University of California

Computer simulation and economic efficiency in forest sampling


Loukas G. Arvanitis
William G. O’Regan

Authors Affiliations

Loukas G. Arvanitis was Assistant Specialist, School of Forestry, Berkeley, and is now Research Scientist, Forest Management Research and Services Institute, Canadian Department of Forestry, Ottawa; William G. O’Regan was Mathematical Statistician, Pacific Southwest Forest and Range Experiment Station, Forest Service, U. S. Department of Agriculture, and Lecturer in Forestry, Berkeley.

Publication Information

Hilgardia 38(2):133-164. DOI:10.3733/hilg.v38n02p133. March 1967.

PDF of full article, Cite this article


In most forestry operations, estimates must be made. If those estimates are to be applied properly in making decisions, the forester must be able to determine their accuracy and their relative efficiency. Better methods are needed to help the decisionmaker design forest sampling systems.

The study reported here was designed to demonstrate the use of the computer to simulate a forest sampling problem. Somewhat empirical in nature, the investigation sought to provide those engaged in forest sampling with a method of analysis to help in making decisions in a state of uncertainty.

In addition to providing limited answers to a specific problem—that of optimum combination of number and size of plots in sampling forests—the study suggests an approach to solving problems of this and a similar nature by introducing concepts from production economics and by using computer simulation.

Literature Cited

Barrett J. R. Correction for edge effect bias in point sampling. Forest Sci. 1965. 10(1):52-55.

Bickford C. A. Methods of measuring the growth of trees as individuals and in stands. Tree growth. 1962. New York: The Roland Press Co. 452p.

Bitterlich W. Die Winkelzahlprobe (The angle count sample). Allg. Forst. Holzwirts. Ztg. 1948. 59:4-5.

Boon D. A. Plot size and variability. I. C. T. Information Series B, No. 17. 1962. The Netherlands: Delft.

Bormann F. H. The statistical efficiency of sample plot size and shape in forest ecology. Ecology. 1953. 34:474 DOI: 10.2307/1929720 [CrossRef]

Carlson S. A study on the pure theory of production. 1956. 2nd. ed. New York: Kelley and Millan, Inc. 128p.

Christidis B. G. The importance of the shape of plots in field experimentation. Jour. Agr. Sci. 1931. 21:14-37. DOI: 10.1017/S0021859600007942 [CrossRef]

Cochran W. G. Sampling techniques. 1963. 2nd. ed. New York: John Wiley and Sons, Inc. 413p.

Cornfield J. Modern methods in the sampling of human populations. The determination of sample size. Amer. Jour. Public Health. 1951. 41(6):654-61.

Danzig G. B. Linear programming and extensions. 1963. Princeton, New Jersey: Princeton University Press. 625p.

Evans T. C., O’Regan W. G. Sampling problems in measurement of range vegetation. Range Res. Methods, U. S. Dept. Agr., Forest Serv., Misc. Publ. 1963. 940:54-60.

Few L. The shortest path and the shortest road through N points. Mathematika. 1955. 2(4):141-44. DOI: 10.1112/S0025579300000784 [CrossRef]

Finney D. J., Palca H. The elimination of bias due to edge effects in forest sampling. Forestry. 1949. 23:31-37.

Freese F. Relation of plot size to variability. An approximation. Jour. Forestry. 1961. 59(9):679

Grosenbaugh L. R. Point sampling and line sampling. Probability theory, geometric implications, synthesis. U. S. Forest Serv., Southern Forest Exp. Sta., Occas. Paper No. 1958. 160:33

Grosenbaugh L. R. Some suggestions for better sample tree measurement. Proc. Soc. Amer. Foresters 1963. pp.36-42.

Grosenbaugh L. R., Stover W. F. Point sampling compared with plot sampling in southeast Texas. Forest Sci. 1957. 3(1):2-14.

Haga T., Maezawa K. Bias due to edge effect in using the Bitterlich method. Forest Sci. 1959. 5:370-76.

Hall O. F. The contribution of remeasured sample plots to the precision of growth estimates. Jour. Forestry. 1959. 57(1):807-11.

Hallin W. E. The application of unit area control in the management of ponderosa-Jeffrey pine at Blacks Mountain Experimental Forest. U. S. Dept. Agr. Tech. Bul. 1959. 1191:96

Hansen M. H., Hurwitz W. N. Relative efficiencies of various sampling units in population inquiries. Jour. Amer. Stat. Assoc. 1942. 37:89-94. DOI: 10.2307/2279434 [CrossRef]

Hansen M. H., Hurwitz W. N., Madow W. G. Sample survey methods and theory. 1953. 1-2: New York: John Wiley and Sons.

Harris J. A. On a criterion of substratum homogeneity (or heterogeneity) in field experiments. Amer. Nat. 1915. 49:430-54. DOI: 10.1086/279492 [CrossRef]

Harris J. A. Practical universality of field heterogeneity as a factor influencing plot yields. Jour. Agr. Res. 1920. 19:279-314.

Hatheway W. H., Williams E. J. Efficient estimation of the relationship between plot size and variability of crop yields. Biometrics. 1958. 14(2):207-22. DOI: 10.2307/2527785 [CrossRef]

Henderson J. M., Quandt R. E. Microeconomic theory, a mathematical approach. 1958. New York: The McGraw-Hill Book Co. 291p.

Hitch C. Sub-optimization in operations problems. Jour. Oper. Res. Soc. Amer. 1953. 1(3):87-99. DOI: 10.1287/opre.1.3.87 [CrossRef]

Jagannathan R. The programming approach in multiple character studies. Econometrica. 1965. 33(1):236-37. DOI: 10.2307/1911898 [CrossRef]

Kaufman A. Methods and models of operations research. 1963. New York: Prentice-Hall, Inc. 510p.

Koch E. J., Rigney J. A. A method of estimating optimum plot size from experimental data. Agron. Jour. 1951. 43:17-21.

Mahalanobis P. C. A sample survey of the acreage under jute in Bengal. Sankhya. 1940. 4:511-30.

Mahalanobis P. C. On large scale sample surveys. Philosophical Transactions. 1944. 231(584):329-451. Series B: DOI: 10.1098/rstb.1944.0002 [CrossRef]

Mahalanobis P. C. Use of small size plots in sample surveys of crop yields. Nature. 1946. 158:798 DOI: 10.1038/158798a0 [CrossRef]

Masuyama M. A rapid method of estimating basal area in timber survey. An application of integral geometry to aerial sampling problems. Sankhya. 1953. 12(3):291-302.

Masuyama M. On the error in crop cutting experiment due to the bias on the border of the grid. Sankhya. 1954. 14:181-86.

Matern B. Spatial variation. Stochastic models and their application to some problems in forest surveys and other sampling investigations. Meddelanden Fran, Statens Skogsforskningsinstitut, Band. 1960. 49(5):144 DOI: 10.1007/978-1-4615-7892-5 [CrossRef]

Mesavage C., Grosenbaugh L. R. Efficiency of several cruising designs on small tracts in north Arkansas. Jour. Forestry. 1956. 54(9):569-76.

Neyman J. On the two different aspects of the representative method. The method of stratified sampling and the method of purposive selection. Jour. Royal Stat. Soc. 1934. 97:558-625. DOI: 10.2307/2342192 [CrossRef]

O’Regan W. G., Palley M. N. A computer technique for the study of forest sampling methods. Forest Sci. 1965. 11(1):99-114.

O’Regan W. G., Arvanitis L. G. Cost effectiveness in forest sampling. Forest Sci. 1966. 12(4):406-14.

Palley M. N., Horwitz L. G. Properties of some random and systematic point sampling estimators. Forest Sci. 1961. 7(1):52-65.

Palley M. N., O’Regan W. G. A computer technique for the study of forest sampling methods. 1. Point sampling compared with line sampling. Forest Sci. 1961. 7(3):282-94.

Prodan M. Forstliche Biometrie. 1961. München, Bonn, Vien: Blv. Verlagsgesellschaft. 432p.

Shiue C. Measuring and predicting growth for all-aged stands. Tree growth. 1962. New York: The Ronald Press Co. 452p.

Smith F. H. An empirical law describing heterogeneity in the yields of agricultural crops. Jour. Agr. Sci. 1938. 28:1-23. DOI: 10.1017/S0021859600050516 [CrossRef]

Strand L. The effect of plot size on the accuracy of forest surveys. (In Norwegian with English summary.). Norweg. Forest Res. Inst. Rep. 1957. 14:621

Strand L. Noyaktigheten ved noen Metoder til Bestemmelse av Kubikk-og Tilvekstmassen pa Proferlater. (Accuracy of some methods for estimating volume and increment on sample plots.). (In Norwegian with English summary.). Saertrykk Av, Meddelelser fra det Norske Skogforsoksvesen. 1959. 52:392

Sukhatme P. V. Bias in the use of small-size plots in sample surveys for yield. Nature. 1946. 157:630 DOI: 10.1038/157630b0 [CrossRef]

Sukhatme P. V. Use of small plots in yield surveys. Nature. 1947a. 160:542 DOI: 10.1038/160542a0 [CrossRef]

Sukhatme P. V. The problem of plot size in large-scale yield surveys. Jour. Amer. Stat. Assoc. 1947b. 42:297-310. DOI: 10.2307/2280658 [CrossRef]

Sukhatme P. V., Seth G. R. Non-sampling errors in surveys. Jour. Indian Soc. Agr. Stat. 1952. 4:5-41.

Verblunsky S. On the shortest path through a number of points. Proc. Amer. Math. Soc. 1951. 2(6):904-13. DOI: 10.2307/2031707 [CrossRef]

Whittle P. On the variation of yield variance with plot size. Biometrika. 1956. 43:337-42. DOI: 10.2307/2332912 [CrossRef]

Wright J. W., Freeland F. D. Plot size and experimental efficiency in forest genetic research. Michigan State Univ. Tech. Bul. 1960. 280:28

Yates F. Some examples of biased sampling. Annals of Eugenics. 1935. 6:202-13. DOI: 10.1111/j.1469-1809.1935.tb02228.x [CrossRef]

Zarkovic S. S. On the efficiency of sampling with varying probabilities and the selection of units with replacement. Metrika. 1960. 3:53-60. DOI: 10.1007/BF02613438 [CrossRef]

Arvanitis L, G. O’Regan W. 1967. Computer simulation and economic efficiency in forest sampling. Hilgardia 38(2):133-164. DOI:10.3733/hilg.v38n02p133
Webmaster Email: wsuckow@ucanr.edu