

Damaged squash leaf on left compared with a normal green leaf.

Leafminer control increases summer squash yields

Squash plant treated with insecticide every 15 days.

wenty-seven growers produced summer squash valued at approximately \$750,000 in 1978 on 536 acres in California's Imperial Valley. In the same year the California squash crop, which is in high demand, was worth \$12 million. The intensive labor requirements of this crop make it especially attractive to the small grower, who uses family labor for its production.

Several insect pests attack squash plants. Lepidopterous pests, mites, and aphids seldom build up to damaging numbers and are easily controlled. However, a tiny agromyzid fly called the leafminer, Liriomyza sativae, has been quite troublesome in recent years. Because this leafminer has a wide host range and is continuously exposed to insecticides, it has become very resistant and hence difficult to kill. During the two squash-production seasons in the Imperial Valley, the leafminer is more prevalent in the fall than in the spring; large populations build up on cotton and spill into cucurbits when cotton is ready for harvest.

Leafminer larvae damage squash leaves by mining between the upper and lower leaf surfaces. In some years, heavy miner infestations remove the chlorophyll from the

Treatment	Mean number of pupae*†	Squash yield/acret*
Cherry Strange Council Street	Standard Standard Standard Standard	Ib
A. Lorsban (twice weekly)		
15 treatments	311 c	4,196 a
B. Lorsban (weekly)		
8 treatments	477 bc	4,151 a
C. Lorsban (every 15 days)		
4 treatments	567 ab	3,405 ab
D. Nontreated check	826 a	2,872 b

entire leaf area, which interferes with photosynthesis. In the fall of 1979, when squash was selling for \$14 a carton, some fields had to be abandoned because of uncontrollable miner infestations.

The adult leafminer fly is about 2.5 millimeters (1/10 inch) long. These shiny black flies with yellow markings deposit pale white oval eggs just underneath the upper epidermis of the leaf. The eggs hatch in an average of 4 days, and the larval stage lasts about 9 days. The larvae later change into pupae in pupal cases (puparia), which fall to the soil surface or sometimes lodge on the upper surfaces of the leaves. In about 10 days the flies emerge to start the cycle again. The average period for the entire life cycle is 23 days.

1976 experiments

In 1976 the effect of leafminer control on squash yield was investigated to determine the necessity for such practices in an overall pest management program. These studies were conducted in the Imperial Valley at the University of California Meloland Field Station. There were four replicates of each treated and check plot; each replicate was one bed by 36 feet long. Parathion, Phosdrin, Vydate, Orthene, and Diazinon were applied on September 2, 13, and 20 by a CO₂ pressurized hand sprayer at the rate of 30 gallons of finished spray per acre. The bioassay method consisted of taking five leaves on each sampling date, placing these leaves as bouquets in water, and incubating them in ice cream cartons. Leafminers in leaves were allowed to complete their life cycles before the pupae and emerging adults were counted. Fruit yields were taken by picking 6-inch fruit every other day until production markedly declined.

Vydate, Orthene, and Diazinon significantly reduced leafminer populations one day after application but rapidly lost efficacy; no subsequent yield increases were evident. Control with Parathion and Phosdrin was not obtained. These studies indicated that current control practices for leafminer

on squash in the Imperial Valley are not effective and may be of no economic benefit to the growers. However, our trials were conducted on small plots, and better control may result when larger fields are treated.

1977 experiments

The methods were the same as for the 1976 experiments, but only one insecticide was used — Lorsban (unregistered) at the rate of 1 pound active ingredient per acre sprayed (A) twice a week, (B) once a week, and (C) once every 15 days.

Lorsban decreased the pupa population by 32 to 62 percent when compared with nontreated plots, and yield gains amounted to 1,324, 1,279, and 533 pounds in treated plots A, B, and C, respectively. Although twice weekly Lorsban sprays reduced pupae only 62 percent, this was enough to increase squash yield 46 percent.

Summer squash at harvest time in 1977 was selling for \$10 a carton. Considering the cost of insecticide applications, the farmer realized gains of \$1,174 for spraying twice weekly, \$1,199 for spraying weekly, and \$483 per acre for spraying every 15 days.

Conclusion

In 1976 experiments, leafminer control with available insecticides on squash was no more than poor. Consequently, no yield increases were evident.

Leafminer control with Lorsban in 1977 ranged from 32 to 62 percent, which was not outstanding but gave yield gains over nontreated plots of 533 to 1,324 pounds per acre, amounting to \$483 to \$1,199 per acre.

New fungicide

Downy mildew, an onion disease caused by the fungus *Peronospora destructor*, is a sporadic but potentially serious threat to both seed and bulb onion crops. Wind currents carry sporangia (the spores) of the fungus into a field from volunteers or neighboring plants and then spread the fungus from plant to plant. Cool, wet, or humid weather during spring, as is common in coastal regions, inland valleys, low-lying areas, and plantings near rivers, favors disease development and spread. Extensive fog, mist, and dews, as well as rain, can provide sufficient moisture for mildew activity.

Control of downy mildew is based on early and repeated fungicide application during damp weather. Many materials are registered for use against onion downy mildew, but none has demonstrated consistent effective control, especially when conditions favor disease establishment. A new material, Ridomil (CGA 48988), which has shown great promise in controlling downy mildew on other crops, was tested along with selected other materials for control of the disease on seed and bulb onions grown in the San Joaquin Valley.

Fungicides were applied with a Chapin compressed air sprayer in water approximately equivalent to 100 gallons per acre with 1 milliliter (ml) of X77 spreader per gallon. Care was taken to ensure complete coverage of foliage and seed stalks. First treatments were made after mildew was found, except for preventive treatments of Ridomil in 1979 in the Delhi seed field. Contact fungicides were applied approximately every 7 to 10 days or Ridomil at 14-day intervals. Treatments were replicated four times in 1978 trials, six times in 1979.

The foliage of bulb onions and flower stalks of seed onions were evaluated for disease by counting the number of plants with active mildew lesions. Active lesions had a light violet growth as visible evidence of fungus sporulation. All plants in each plot were scored in 1978, 25 and 50 plants within each plot of the Delhi and Fresno trials, respectively, in 1979.

Raj K. Sharma is Farm Advisor, Entomology; Alfonso Durazo, III, is Farm Advisor, Small Farms; and Keith S. Mayberry is Farm Advisor, Vegetable Crops. All are with Cooperative Extension, Imperial County, El Centro. The authors acknowledge the assistance of Hunter Johnson, Jr., Vegetable Specialist, and Max Clover, Photographer, Cooperative Extension, University of California, Riverside, in providing some of the photographs. This research was supported in part by various donations from the chemical industry.