Hilgardia
Hilgardia
Hilgardia
University of California
Hilgardia

Pink bollworm control in southwestern desert cotton: I. A field-oriented simulation model

Authors

N. D. Stone
A. P. Gutierrez

Authors Affiliations

N. D. Stone is Assistant Professor, Department of Entomology, Texas A&;M University, College Station, Texas and was formerly Research Assistant, Division of Biological Control, Department of Entomological Sciences, Berkeley; A. P. Gutierrez is Professor, Division of Biological Control, Department of Entomological Sciences, Berkeley.

Publication Information

Hilgardia 54(9):1-24. DOI:10.3733/hilg.v54n09p032. December 1986.

PDF of full article, Cite this article

Abstract

I. A Field-Oriented Simulation Model

A simulation model for pink bollworm (PBW) and cotton was developed, field validated, and incorporated into an industry sponsored regional PBW management program for southwestern desert cotton. The PBW model differs from earlier versions in its incorporation of stochastic development, the expansion of the concept of physiological time to include nutritional influences of the cotton host on larval development, and its ability to simulate the kinds of data typically collected by pest control advisors when monitoring cotton for pink bollworm.

II. A Strategic Management Model

A simulation model of pink bollworm populations, as affected by insecticide and pheromone applications in cotton, is described. The simulation results compared favorably to field data. The study indicates that use of sex pheromone for control of pink bollworm by mating disruption inversely depends on density and therefore is most effective in the early season when populations are low. Compared to untreated fields, pheromone-treated fields show delayed population peaks and reduced overall infestation. Pheromone applications in the early season delay but do not obviate the need to spray insecticide to limit infestation levels.

III. Strategies for Control: An Economic Simulation Study

The cotton-pink bollworm model and the management model developed by Stone and Gutierrez (I and II of this series) are used to evaluate different strategies for controlling pink bollworm in the southwestern desert. Pesticide sprays based on an ultraconservative economic threshold of 2 percent infested bolls are found to be the most profitable in the absence of penalties for heavy insecticide use. Insecticide sprayed on thresholds over 8 percent infested bolls did not control pink bollworm.

Pheromone in combination with insecticide greatly enhanced profits and was the best workable strategy tested since a 2 percent threshold is probably too difficult to sample accurately in the field. The efficacy of using early season insecticide applications at and before the first hostable squares are present is discussed, as is the possible impact of early season insecticide applications on beneficial insect populations.

Literature Cited

Adkisson P. L. Effect of larval diet on the seasonal occurrence of diapause in the pink bollworm. J. Econ. Entomol. 1961. 54:1107-12.

Adkisson P. L., Bell R. A., Wellso S. G. Environmental factors controlling the induction of diapause in the pink bollworm, Pectinophora gossypiella (Saunders). J. Insect Physiol. 1963. 9:299-310. DOI: 10.1016/0022-1910(63)90107-0 [CrossRef]

Beasley C. A., Henneberry T. J., Adams C. Relationships of delta traps and emergence cages to pink bollworm spring emergence. California cotton progress report. 1984. Univ. Calif. Coop. Ext. Agric. Res. Sta., and USDA. March 1984.

Brazzel J. R., Gaines J. C. The effects of pink bollworm infestations on yield and quality of cotton. J. Econ. Entomol. 1956. 49:852-54.

Brazzel J. R., Martin D. E. Behavior of pink bollworm larvae. J. Econ. Entomol. 1955. 48:677-79.

Brazzel J. R., Martin D. E. Oviposition sites of the pink bollworm on the cotton plant. J. Econ. Entomol. 1957. 50:122-24.

Burrows T. M., Sevacherian V., Browning H., Baritelle J. The history and cost of the pink bollworm in the Imperial Valley. Bull. Ent. Soc. Am. 1982. 28(3):286-90.

Butler G. D. JR. An insect flight trap for crop areas. J. Econ. Entomol. 1966. 59:1030-31.

Butler G. D. JR, Gillespie J. M., Henneberry T. J., Zvirgzdins ANDRIS. Seasonal movement of the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelichiidae) 1983. p.4. Beltwide Cotton Prod.-Mech. Conf. Proc.

Clayton T. E., Henneberry T. J. Pink bollworm: effect of soil moisture and temperature on moth emergence in field and laboratory studies. Environ. Entomol. 1982. 11:147-49.

Flint H. M., Merkle J. R. Methods for efficient use of the Delta trap in the capture of pink bollworm moths. Southwestern Entomol. 1983. 8:140-44.

Gillespie J., Stone N. D., Kydoneus A. K. Pink bollworm management using a heat-unit based model and controlled-release pheromone products 1985. 12th Int. Symp. Controlled Release of Bioactive Materials. Geneva, Switzerland, July 8-12.

Gutierrez A. P., Butler G. D. JR, Ellis C. K. Pink bollworm: diapause induction and termination in relation to fluctuating temperatures and decreasing photophases. Environ. Entomol. 1981. 10:936-42.

Gutierrez A. P., Butler G. D. JR, Wang Y. H., Westphal D. The interaction of pink bollworm (Lepidoptera: Gelichiidae), cotton, and weather: a detailed model. Can. Entomol. 1977. 109:1457-68. DOI: 10.4039/Ent1091457-11 [CrossRef]

Gutierrez A. P., Falcon L. A., Loew W., Leipzig P. A., Van Den Bosch R. An analysis of cotton production in California: a model for Acala cotton and the effects of defoliators on its yields. Environ. Entomol. 1975. 4:125-36.

Gutierrez A. P., Pizzamiglio M. A., Dos Santos W. J., Tennyson R., Villacorta A. M. A general distributed delay time varying life table plant population model: cotton (Gossypium hirsutum L.) growth and development as an example. Ecol. Modeling. 1984. 26:231-49. DOI: 10.1016/0304-3800(84)90071-1 [CrossRef]

Henneberry T. J., Bariola L. A., Russell T. Pink bollworm: chemical control in Arizona and relationship to infestations, lint, yield, seed damage, and aflatoxin in cottonseed. J. Econ. Entomol. 1978. 71:440-42.

Henneberry T. J., Clayton T. E. Pink bollworm: seasonal oviposition, egg predation, and square and boll infestations in relation to cotton plant development. Environ. Entomol. 1982. 11:663-66.

Huber R. T., Hoffmann M. P. Development and evaluation of an oil trap for use in pink bollworm pheromone mass trapping and monitoring programs. J. Econ. Entomol. 1979. 72:695-97.

Hummell H. E., Gaston L. K., Shorey H. H., Kaae R. S., Byrne K. J., Silverstein R. M. Clarification of the chemical status of the pink bollworm sex pheromone. Science. 1973. 181:873-75. [PubMed] DOI: 10.1126/science.181.4102.873 [CrossRef]

Kydonieus A. F., Gillespie J. M., Barry M. W., Welch J., Henneberry T. J., Leonhardt B. A., Leonhardt B. A., Beroza M. Formulations and equipment for large volume pheromone applications by aircraft. Insect Pheromone Technology: Chemistry and Applications 1981. pp.175-91. ACS Symp. Series 190:

Lingren P. D., Burton J., Shelton W., Raulston J. R. Night vision goggles: for design, evaluation, and comparative efficiency determination of a pheromone trap for capturing live adult male pink bollworms. J. Econ. Entomol. 1980. 73:622-30.

Lukefahr M. J., Griffin J. A. Mating and oviposition habits of the pink bollworm moth. J. Econ. Entomol. 1957. 50:487-90.

Lukefahr M. J., Griffin J. A. Pink bollworm development in relation to age of squares and bolls with notes on biology. J. Econ. Entomol. 1962. 55:158-59.

Manetsch T. J. Time-varying distributed delays and their use in aggregative models of large systems. IEEE Trans. Sys. Man and Cyber. 1976. SMC-6:547-53. DOI: 10.1109/TSMC.1976.4309549 [CrossRef]

Noble L. W. Fifty years of research on the pink bollworm in the United States. USDA Handb. 1969. 357:62

Noble L. W., Robertson O. T. Methods for determining pink bollworm populations in blooms. J. Econ. Entomol. 1964. 57:501-03.

Pinter P. J. JR, Jackson R. D. Thermal relations affecting survival of pink bollworm larvae between cutout and pupation. Environ. Entomol. 1976. 5:853-58.

Stone N. D. Analysis of the pest management of pink bollworm, Pectinophora gossypiella (Saunders), in southwestern desert cotton, Gossypium hirsutum L 1984. p.237. Ph.D. dissertation, Entomological Sciences, Univ. Calif., Berkeley. December 1984,

Stone N. D., Gutierrez A. P. Pink Bollworm Control in Southwestern Desert Cotton. II. A strategic management model. Hilgardia. 1986. 54(9): DOI: 10.3733/hilg.v54n09p015 [CrossRef]

Toscano N. C., Sevacherian V., Van Steenwyk R. A. Pest management guide for insects and nematodes of cotton in California. U.C. Calif. Publ. 1979. 4089:62

Vansickle J. Attrition in distributed delay models. IEEE Trans. Syst. Man Cybern. 1977. 7:635-38. DOI: 10.1109/TSMC.1977.4309800 [CrossRef]

Von Arx R., Baumgaertner J. H., Delucchi V. A model to simulate the population dynamics of Bemisia Tabaci (Genn) on cotton in the Sudan Gezira. Sonderdruck aus. 1983. 96(4):341-63.

Von Foerster H., Stohlman F. JR. Some remarks on changing populations. The mimetics of cellular proliferation. 1959. New York: Grune and Stratton.

Wang Y. H., Gutierrez A. P., Oster G., Daxl R. A population model for plant growth and development: coupling cotton-herbivore interactions. Can. Entomol. 1977. 109:1359-74. DOI: 10.4039/Ent1091359-10 [CrossRef]

Watson T. F., Johnson P. H. Larval stages of the pink bollworm, Pectinophora gossypiella. Annals Ent. Soc. Am. 1974. 67(5):812-14.

Watt K. E. F. Mathematical models for use in insect pest control. Can. Entomol. 1961. 93(Suppl. 19):

Westphal D. F., Gutierrez A. P., Butler G. D. JR. Some interactions of the pink bollworm and cotton fruiting structures. Hilgardia. 1979. 47(5):177-90. DOI: 10.3733/hilg.v47n05p177 [CrossRef]

Stone N, Gutierrez A. 1986. Pink bollworm control in southwestern desert cotton: I. A field-oriented simulation model. Hilgardia 54(9):1-24. DOI:10.3733/hilg.v54n09p032
Webmaster Email: sjosterman@ucanr.edu