University of California

Field measurement and modeling of cowpea water use and yield under stressed and well-watered growth conditions


Peter Shouse
William A. Jury
Lewis H. Stolzy
Samuel Dasberg

Authors Affiliations

Peter Shouse was Postgraduate Research Soil Scientists, Department of Soil and Agricultural Sciences, Riverside; William A. Jury was Professors of Soil Physics, Department of Soil and Environmental Sciences, Riverside; Lewis H. Stolzy was Professors of Soil Physics, Department of Soil and Environmental Sciences, Riverside; Samuel Dasberg was Postgraduate Research Soil Scientists, Department of Soil and Agricultural Sciences, Riverside.

Publication Information

Hilgardia 50(6):1-24. DOI:10.3733/hilg.v50n06p025. October 1982.

PDF of full article, Cite this article


A two-year field study was conducted to characterize the effect of water deficit imposed during one or more growth stages on the production of cowpeas (Vigna unguiculata (L.) Walp). Plant growth, plant-water potential, soil-water status, and weather parameters were measured. Five different models for potential evapotranspiration were compared with measured evapotranspiration from a well-watered crop during the full cover stage. Only those methods which included a vapor-deficit correction for advection effectively described potential evapotranspiration in southern California.

A model for evaporation and transpiration under stress and growing cover conditions was calibrated in one year and tested in the subsequent year and found to be in good agreement with measurements taken by a hydrologic balance.

Predawn xylem pressure potential was found to decrease as the soil-water potential decreased during a drying cycle. The midday xylem pressure potential was not well correlated with soil-water potential, and wilting was never observed.

Cowpea dry-matter production under limited water conditions was linearly related to crop water use and relatively insensitive to the timing of the water deficit. However, a model to predict dry matter yield from primary water balance and atmospheric measurements produced only fair agreement with measurements during the year of testing.

Literature Cited

Arkley Rodney J. Relationships between plant growth and transpiration. Hilgardia. 1962. 34:559-84. DOI: 10.3733/hilg.v34n13p559 [CrossRef]

Begg John E., Turner Neil C. Crop water deficits. Adv. Agron. 1976. 28:161-217. DOI: 10.1016/S0065-2113(08)60555-6 [CrossRef]

Black T. A., Gardner W. R., Thurtell G. W. The prediction of evaporation, drainage, and soil water storage for a bare soil. Soil Sci. Soc. Amer. Proc. 1969. 33:655-60. DOI: 10.2136/sssaj1969.03615995003300050013x [CrossRef]

Briggs L. J., Shantz H. L. Relative water requirements of plants. J. Agric. Res. 1914. 3:1-63.

Chang Jen-Hu. Climate and agriculture: An ecological survey. 1968. Chicago: Aldine. 304p. DOI: 10.1097/00010694-196908000-00018 [CrossRef]

Clark R. N., Hiler E. A. Plant measurements as indicators of crop water deficit. Crop Sci. 1973. 13:466-69. DOI: 10.2135/cropsci1973.0011183X001300040022x [CrossRef]

Cowan I. R. Transport of water in the soil-plant-atmosphere system. J. Appl. Ecol. 1965. 2:221-39. DOI: 10.2307/2401706 [CrossRef]

Davies J. A., Allen C. D. Equilibrium, potential and actual evaporation from cropped surfaces in Southern Ontario. J. Appl. Meterol. 1973. 12:649-57. DOI: 10.1175/1520-0450(1973)012<0649:EPAAEFreplacecodegt2.0.CO;2 [CrossRef]

de Wit C. T. Transpiration and crop yields. 1958. Onderzock: Verslag van Landbouwk. 88p. No. 64.6

Doorenbos J., Pruitt W. O. Irrigation and drainage 1975. Paper 24. Guidelines for predicting crop water requirements. FAO, Rome

DWR-113-3. Vegetative water use in California 1975. 1974, 1975. Cal. Dept. Water Res. Bull. 113-3:104 pp

Gardner W. R. Dynamic aspects of water availability to plants. Soil Sci. 1960. 89:63-73. DOI: 10.1097/00010694-196002000-00001 [CrossRef]

Gardner W. R., Ehlig C. F. The influence of soil water on transpiration by plants. J. Geophys. Res. 1963. 68:5719-24. DOI: 10.1029/JZ068i020p05719 [CrossRef]

Gates David M., Hanks R. J., Hagan R. M., Haise H. R., Edminster T. W. Plant factors affecting evapotranspiration. Irrigation of Agricultural Lands. Agronomy. 1967. 11: Madison, Wis.: Amer. Soc. Agron. p. 506-21.

Heatherly L., Russell W. J., Hinckley T. M. Water relations and growth of soybeans in drying soil. Crop Sci. 1977. 17:381-86.

Hiler E. A., Van Bavel H. M., Hossain M. M., Jordan W. R. Sensitivity of southern peas to plant water deficits at three growth stages. Agron. J. 1972. 64:60-64.

Hillel Daniel. Soil and water, physical principles and processes. 1971. New York: Academic Press. 288p.

Hodges Tom, Kanemasu E. T. Modeling daily dry matter production of winter wheat. Agron. J. 1977. 69:974-79.

Hsaio T. C., Acevedo E. Plant responses to water deficits, water use-efficiency, and drought resistance. Agr. Meterol. 1974. 14:59-84. DOI: 10.1016/0002-1571(74)90011-9 [CrossRef]

Jensen M. E., Haise H. R. Estimating evapotranspiration from solar radiation. Amer. Soc. Civ. Eng. Proc. 1963. 89:15-41.

Jury W. A., Hall A. E. Water transport through soil, plant and atmosphere. Agriculture in Semi Arid Environments. 1979. Berlin: Springer-Verlag. DOI: 10.1007/978-3-642-67328-3_7 [CrossRef]

Jury W. A., Earl K. D. Water movement in bare and cropped soil under isolated trickle emitters. I. Analysis of bare soil experiments. Soil Sci. Soc. Amer. J. 1977. 41:852-56.

Jury W. A., Tanner C. B. Advection modification of the Priestley and Taylor evapotranspiration formula. Agron. J. 1975. 67:840-42. DOI: 10.2134/agronj1975.00021962006700060031x [CrossRef]

Kanemasu E. T., Stone L. R., Powers W. L. Evapotranspiration model tested for soybean and sorghum. Agron. J. 1976. 58:564-72. DOI: 10.2134/agronj1976.00021962006800040009x [CrossRef]

Kanemasu E. T., Tanner C. B. Stomatal diffusion resistance of snap beans. I. Influence of leaf-water potential. Plant Physiol. 1969. 44:1547-52. DOI: 10.1104/pp.44.11.1547 [CrossRef]

Kerr J. P., Thurtell G. W., Tanner C. B. An integrating pyranometer for climatological observer stations and mesoscale networks. J. Appl. Meteorol. 1967. 6:688-94. DOI: 10.1175/1520-0450(1967)006<0688:AIPFCOreplacecodegt2.0.CO;2 [CrossRef]

Klepper Betty. Diurnal pattern of water potential in woody plants. Plant Physiol. 1968. 43:1931-34. DOI: 10.1104/pp.43.12.1931 [CrossRef]

Ligon L. L. Characteristics of cowpea varieties, Vigna sinensis. Okla. Agr. Exp. Sta. Bull. 1958. p.B-518.

Little T. M., Hills F. J. Statistical methods in agricultural research. 1972. Davis: University of California Press.

Malik B. S. Response of cowpea to different soil moisture regimes and phosphate levels. Ind. J. Hort. 1974. 31:246-49.

Penman H. L. Natural evaporation from open water, bare soil, and grass. Proc. Roy. Soc. A. 1948. 193:120-46. DOI: 10.1098/rspa.1948.0037 [CrossRef]

Priestly C. H. B., Taylor R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972. 100:81-92. DOI: 10.1175/1520-0493(1972)100<0081:OTAOSHreplacecodegt2.3.CO;2 [CrossRef]

Pruitt W. O. Cyclic relations between evapotranspiration and radiation. Trans. ASAE. 1964. 7:271-75. 280

Reicosky D. C., Campbell R. B., Doty C. W. Diurnal fluctuation of leaf-water potential of corn as influenced by soil matric potential and microclimate. Agron. J. 1975. 67:380-85.

Ritchie J. T. Dryland evaporative flux in a subhumid climate. I. Micrometerological influences. Agron. J. 1971. 63:51-55.

Ritchie J. T. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Res. 1972. 8:1204-1. DOI: 10.1029/WR008i005p01204 [CrossRef]

Ritchie J. T., Jordan W. R. Dryland evaporative flux in a subhumid climate. IV. Relation to plant water status. Agron. J. 1972. 64:173-76.

Rose C. W. Agricultural physics. 1966. Oxford: Pergamon Press. 226p. DOI: 10.1016/B978-0-08-011884-0.50008-1 [CrossRef]

Rosenthal W. D., Kanemasu E. T., Raney R. J., Stone L. R. Evaluation of an evapotranspiration model for corn. Agron. J. 1977. 69:461-64.

Scholander P. F., Hammel H. T., Bradstreet E. D., Hemmingsen E. A. Sap pressure in vascular plants. Science. 1965. 148:339-46. DOI: 10.1126/science.148.3668.339 [CrossRef]

Schackel K. A., Hall A. E. Reversible leaflet movements in relation to drought adaptation of cowpeas (Vigna unguiculata (L.) Walp). Aust. J. Plant Physiol. 1979. 6:265-76.

Shouse P. J. Effect of water deficit on the growth, yield, and use of a field-grown crop 1979. Ph.D. Thesis. University of California, Riverside

Shouse P., Jury W. A., Stolzy L. H. Use of deterministic and empirical models to predict potential evapotranspiration in an advective environment. Agron. J. 1980. 72:994-98.

Shouse P., Dasberg S., Jury W. A., Stolzy L. H. Water deficit effects on water potential, yield and water use of cowpeas. Agron. J. 1981. 73:333-36.

Singh S., Lambu P. S., Sharma H. C. Effect of varying levels of irrigation on the yield and water use of cowpeas (Vigna sinensis L.). Ann. Arid Zone. 1975. 14:100-08.

Slatyer R. O. Plant-water relationships. 1967. London: Academic Press. 366p. DOI: 10.1097/00010694-196812000-00020 [CrossRef]

Summerfield R. J., Husley P. A., Dart P. J., Huges A. P. Some effects of environmental stress on seed yield cowpea (Vigna unguiculata (L.) Walp.) cv. Prima. Plant and Soil. 1976. 44:527-546.

Tanner C. B., Koslowski T. T. Evaporation of water from plants and soil. Water Deficits and Plant Growth. 1968. I: New York: Academic Press. p. 73-106. Vol. 390 pp

Tanner C. B., Jury W. A. Estimating evaporation and transpiration from a row crop during incomplete cover. Agron. J. 1976. 68:239-43.

Turk Kenneth J., Hall A. E., Asbell C. W. Drought adaptation of cowpea. I. Influence of drought on seed yield. Agron. J. 1980. 72:413-20.

Van Bavel C. H. M. Potential evaporation: the combination concept and its experimental verification. Water Resour. Res. 1966. 2:455-67. DOI: 10.1029/WR002i003p00455 [CrossRef]

Waggoner P. E., Zelich I. Transpiration and the stomata of leaves. Science. 1965. 150:1413-20. DOI: 10.1126/science.150.3702.1413 [CrossRef]

Wien J. C., Littleton E. J., Ayanaba A., Mussell H., Staples R. C. Drought stress of cowpea and soybean under tropical conditions. Stress Physiology of Crop Plants. 1979. New York: Wiley Interscience. p. 283-303.

Shouse P, Jury W, Stolzy L, Dasberg S. 1982. Field measurement and modeling of cowpea water use and yield under stressed and well-watered growth conditions. Hilgardia 50(6):1-24. DOI:10.3733/hilg.v50n06p025
Webmaster Email: sjosterman@ucanr.edu