Identification of Western U.S. wheat varieties by polyacrylamide gel electrophoresis of gliadin proteins
Authors
Dale K. MechamDonald D. Kasarda
Calvin O. Qualset
Authors Affiliations
Dale K. Mecham was a research chemist (retired), Food Proteins Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710; Donald D. Kasarda was a research leader, Food Proteins Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710; Calvin O. Qualset was professor of agronomy, University of California, Davis, CA 95616.Publication Information
Hilgardia 53(7):1-32. DOI:10.3733/hilg.v53n07p032. November 1985.
PDF of full article, Cite this article
Abstract
Polyacrylamide gel electrophoresis (PAGE) patterns of gliadin endosperm proteins were obtained for 52 western U.S. wheat varieties, using foundation seed stocks or stocks maintained by wheat breeders. Two PAGE procedures were used; one, based on a uniform concentration of Polyacrylamide, was somewhat superior in the number of bands separated; the other, based on a Polyacrylamide concentration gradient, required much less time. Their combined use appeared advantageous, although patterns obtained by either method could be used to distinguish and identify most of the varieties examined. Exceptions were the pairs Gaines and Nugaines, Manning and Hansel, Fielder and Fieldwin, Hatton and McCall, and possibly, Cajeme 71 and Yecora Rojo. More than one pattern among individual seeds within a variety sample indicated two or more biotypes (genetic variants) in 17 of the varieties. These variations ranged from the occurrence of about equal numbers of two quite different patterns to the occurrence of one predominant pattern with biotypes of slightly different patterns in minor proportions.
The presence of biotypes in some varieties complicates the determination of the varietal composition of wheat samples, but at present, no other techniques are available that approach the resolution given by PAGE for the purpose. Photographs of the gliadin patterns included in this report can serve as reference documentation for future work on gliadin proteins in western U.S. wheats.
Literature Cited
Anderson O. D., Litts J. C., Gautier M.-F, Greene F. C. Nucleic acid sequence and chromosome assignment of a wheat storage protein gene. Nucleic Acids Res. 1985. 12:8129-44. DOI: 10.1093/nar/12.21.8129 [CrossRef]
Akroyd W. R., Doughty J. Wheat in human nutrition. 1970. Rome: Food and Agriculture Organization of the United Nations. Chapter 1. “The History of Wheat.”
Akroyd W. R., Doughty J. The Official United States Standards for Grains. 1978. U.S. Dept. of Agriculture, Federal Grain Inspection Service. Anonymous
Appleyard D. B., McCausland J., Wrigley C. W. Checking the identity and origin of off-types in the propagation of pedigreed wheat seed. Seed Sci. and Technol. 1979. 7:459-66.
Autran J. C. Manuel d’instructions sur la technique d’identification des varieties de ble par electrophorese des gliadines. Brochure Inst. Natl. Rech. Agr. 1979. pp.1-58.
Ballou B., Smithies O. A simplified chloral hydrate electrophoresis system for analysis of biological membranes. Analytical Biochem. 1977. 80:616-23. DOI: 10.1016/0003-2697(77)90686-8 [CrossRef]
Bietz J. A., Cobb L. A. Improved procedures for rapid wheat varietal identification by reversed-phase high-performance liquid chromatography. Cereal Chem. 1985. 62:332-39.
Bietz J. A., Huebner F. R., Sanderson J. E., Wall J. S. Wheat gliadin homology revealed through amino terminal sequence analysis. Cereal Chem. 1977. 54:1070-83.
Bourdet A., Feillet P., Mettavant F. Sur le comportement electrophoretique des prolamines du ble en gel d’amidon. C. R. Acad. Sci. 1963. 256:4517-20.
Bushuk W., Sapirstein H. D., Zillman R. R. Wheat cultivar identification by computer analysis of gliadin electrophorograms. Cereal Foods World. 1978. 23:496 Abstract C6-1
Bushuk W., Zillman R. R. Wheat cultivar identification by gliadin electrophoregrams. I. Apparatus, method and nomenclature. Can. J. Plant Sci. 1978. 58:505-15. DOI: 10.4141/cjps78-076 [CrossRef]
Coulson C. B., Sim A. K. Proteins of various species of wheat and closely related genera and their relationship to genetical characteristics. Nature. 1964. 202:1305-08. DOI: 10.1038/2021305a0 [CrossRef]
Doekes G. J. Comparison of wheat varieties by starch-gel electrophoresis of their grain proteins. J. Sci. Food Agric. 1968. 19:169-76. DOI: 10.1002/jsfa.2740190311 [CrossRef]
Doekes G. J. Inheritance of gliadin composition in bread wheat, Triticum aestivum L. Euphytica. 1973. 22:28-34.
Du Cros D. L., Lawrence G. J., Miskelly D. M., Wrigley C. W. Systematic identification of Australian wheat varieties by laboratory methods. Technical Publication No. 7. 1980. North Ryde, N.S.W.: CSIRO Wheat Research Unit. 2113, Australia
Elton G. A. H., Ewart J. A. D. Starch-gel electrophoresis of cereal proteins. J. Sci. Food Agric. 1962. 13:62-72. DOI: 10.1002/jsfa.2740130112 [CrossRef]
Finney K. F., Barmore M. A. Loaf volume and protein content of hard winter and spring wheats. Cereal Chemistry. 1948. 25:291-312.
Finney K. F., Yamazaki W. T., Quisenberry K. S., Reitz L. P. Quality of hard, soft, and durum wheats, Chapter 14. Wheat and Wheat Improvement. 1967. Madison, Wisconsin: Published by Am. Soc. of Agronomy.
Graham J. S. D. Starch-gel electrophoresis of wheat flour proteins. Australian J. Biol. Sci. 1963. 16:342-49.
Jackson E. A., Holt L. M., Payne P. I. Characterization of high molecular weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localization of their controlling genes. Theor. Appl. Genet. 1983. 66:29-37.
Jones B. L., Lookhart G. L., Hall S. B., Finney K. F. Identification of wheat cultivars by gliadin electrophoresis: electrophoregrams of the 88 wheat cultivars most commonly grown in the United States in 1979. Cereal Chemistry. 1982. 59:181-88.
Jones R. W., Cluskey J. E. Preparation of aluminum lactate. Cereal Chemistry. 1963. 40:589-91.
Jones R. W., Taylor N. W., Senti F. R. Electrophoresis and fractionation of wheat gluten. Arch. Biochem. Biophys. 1959. 84:363-76. DOI: 10.1016/0003-9861(59)90599-5 [CrossRef]
Kasarda D. D., Autran J. C., Lew E. J.-L., Nimmo C. C., Shewry P. R. N-terminal amino acid sequences of ?-gliadins and ?-secalins: implications for the evolution of prolamin genes. Biochim. Biophys. Acta. 1983. 747:138-50.
Kasarda D. D., Bernardin J. E., Qualset C. O. Relationship of gliadin protein components to chromosomes in hexaploid wheat (Triticum aestivum L.). Proc. Natl. Acad. Sci. USA. 1976. 73:3646-50.
Kasarda D. D., Lafiandra D., Morris R., Shewry P. R. Genetic relationships of wheat gliadin proteins. Kulturpflanze. 1984a. 32:41-60.
Kasarda D. D., Okita T. W., Bernardin J. E., Baecker P. A., Nimmo C. C., Lew E. J.-L., Dietler M. D., Greene F. C. Nucleic acid (cDNA) and amino acid sequences of $$alpha$$-type gliadins from wheat (Triticum aestivum). Proc. Natl. Acad. Sci. USA. 1984b. 81:4712-16.
Konarev V. G. Plant Proteins as Genetic Markers. 1983. Moscow: (In Russian.) Kolos Publishing. 320p.
Konarev V. G., Gavrilyuk I. P., Gubareva N. K., Peneva T. I. Seed proteins in genome analysis, cultivar identification, and documentation of cereal genetic resources: a review. Cereal Chem. 1979. 56:272-278.
Kosmolak F. G., Kerber E. R. Marquis-K cultivar standard for wheat gliadin electrophoresis. J. Sci. Food Agric. 1980. 31:1250-52. DOI: 10.1002/jsfa.2740311205 [CrossRef]
Lafiandra D., Kasarda D. D., Morris R. Chromosomal assignments of genes coding for the wheat gliadin protein components of the cultivars ‘Cheyenne’ and ‘Chinese Spring’ by two-dimensional (two pH) electrophoresis. Theor. Appl. Genet. 1984. 68:531-39. DOI: 10.1007/BF00285007 [CrossRef]
Lee J. W., Ronalds J. A. Effect of environment on wheat gliadin. Nature. 1967. 213:844-46. DOI: 10.1038/213844b0 [CrossRef]
Lookhart G. L., Jones B. L., Hall S. B., Finney K. F. An improved method for standardizing Polyacrylamide gel electrophoresis of wheat gliadin proteins. Cereal Chem. 1982. 59:178-81.
Lookhart G. L., Jones B. L., Walker D. E., Cooper D. B. Computer-assisted method for identifying wheat cultivars from their gliadin electrophoregrams. Cereal Chem. 1983. 60:111-15.
Mecham D. K., Fullington J. G., Greene F. C. Gliadin proteins in the developing wheat seed. J. Sci. Food Agric. 1981. 32:773-80. DOI: 10.1002/jsfa.2740320805 [CrossRef]
Mecham D. K., Kasarda D. D., Qualset C. O. Genetic aspects of wheat gliadin proteins. Biochem. Genetics. 1978. 16:831-53. DOI: 10.1007/BF00484739 [CrossRef]
Nimmo C. C., O’Sullivan M. T., Bernardin J. E. The relation of a “globulin” component of wheat flour to purothionin. Cereal Chem. 1968. 45:28-36.
Nimmo C. C., O’Sullivan M. T., Mohammad A., Pence J. W. Fractionation and zone-electrophoresis of proteins and water-soluble materials of flour. Cereal Chem. 1963. 40:390-98.
Payne P. I., Holt L. M., Jackson E. A., Law C. N. Wheat storage proteins: Their genetics and their potential for manipulation by plant breeding. Phil. Trans. R. Soc. London B. 1984. 304:359-71. DOI: 10.1098/rstb.1984.0031 [CrossRef]
Platt S. G., Kasarda D. D., Qualset C. O. Varietal relationships of the $$alpha$$-gliadin proteins in wheat. J. Sci. Food Agric. 1974. 25:1555-61. DOI: 10.1002/jsfa.2740251217 [CrossRef]
Qualset C. O., Prato J. D., Rupert J. A., Vogt H. E., Khalifa M. H., Lehman W. F., Isom W. H. Anza—a new high-yielding, short-statured wheat variety. Calif. Agric. 1973. 27(2):14-15.
Qualset C. O., Wrigley C. W. Electrophoresis and electrofocusing identify wheat varieties. Calif. Agric. 1979. 33(6):10-12.
Rafalski J. A., Scheets K., Metzler M., Peterson D. M., Hedgcoth C., Söll D. G. Developmentally regulated plant genes: the nucleotide sequence of a wheat gliadin genomic clone. The EMBO Journal. 1984. 3:1409-15.
Shepherd K. W., Finlay K. W., Shepherd K. W. Chromosomal control of endosperm proteins in wheat and rye. Proceedings of the Third International Wheat Genetics Symposium. 1968. Canberra: Australian Academy of Science. p. 86-96.
Shewry P. R., Miflin B. J., Kasarda D. D. The structural and evolutionary relationship of the prolamin storage protein of rye, wheat, and barley. Phil. Trans. R. Soc. Lond. B. 1984. 304:297-308. DOI: 10.1098/rstb.1984.0025 [CrossRef]
Sozinov A. A. Protein Polymorphism and Its Significance in Genetics and Breeding. 1985. Moscow: (In Russian.) Nauka Publishing. 272p.
Sozinov A. A., Poperelya F. A. Genetic classification of prolamines and its use for plant breeding. Ann. Technol. Agric. 1980. 29:229-45.
Sozinov A. A., Poperelya F. A., Stakanova A. I. Use of electrophoresis of gliadins for selection of wheat by quality. (In Russian.). Vestn. Sel’s Kokhoz. Nauki (Moscow). 7(99): Chem. Abst. 1974. 81, 166298
Wrigley C. W. Improving Australian wheat quality by varietal management. Identification of varieties. Food Technol. Aust. 1980. 32:508-11.
Wrigley C. W., Autran J. C., Bushuk W., Pomeranz V. Y. Identification of cereal varieties by gel electrophoresis of the grain proteins. Advances in Cereal Science and Technology. 1983. St. Paul, Minnesota: Am. Assoc. of Cereal Chem. p. 211-59. DOI: 10.1007/978-3-662-01639-8_2 [CrossRef]
Wrigley C. W., Baxter R. I. Identification of Australian wheat cultivars by laboratory procedures: Grain samples containing a mixture of cultivars. Australian J. Exptl. Agric. Animal Husb. 1974. 14:805-10. DOI: 10.1071/EA9740805 [CrossRef]
Wrigley C. W., McCausland J. Variety identification by laboratory methods. Instruction manual for barley, wheat and other cereals. Technical publication 4. 1977. North Ryde, N.S.W.: CSIRO Wheat Research Unit. 2113, Australia
Wrigley C. W., Robinson P. J., Williams W. T. Association between electrophoretic patterns of gliadin proteins and quality characteristics of wheat cultivars. J. Sci. Food Agric. 1981. 32:433-42. DOI: 10.1002/jsfa.2740320503 [CrossRef]
Wrigley C. W., Shepherd K. W. Identification of wheat cultivars by laboratory procedures: Examination of pure samples of grain. Australian J. Exptl. Agric. Animal Husb. 1974. 14:796-804. DOI: 10.1071/EA9740796 [CrossRef]