Hilgardia
Hilgardia
Hilgardia
University of California
Hilgardia

Plant buffer systems in relation to the absorption of bases by plants

Author

T. C. Dunne

Author Affiliations

T. C. Dunne was Research Assistant in Plant Nutrition; resigned July 1, 1930.

Publication Information

Hilgardia 7(5):207-234. DOI:10.3733/hilg.v07n05p207. November 1932.

PDF of full article, Cite this article

Abstract

Abstract does not appear. First page follows.

In view of the important storage and other functions of the parenchyma tissues of agricultural plants, it may be granted that it is of paramount importance that these tissues be kept in a healthy condition. The work of many investigators suggests that a certain degree of constancy of the hydrogen-ion concentration of such tissues is an important factor. To assist in maintaining the proper reaction, a system of buffering in the vacuolar sap with respect to hydrogen ion is presumably necessary. This paper deals with the buffer systems involved as reflected in the sap4 obtained by expression. The special feature of the investigation was the use of plants grown under controlled conditions of solution or sand-culture technique. Aside from some earlier work conducted in this laboratory, very little study has been made of sap obtained from plants grown in definitely controlled nutrient solutions.

Literature Cited

[1] Copeland H. F. 1925. University of California, unpublished thesis for M S.

[2] Dunne T. C. 1929. University of California, unpublished thesis for MS.

[3] Dustman R. B. Inherent factors related to absorption of mineral elements by plants. Bot. Gaz. 1925. 79:233-264. DOI: 10.1086/333476 [CrossRef]

[4] Hurd-Karrer A. Changes in the buffer system of the wheat plant. Plant Physiol. 1928. 3:131-151. DOI: 10.1104/pp.3.2.131 [CrossRef]

[5] Hurd-Karrer A. Titration curves of etiolated and green wheat seedlings reproduced with buffer mixtures. Plant Physiol. 1930. 5:307-328. DOI: 10.1104/pp.5.3.307 [CrossRef]

[6] Ingalls R. A., Shive J. W. Relation of H-ion concentration of tissue fluids to the distribution of iron in plants. Plant Physiol. 1931. 6:103-125. DOI: 10.1104/pp.6.1.103 [CrossRef]

[7] Ingold T. C. Hydrogen concentration of plant tissues. X. Buffers of potato tuber. Protoplasma. 1929. 4:51-59.

[8] Kraybill H. R. Plant metabolism studies as an aid in determining fertilizer requirements. Indus. and Engin. Chem. 1930. 22:275-276. DOI: 10.1021/ie50243a018 [CrossRef]

[9] Leuthardt F. Puffer-Kapacität und Pflanzensäfte. Kolloidchem. Beihefte. 1927. 25:1-68. DOI: 10.1007/BF02556729 [CrossRef]

[10] Loehwing W. F. Effects of insolation and soil characteristics on tissue fluid reaction in wheat. Plant Physiol. 1930. 5:293-307. DOI: 10.1104/pp.5.3.293 [CrossRef]

[11] Lincoln F. B., Mulay A. S. The extraction of nitrogenous materials from pear tissues. Plant Physiol. 1929. 4:233-250. DOI: 10.1104/pp.4.2.233 [CrossRef]

[12] Martin S. H. Hydrion concentration of plant tissues. IV. The buffer of sunflower hypocotyl. Protoplasma. 1927. 1:522-535. DOI: 10.1007/BF01603030 [CrossRef]

[13] Martin S. H. Hydrion concentration of plant tissues. VII. The buffer of sunflower stem and root. Protoplasma. 1928. 3:273-282. DOI: 10.1007/BF02057058 [CrossRef]

[14] Martin S. H. Hydrion concentration of plant tissues. VIII. The buffers of bean stem and root. Protoplasma. 1928. 3:292-301.

[15] Newton J. D. A comparison of the absorption of inorganic elements and of the buffer systems of legumes and non-legumes, and its bearing upon existing theories. Soil Sci. 1923. 15:181-204. DOI: 10.1097/00010694-192303000-00003 [CrossRef]

[16] Nightingale G. T., Bobbins W. R., Schermerhorn L. G. Freezing as a method of preserving plant tissue for the determination of nitrogenous fractions. New Jersey Agr. Exp. Sta. Bul. 1927. 448:1-16.

[17] Nightingale G. T., Schermerhorn L. G., Robbin’s W. R. Some effects of potassium deficiency on the histological structure and nitrogenous and carbohydrate constituents of plants. New Jersey Agr. Exp. Sta. Bul. 1930. 499:1-36.

[18] Small J. Hydrogen ion concentration in plant cells and tissues. 1929. Berlin: Borntraeger Bros. 421p.

[39] Vickery H. B. The basic nitrogen of plant extracts. Plant Physiol. 1927. 2:303-311. DOI: 10.1104/pp.2.3.303 [CrossRef]

[20] Vickery H. B., Pucher G. W. A source of error in the determination of amide nitrogen in plant extracts. Jour. Biol. Chem. 1931. 90:179-188.

[21] Youden W. J., Denny F. B. Factors influencing the equilibrium known as the isoelectric point of plant tissue. Amer. Jour. Bot. 1926. 13:743-753. DOI: 10.2307/2435477 [CrossRef]

Dunne T. 1932. Plant buffer systems in relation to the absorption of bases by plants. Hilgardia 7(5):207-234. DOI:10.3733/hilg.v07n05p207
Webmaster Email: sjosterman@ucanr.edu