Managing resistance is critical to future use of pyrethroids and neonicotinoids
Authors
Frank G. ZalomNick C. Toscano
Frank J. Byrne
Authors Affiliations
R. A. Van Steenwyk is Cooperative Extension Entomologist, Department of Environmental Science, Policy, and Management, UC Berkeley; and F.G. Zalom is Entomologist, Agricultural Experiment Station, and Cooperative Extension Entomologist, Department of Entomology, UC Davis. We gratefully acknowledge the California Department of Food and Agriculture for financial support in the development of the base document, and in publication of this special issue. We also thank the many UC Cooperative Extension Specialists and Farm Advisors who provided technical expertise in the development of alternative scenarios for the specific crops studied.Publication Information
Hilgardia 59(1):11-15. DOI:10.3733/ca.v059n01p11. January 2005.
PDF of full article, Cite this article
Abstract
Synthetic pyrethroids and neonicotinoids are the most readily available alternatives to the organophosphate and carbamate insecticides. Pyrethroids have become widely used in California, and problems with insecticide resistance and nontarget impacts have already been identified. Neonicotinoids are a new class of insecticide with uses only now being realized. Managing insecticide resistance will be crucial to preserving these new materials as organophosphate uses are lost.
References
Armegaud C, Labin M, Gauthier M, Devillers J, Pham-Delegue MH. Effects of imidacloprid on the neural processes of memory in honey bees. Honey Bees: Estimating the Environmental Impact of Chemicals.. 2002. London: Taylor Francis. 85-100.
Bentley WJ, Zalom FG, Barnett WW, Sanderson JP. Population densities of Tetranychus spp. (Acari: Tetranychidae) after treatment with insecticides for Amyelois transitella (Lepidoptera: Pyralidae). J Econ Entomol. 1987. 80:193-200.
Bradbury SP, Coats JR. Comparative toxicology of pyrethroid insecticides. Rev Environ Contam Toxicol. 1989. 108:133-77. PubMed PMID: 2646661
Byrne FJ, Castle S, Prabhaker N, Toscano NC. Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala. Pest Manag Sci. 2003. 59:347-52. https://doi.org/10.1002/ps.649 PubMed PMID: 12639053
Dennehy TJ, Williams L, Russell JS, Dugger P, Richter E. Monitoring and management of whitefly resistance to insecticides in Arizona. 1997. Proc Beltwide Cotton Conference; Memphis, TN. Memphis: National Cotton Council, p 65-8.
[DPR] California Department of Pesticide Regulation. Summary of Pesticide Use Report Data 2002 Indexed by Chemical.. 2003. Sacramento, CA: http://www.cdpr.ca.gov
Ellsworth PC, Dugger P, Richter E. Whitefly management in Arizona: Looking at whole systems. Proc Beltwide Cotton Conference; Memphis, TN. 1998. Memphis: National Cotton Council. p. 743-8.
[EXTOXNET] Extension Toxicology Network. Pesticide Information Profiles. 2003. Oregon State University, Corvallis, OR. http://ace.orst.edu/info/extoxnet/
Metcalfe M, McWilliams B, Hueth B, et al. The Economic Impact of Organophosphates in California Agriculture. 2002. California Department of Food and Agriculture Report. Sacramento, CA. 41 p + app. www.cdfa.ca.gov/publications.htm
Roush RT, Tabashnik BE. Pesticide Resistance in Arthropods.. 1990. New York: Chapman Hall. 303p.
Schmuck R, Schoning R, Stork A, Schramel O. Risk posed to honeybees (Apis mel-lifera L, Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Manag Sci. 2001. 57:225-38. https://doi.org/10.1002/ps.270 PubMed PMID: 11455652
Smith TM, Stratton GW. Effects of synthetic pyrethroid insecticides on nontarget organisms. Residue Rev. 1986. 97:93-120. PubMed PMID: 2871604
Werner IL, Deanovic A, Hinton DE, et al. Toxicity of stormwater runoff after dormant spray application of diazinon and esfenvalerate (Asana) in a French prune orchard, Glenn County, California, USA. Bull Environ Contam Toxicol. 2002. 68:29-36. PubMed PMID: 11731828
Weston DP, You JC, Lydy MJ. Distribution and toxicity of sediment-associated pesticides in agriculture-dominated water bodies of California's Central Valley. Environ Sci Technol. 2004. 38(10):2752-9. https://doi.org/10.1021/es0352193 PubMed PMID: 15212247
Zhao JZ, Bishop BA, Grafius EJ. Inheritance and synergism of resistance to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 2000. 93:1508-14. PubMed PMID: 11057725
Also in this issue:
Aphelopus albopictus Ashmead (Hymenoptera: Dryinidae): Abundance, Parasitism, and Distribution in Relation to Leafhopper Hosts in GrapesEnvironmental laws elicit evolution in pest management
Letters: January-March 2005
Science briefs: January-March 2005
Food Quality Protection Act launches search for pest management alternatives
Pheromone mating disruption offers selective management options for key pests
Biological and cultural controls … Nonpesticide alternatives can suppress crop pests
Various novel insecticides are less toxic to humans, more specific to key pests
Microorganisms and their byproducts, nematodes, oils and particle films have important agricultural uses
Costs of 2001 methyl bromide rules estimated for California strawberry industry