The impact of cotton plant resistance on spider mites and their natural enemies
Authors
Paul J. TrichiloThomas F. Leigh
Authors Affiliations
Paul J. Trichilo is a former graduate student of the Department of Entomology, University of California, Davis, and is presently a postdoctoral research associate in the Department of Zoology-Entomology, Auburn University, AL 36849; Thomas F. Leigh is Entomologist in the Department of Entomology, University of California, Davis, CA 95616.Publication Information
Hilgardia 54(5):1-20. DOI:10.3733/hilg.v54n05p033. August 1986.
PDF of full article, Cite this article
Abstract
A spider mite-resistant and a spider mite-susceptible variety of cotton were planted in the field in a replicated design. An acaricide (dicofol) and an insecticide (acephate) were used to manipulate numbers of spider mites and their natural enemies. In general, numbers of spider mites remained low until just before midseason when 650 °D air temperature had accumulated. At 650 °D, mite numbers began to increase more sharply and reached significantly (P<0.001) greater levels on susceptible plants than on resistant plants. Although natural enemies, such as Geocoris pallens Stål, Orius tristicolor (White), and Frankliniella occidentalis (Pergande), were slightly more apparent on susceptible plants than on resistant plants, these differences were not statistically significant, and cotton varietal resistance was compatible with biological control.
Acephate significantly (P<0.05) reduced predator densities for up to 2 weeks following each application, and after 550 °D mite populations had begun to explode on plants sprayed with acephate. Predators had a greater impact on mites on susceptible plants than on resistant plants, which was attributed to greater densities of spider mite prey on susceptible plants. After 900 °D, spider mites were out of control on susceptible plants treated with acephate, and the acaricide dicofol had no observable effect on mite numbers. Rapidly increasing mite populations appear to exhibit acaricide resistance, solely by attaining very high densities. Dicofol efficacy was relatively high on spider mite-resistant plants, because mite growth rates were slower, and thus mite populations could not “outgrow” the effect of the acaricide. Hence, there appeared to be a synergistic interaction between acaricide and varietal resistance.
In untreated plots, yield was significantly (P<0.05) higher in the susceptible variety than in the resistant variety. However, this trend was reversed in plots treated with acephate, and yield from resistant plants was significantly (P<0.05) greater than yield from susceptible plants. On crops heavily treated with insecticides, resistant varieties may offer the best alternative for pest management.
Literature Cited
Abbott W. S. Method for computing the effectiveness of an insecticide. J. Econ. Entomol. 1925. 18:265-67. [PubMed]
Adkisson P. L., Dyck V. A., Maxwell F. G., Jennings P. R. Resistant varieties in pest management systems. Breeding Plants Resistant to Insects. 1980. New York: John Wiley and Sons, Inc. p. 233-51.
Askari A., Stern V. M. Biology and feeding habits of Orius tristicolor (Hemiptera: Anthocoridae). Ann. Entomol. Soc. Am. 1972. 65:96-100.
Bartlett B. R. Outbreaks of two-spotted spider-mites and cotton aphids following pesticide treatment. I. Pest stimulation vs. natural enemy destruction as the cause of outbreaks. J. Econ. Entomol. 1968. 61:297-303.
Bergman J. M., Tingey W. M. Aspects of interaction between plant genotypes and biological control. Bull. Entomol. Soc. Am. 1979. 25:275-79.
Bisabri-Ershadi B., Ehler L. E. Natural biological control of western yellow-striped armyworm, Spodoptera praefica (Grote), in hay alfalfa in northern California. Hilgardia. 1981. 49:1-23. DOI: 10.3733/hilg.v49n01p029 [CrossRef]
Boykin L. S., Campbell W. V. Rate of population increase of the twospotted spider mite (Acari: Tetranychidae) on peanut leaves treated with pesticides. J. Econ. Entomol. 1982. 75:966-71.
Boykin L. S., Campbell W. V., Beute M. K. Effect of pesticides on Neozygites floridana (Entomophthorales: Entomophthoraceae) and arthropod predators attacking the twospotted spider mite (Acari: Tetranychidae) in North Carolina peanut fields. J. Econ. Entomol. 1984. 77:969-75.
Byerly K. F., Gutierrez A. P., Jones R. E., Luck R. F. Comparison of sampling methods for some arthropod populations in cotton. Hilgardia. 1978. 46:257-82. DOI: 10.3733/hilg.v46n08p257 [CrossRef]
Campbell B. C., Duffey S. S. Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control. Science. 1979. 205:700-02. DOI: 10.1126/science.205.4407.700 [CrossRef] [PubMed]
Canerday T. D., Arant F. S. The effect of spider mite populations on yield and quality of cotton. J. Econ. Entomol. 1964. 57:553-56.
Carey J. R., Bradley J. W. Developmental rates, vital schedules, sex ratios, and life tables for Tetranychus urticae, T. turkestani and T. pacificus (Acarina: Tetranychidae) on cotton. Acarologia. 1982. 23:333-45.
Casagrande R. A., Haynes D. L. The impact of pubescent wheat on the population dynamics of the cereal leaf beetle. Environ. Entomol. 1976. 5:153-59.
Conway G. R., May R. M. Man versus pests. Theoretical Ecology. 1976. Oxford: Blackwells. p. 356-86.
Debach P. An insecticidal check method for measuring the efficacy of entomophagous insects. J. Econ. Entomol. 1946. 39:695-97. [PubMed]
Debach P. Biological Control by Natural Enemies. 1974. London: Cambridge Univ. Press. 323p.
De Lima J. O. G., Leigh T. F. Effect of cotton genotypes on the western bigeyed bug (Heteroptera: Miridae). J. Econ. Entomol. 1984. 77:898-902.
Dietrick E. J. An improved backpack motor fan for suction sampling of insect populations. J. Econ. Entomol. 1961. 54:394-95.
Ehler L. E. Natural enemies of cabbage looper on cotton in the San Joaquin Valley. Hilgardia. 1977. 45(3):73-106. DOI: 10.3733/hilg.v45n03p073 [CrossRef]
Ehler L. E., Miller J. C. Biological control in temporary agroecosystems. Entomophaga. 1978. 23:207-12. DOI: 10.1007/BF02373094 [CrossRef]
Ehler L. E., Van Den Bosch R. An analysis of the natural biological control of Trichoplusia ni (Lepidoptera: Noctuidae) on cotton in California. Can. Entomol. 1974. 106:1067-73. DOI: 10.4039/Ent106777-7 [CrossRef]
Ellington J., Cardenas M., Kiser K., Guerra L., Salguero V., Ferguson G. Approach to the evaluation of some factors affecting insect resistance in one ‘Acala’ and seven sister genotypes of stoneville cotton in New Mexico. J. Econ. Entomol. 1984. 77:612-18.
Eveleens K. G., Van Den Bosch R., Ehler L. E. Secondary outbreak induction of beet armyworm by experimental insecticide applications in cotton in California. Environ. Entomol. 1973. 2:497-503.
Falcon L. A., Van Den Bosch R., Ferris C. A., Stromberg L. K., Etzel L. K., Stinner R. E., Leigh T. F. A comparison of seasonlong cotton-pest-control programs in California during 1966. J. Econ. Entomol. 1968. 61:633-42.
Force D. C. r- and k- strategists in endemic host-parasitoid communities. Bull. Entomol. Soc. Am. 1972. 18:135-37.
Fry W. E. Integration of host resistance and pesticides to manage disease. Protec. Ecol. 1980. 2:259-64.
Furr R. E., Pfrimmer T. R. Effects of early-, mid-, and late-season infestations of two-spotted spider mites on the yield of cotton. J. Econ. Entomol. 1968. 61:1446-47.
Garcia A., Gonzalez D., Leigh T. F. Three methods for sampling arthropod numbers on California cotton. Environ. Entomol. 1982. 11:565-72.
Gonzalez D., Patterson B. R., Leigh T. F., Wilson L. T. Mites: a primary food source for two predators in San Joaquin Valley cotton. Calif. Agric. 1982. 36:18-20.
Gonzalez D., Wilson L. T. A foodweb approach to economic thresholds: a sequence of pests/predaceous arthropods on California cotton. Entomophaga. 1982. 27(Special Issue):31-43. DOI: 10.1007/BF02371853 [CrossRef]
Gutierrez A. P., Falcon L. A., Loew W., Leipzig P. A., Van Den Bosch R. An analysis of cotton production in California: a model for Acala cotton and the effects of defoliators on its yields. Environ. Entomol. 1975. 4:125-36.
Hansberry R. Prospects for nonchemical insect control-an industrial view. Bull. Entomol. Soc. Am. 1968. 14:229-35.
Huffaker C. B., Flaherty D. L. Potential of biological control of 2-spotted spider mite on strawberries in California. J. Econ. Entomol. 1966. 59:786-92.
Huffaker C. B., Van De Vrie M., Mcmurty J. A. Ecology of tetranychid mites and their natural enemies, a review. II. Tetranychid populations and their possible control by predators: an evaluation. Hilgardia. 1970. 40:391-458.
Kantanyukul W., Thurston R. Seasonal parasitism and predation of eggs of the tobacco hornworm on various host plants in Kentucky. Environ. Entomol. 1973. 2:939-45.
Kartohardjono A., Heinrichs E. A. Populations of the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae), and its predators on rice varieties with different levels of resistance. Environ. Entomol. 1984. 13:359-65.
Landis B. J. Insect hosts and nymphal development of Podisus maculiventris Say and Perillus bioculatus F. Ohio J. Sci. 1937. 37:252-59.
Lloyd D. C. Significance of the type of host crop in successful biological control of insect pests. Nature. 1960. 187:430-31. DOI: 10.1038/187430a0 [CrossRef] [PubMed]
Mistric W. J. Damage by the strawberry spider mite on cotton when infestations commenced at the beginning, middle, and end of the flowering period. J. Econ. Entomol. 1969. 62:192-95.
Mollet J. A., Sevacherian V. Pesticide and seasonal effects on within-plant distribution of Tetranychus cinnabarinus (Boisduval) (Acarina: Tetranychidae) in cotton. J. Econ. Entomol. 1984. 77:925-28.
Newsom L. D. The end of an era and future prospects for insect control. Proc. Tall Timb. Conf. Ecol. Anim. Contr. Hab. Mgt. 1970. 2:117-36.
Obrycki J. J., Tauber M. J. Natural enemy activity on glandular pubescent potato plants in the greenhouse: an unreliable predictor of effects in the field. Environ. Entomol. 1984. 13:679-83.
Obrycki J. J., Tauber M. J., Tingey W. M. Predator and parasitoid interaction with aphid-resistant potatoes to reduce aphid densities: a two-year field study. J. Econ. Entomol. 1983. 76:456-62.
Painter R. H., Reitz L. P. Breeding plants for resistance to insect pests. Biological and Chemical Control of Plant and Animal Pests. 1960. 61: Wash., D.C.: Amer. Assn. Adv. Sci. p. 245-66.
Pimentel D. An ecological approach to the insecticide problem. J. Econ. Entomol. 1961. 54:108-14.
Pimentel D., Wheeler A. G. JR. Influence of alfalfa resistance on a pea aphid population and its associated parasites, predators and competitors. Environ. Entomol. 1973. 2:1-11.
Powell C. R. Plant-mediated effects on survival and fecundity of the spotted alfalfa aphid (Therioaphis trifolii Monell) on aphid resistant alfalfas treated with two organophosphate insecticides. 1981. Davis: University Calif. M.S. Thesis.
Price P. W., Bouton C. E., Gross P., Mcpheron B. A., Weis A. E. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Ann. Rev. Ecol. Syst. 1980. 11:41-65. DOI: 10.1146/annurev.es.11.110180.000353 [CrossRef]
Reynolds H. T., Adkisson P. L., Smith R. F., Frisbie R. E., Metcalf R. L., Luckman W. H. Cotton insect pest management. Introduction to Insect Pest Management 1982. pp.375-441.
Roussel J. S., Weber J. C., Newsom L. D., Smith C. E. The effect of infestation by the spider mite Septanychus tumidus on growth and yield of cotton. J. Econ. Entomol. 1951. 44:523-27.
Schuster D. J., Starks K. J. Preference of Lysiphlebus testacipes for greenbug resistant and susceptible small grain species. Environ. Entomol. 1975. 4:887-88.
Schuster M. F., Maxwell F. G., Jenkins J. N. Antibiosis to twospotted spider mite in upland and American Pima cotton. J. Econ. Entomol. 1972. 65:1110-11.
Schuster M. F., Maxwell F. G., Jenkins J. N., Cherry E. T., Parrot W. L., Holder D. G. Resistance to twospotted spider mite in cotton. Miss. Agric. For. Exp. Sta. Bull. 1973. 802:3-5.
Smith J. M., Schuster M. F., Maxwell F. G., Jenkins J. N., Cherry E. T., Parrot W. L., Holder D. G. Effects of the food plant of California red scale, Aonidiella aurantii (Mask.), on reproduction of its hymenopterous parasites. Can. Entomol. 1957. 89:219-30.
Smith R. F., Hagen K. S. The integration of chemical and biological control of the spotted alfalfa aphid: impact of commercial insecticide treatments. Hilgardia. 1959. 29(2):131-54. DOI: 10.3733/hilg.v29n02p131 [CrossRef]
Starks K. M., Muniappan R., Eikenbary R. D. Interaction between plant resistance and parasitism against the greenbug on barley and sorghum. Ann. Entomol. Soc. Am. 1972. 65:650-55.
Stern V. M., Smith R. F., Van Den Bosch R., Hagen K. S. The integration of chemical and biological control of the spotted alfalfa aphid: the integrated control concept. Hilgardia. 1959. 29(2):81-101. DOI: 10.3733/hilg.v29n02p081 [CrossRef]
Stoltz R. L., Stern V. M. The longevity and fecundity of Orius tristicolor when introduced to increasing numbers of prey Frankliniella occidentalis. Environ. Entomol. 1978a. 7:197-98.
Stoltz R. L., Stern V. M. Cotton arthropod food chain disruption by pesticides in the San Joaquin Valley, California. Environ. Entomol. 1978b. 7:703-07.
Stoner A. Plant feeding by a predaceous insect, Geocoris punctipes. J. Econ. Entomol. 1970. 63:1911-15.
Stoner A. Plant feeding by Nabis a predaceous genus. Environ. Entomol. 1972. 1:557-58.
Strong D. R. Banana’s best friend. Nat. Hist. 1984. 93:50-57.
Thurston R., Fox P. M. Inhibition by nicotine of emergence of Apanteles congregatus from its host, the tobacco hornworm. Ann. Entomol. Soc. Am. 1972. 65:547-50.
Trichilo P. J., Leigh T. F. The use of life tables to assess varietal resistance of cotton to spider mites. Entomol. Exp. Appl. 1985. 39:27-33. DOI: 10.1111/j.1570-7458.1985.tb03539.x [CrossRef]
Tuttle D. M., Baker E. W. Spider mites of the Southwestern United States and a revision of the family Tetranychidae. 1968. Tucson: Univ. Arizona Press.
Van Den Bosch R., Hagen K. S. Predaceous and parasitic arthropods in California cotton fields. Calif. Agric. Exp. Stn. Bull. 1966. 820:32
Van Den Bosch R., Leigh T. F., Falcon L. A., Stern V. M., Gonzalez D., Hagen K. S., Huffaker C. B. The developing program of integrated control of cotton pests in California. Biological Control. 1971. New York and London: Plenum Press. p. 377-94.
Van Emden H. F. Plant insect relationships and pest control. World Rev. Pest Control. 1966. 5:115-23.
Van Emden H. F., Wearing C. H. The role of the aphid host plant in delaying economic damage levels in crops. Ann. Appl. Biol. 1965. 56:323-24.
Van Steenwyk R. A., Toscano N. C., Ballmer G. R., Kido K., Reynolds H. T. Increases of Heliothus spp. in cotton under various insecticide treatment regimes. Environ. Entomol. 1975. 4:993-96.
White T. C. R. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia. 1984. 63:90-105. DOI: 10.1007/BF00379790 [CrossRef]
Wilson L. T., Gonzalez D., Leigh T. F., Maggi V., Foristiere C., Goodell P. Within-plant distribution of spider mites (Acari: Tetranychidae) on cotton: a developing implementable monitoring program. Environ. Entomol. 1983. 12:128-34.
Yokoyama V. Y. Relation of seasonal changes in extrafloral nectar and foliar protein and arthropod populations in cotton. Environ. Entomol. 1978. 7:799-802.
Also in this issue:
We are what we eat: Ensuring safe and healthy food in the 21st centurySupplements may contain high doses
UC hosts food security symposium
UC center focuses on weight and health
School gardens produce food and lessons
What are the best strategies for achieving optimal nutrition?
Nutrition may influence toxicant susceptibility of children and elderly
Nutraceuticals: Separating the wheat from the chaff
Dietary flavonoids may promote health, prevent heart disease
School-based gardens can teach kids healthier eating habits
Comprehensive studies are needed: Food security, biodiversity threatened by population growth
Global surveillance needed to prevent foodborne disease
Salmonella in sewage effluent raises ecological and food-safety concerns
Providing reliable supply of safe drinking water poses challenges
Emerging pathogens on the rise: How can waterborne illness be prevented?