. AgriculturalPhysics. 1966. Oxford: Commonwealth International Library, Pergamon Press. p. 160-170.

Roth C. B., Jackson M. L., Syers J. K. Deferration effect on structural ferrous-ferric iron ratio and CEC of vermiculites and soils. Clays Clay Minerals. 1969. 17:253-64. DOI: 10.1346/CCMN.1969.0170502 [CrossRef]

Ryden J. C., Syers J. K. Charge relationships of phosphate sorption. Nature. 1975a. 255:51-3. DOI: 10.1038/255051a0 [CrossRef]

Ryden J. C., Syers J. K. Use of tephra for the removal of dissolved inorganic phosphate from sewage effluent. New Zeal. J. Sci. 1975b. 18:3-16.

Ryden J. C., Syers J. K. Rationalization of ionic strength and cation effects on phosphate sorption by soils. J. Soil Sci. 1975c. 26:395-406. DOI: 10.1111/j.1365-2389.1975.tb01963.x [CrossRef]

Ryden J. C., Syers J. K. Desorption and isotopic exchange relationships of phosphate sorbed by soils and hydrous ferric oxide gel. J. Soil Sci. 1977a. 28:596-609. DOI: 10.1111/j.1365-2389.1977.tb02267.x [CrossRef]

Ryden J. C., Syers J. K. Origin of the labile phosphate pool in soils. Soil Sci. 1799b. 123:353-61. DOI: 10.1097/00010694-197706000-00003 [CrossRef]

Ryden J. C., Syers J. K., Harris R. F. Phosphorus in runoff and streams. Advan. Agron. 1973. 25:1-41. DOI: 10.1016/S0065-2113(08)60777-4 [CrossRef]

Ryden J. C., Syers J. K., And P., Gregg E. H. A new understanding of the nature and persistence of labile phosphate in soils: Implications to soil testing 1976. Reviews in Rural Science, No. 3, University of New England Press: 55-59

Ryden J. C., Mclaughlin J. R., Syers J. K. Mechanisms of phosphate sorption by soils and hydrous ferric oxide gel. J. Soil Sci. 1977a. 28:72-92. DOI: 10.1111/j.1365-2389.1977.tb02297.x [CrossRef]

Ryden J. C., Mclaughlin J. R., Syers J. K. Time-dependent sorption of phosphate by soils and hydrous ferric oxides J. Soil Sci. 1977b. 28:585-95. DOI: 10.1111/j.1365-2389.1977.tb02266.x [CrossRef]

Ryden J. C., Syers J. K., Mclaughlin J. R. Effects of ionic strength on chemisorption and potential-determining sorption of phosphate by soils. J. Soil Sci. 1977c. 28:62-71. DOI: 10.1111/j.1365-2389.1977.tb02296.x [CrossRef]

Russell E. W. Soil conditions and plant growth (Tenth Edition). 1973. London: Longman Group Limited. 849p.

Russell E. J., Prescott J. A. The reaction between dilute acids and the phosphorus components of soil. J. Agric. Sci. 1916. 8:65-110. DOI: 10.1017/S0021859600002513 [CrossRef]

Saunders W. M. H. Phosphate retention by New Zealand soils and its relationship to free sesquioxides, organic matter and other soil properties. New Zeal J. Agric. Res. 1965. 8:30-57. DOI: 10.1080/00288233.1965.10420021 [CrossRef]

Sawhney B. L. Predicting phosphate movement through soil columns. J. Environ. Qual. 1977. 6:86-89. DOI: 10.2134/jeq1977.00472425000600010019x [CrossRef]

Sawyer C. N. Fertilization of lakes by agricultural and urban drainage. J. New England Water Works Assoc. 1947. 61:109-27.

Schneider I. F., Erickson A. E. Soil limitations for disposal of municipal wastewaters 1972. Mich. Agri. Exp. Sta. Res. Rpt. 195

Schwertmann U. Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide. Nature. 1966. 212:645-6. DOI: 10.1038/212645b0 [CrossRef]

Schwertmann U., Knittel H. Phosphate adsorption by some Bavarian soils. Zeit. Pflanzen. Bodenk. 1973. 134:43-52. DOI: 10.1002/jpln.19731340106 [CrossRef]

Shah D. B., Coulman G. A., Novak L. T., Ellis B. G. A mathematical model for phosphorus movement in soils. J. Environ. Quality. 1975. 4:87-92. DOI: 10.2134/jeq1975.00472425000400010020x [CrossRef]

Shapiro R. E., Fried M. Relative release and retentiveness of soil phosphates. Soil Sci. Soc. Amer. Proc. 1959. 23:195-8. DOI: 10.2136/sssaj1959.03615995002300030013x [CrossRef]

Sharpley A. N., Syers J. K. Phosphorus transport in surface runoff as influenced by fertilizer and grazing cattle. New Zeal. J. Sci. 1976. 19:277-82.

Sharpley A. N., Tillman R. W., Syers J. K. Use of laboratory extraction data to predict losses of dissolved inorganic phosphate in surface runoff and tile drainage. J. Environ. Qual. 1976. 6:33-6. DOI: 10.2134/jeq1977.00472425000600010009x [CrossRef]

Shen M. J., Rich C. I. Aluminum fixation in montmorillonite. Soil Sci. Soc. Amer. Proc. 1962. 26:33-6. DOI: 10.2136/sssaj1962.03615995002600010009x [CrossRef]

Shukla S. S. J. K. Syers, Williams J. D. H., Armstrong D. E., Harris R. F. Sorption of inorganic phosphate by lake sediments. Soil Sci. Soc. Amer. Proc. 1971. 35:244-9. DOI: 10.2136/sssaj1971.03615995003500020022x [CrossRef]

Spangler F. C., Sloey W. E., Fetter C. W. Jr. Wastewater treatment by natural and artificial marshes. EPA-600/2-76-207. 1976. Springfield, Va.: National Technical Information Service.

Spencer W. F. Distribution and availability of phosphate added to Lakeland fine sand. Soil Sci. Soc. Amer. Proc. 1957. 21:141-4. DOI: 10.2136/sssaj1957.03615995002100020003x [CrossRef]

Stettler R. Elimination of phosphates by STEP in Neuchatel. Gas Wasser Abwasser. 1975. 55:359-63.

Syers J. K., And J., Williams D. H., Bremner J. M., Chesters G. Phosphorus and arsenic in soils. Soil Chemistry. 1977. Marcel Dekker. (In press)

Syers J. K., Evans T. D., Williams J. D. H., Murdock J. T. Phosphate sorption parameters of representative soils from Rio Grande do Sul, Brazil. Soil Sci. 1971. 112:267-75. DOI: 10.1097/00010694-197110000-00009 [CrossRef]

Syers J. K., Browman G. M., Smillie G. W., Corey R. B. Phosphate sorption by soils evaluated by the Langmuir adsorption equation. Soil Sci. Soc. Amer. Proc. 1973a. 37:358-63. DOI: 10.2136/sssaj1973.03615995003700030015x [CrossRef]

Syers J. K., Harris R. F., Armstrong D. E. Phosphate chemistry in lake sediments. A review J. Environ. Quality. 1973b. 2:1-14. DOI: 10.2134/jeq1973.00472425000200010001x [CrossRef]

Talibudeen O. The nutrient potential of soil. Soils Ferts. 1974. 37:41-5.

Taylor A. W., Gurney E. L. Phosphate equilibria in an acid soil J. Soil Sci. 1962. 13:187-97. DOI: 10.1111/j.1365-2389.1962.tb00696.x [CrossRef]

Taylor A. W., Gurney E. L. The effect of time on the phosphate potential and resin extractable phosphate in five acid soils. Soil Sci. Soc. Amer. Proc. 1965. 29:482-3. DOI: 10.2136/sssaj1965.03615995002900040037x [CrossRef]

Taylor A. W., Kunishi H. M. Phosphate equilibrium in stream sediment and soil in a watershed draining an agricultural region. J. Agric. Food Chem. 1971. 19:827-31. DOI: 10.1021/jf60177a061 [CrossRef]

Taylor A. W., Kunishi H. M. Soil adsorption of phosphates from waste water. Factors Involved in Land Application of Agricultural and Municipal Wastes. 1974. Beltsville, Maryland: ARS-USDA National Program Staff, Soil, Water and Air Sciences. p. 66-96. 20705

Taylor A. W., Gurney E. L., Lehr J. R. Decay of phosphate fertilizer reaction products in an acid soil. Soil Sci. Soc. Amer Proc. 1963. 27:145-8. DOI: 10.2136/sssaj1963.03615995002700020017x [CrossRef]

Taylor A. W., Edwards W. M., Simpson E. C. Nutrients in streams draining woodland and farmland near Coshocton, Ohio. Water Resources Res. Res. 1971. 7:81-9. DOI: 10.1029/WR007i001p00081 [CrossRef]

Thomas R. E. Fate of materials applied 1973. pp.181-200. Proc. Conf. Land Disposal Municpal Effluents Sludges EPA-902/9-73-001

Thomas R. E., Bledsoe B., Jackson K. Overland flow treatment of raw wastewater with enhanced phosphorus removal. EPA-600/2-76-131. 1976. Washington, D.C.: U.S. Government Printing Office. 20402

Tisdale S. L., Nelson W. L. Soil Fertility and Fertilizers. (Third Edition). Macmillan Publishing Co., Inc., New York, N.Y. 1975. 10022:694

Tweneboah C. K., Greenland D. J., Oades J. M. Changes in charge characteristics of soils after treatment with 0.5 M calcium chloride at pH 1.5. Aust. J. Soil Res. 1967. 5:247-62. DOI: 10.1071/SR9670247 [CrossRef]

Veith J. A., Sposito G. Reactions of aluminosilicates, aluminum hydrous oxides and aluminum oxide with ophosphate: Formation of X-ray amorphous analogs of variscite and montebrasite. Soil Sci. Soc. Amer. J. 1977a. 41:870-876. DOI: 10.2136/sssaj1977.03615995004100050011x [CrossRef]

Veith J. A., Sposito G. On the use of the Langmuir equation in the interpretation of adsorption phenomena. Soil Sci. Soc. Amer. J. 1977b. 41:697-702. DOI: 10.2136/sssaj1977.03615995004100040015x [CrossRef]

Vijayachandran P. K., Harter R. D. Evaluation of phosphorus adsorption by a cross section of soil types. Soil Sci. 1975. 119:119-26. DOI: 10.1097/00010694-197502000-00002 [CrossRef]

Warrington R. On the part taken by oxide of iron and alumina in the adsorptive action of soils. J. Chem. Soc. 1968. 21:1-19. DOI: 10.1039/js8682100001 [CrossRef]

White E. The distribution and movement of reactive phosphorus through catchments under various land use. Proc. New Zeal. Ecol. Soc. 1972. 19:163-72.

Wild A. The concentration of phosphate in the soil solution. Trans. Fifth Intern. Cong. Soil Sci., Leopold-ville. 1954. 2:500-4.

Williams E. G., Scott N. M., Mcdonald M. J. Soil properties and phosphate sorption. J. Sci. Food Agr. 1958. 9:551-9. DOI: 10.1002/jsfa.2740090905 [CrossRef]

Williams J. D. H. J. K. Syers, Walker T. W. Fractionation of soil inorganic phosphate by a modification of Chang and Jackson’s procedure. Soil Sci. Soc Amer. Proc. 1967. 31:736-9. DOI: 10.2136/sssaj1967.03615995003100060012x [CrossRef]

Williams J. D. H. J. K. Syers, Harris R. F., Armstrong D. E. Adsorption and desorption of inorganic phosphorus by lake sediments in a 0.1 M NaCl system. Environ. Sci. Technol. 1970. 4:517-9. DOI: 10.1021/es60041a001 [CrossRef]

Withee L. V., Ellis R. Change of phosphate potentials of calcareous soils on adding phosphorus. Soil Sci. Soc. Amer. Proc. 1965. 29:511-4. DOI: 10.2136/sssaj1965.03615995002900050013x [CrossRef]

Yee W. C. Selective removal of mixed phosphates by activated alumina. J. Amer. Water Works Assoc. 1966. 58:239-47.

Ryden J, Pratt P. 1980. Phosphorus removal from wastewater applied to land. Hilgardia 48(1):1-36. DOI:10.3733/hilg.v48n01p036
Webmaster Email: sjosterman@ucanr.edu