


ABSTRACT
Soil surface temperature, measured on a 36-by-64 regular grid in a
6-hectare field, is modeled using two-dimensional spectral analysis and
a signal-detection procedure. Temperature is found to behave ran­
domly in one direction of the field (width), whereas the distribution in
the other direction can be described as a superposition of four cyclic
functions.

Investigation of the soil temperature's cyclic behavior revealed that
the salt content of the water applied earlier was related spatially to
temperature. Different salinities of water had been applied to the field
in a cyclic fashion, and co-spectral analysis yielded high correlations
at certain frequencies, with higher salinities corresponding to lower
temperatures and vice versa.
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THE METHQD INTRODUCED HERE consists of analyzing any spatially varying property
as a two-dimensional process such that observations are not independent of each other,
but correlate with neighbors in both directions of a two-dimensional space such as a
field. As a complement to previous work using one-dimensional state-space models with
inferences valid only along a transect, this method allows consideration of variability
along both coordinates of a field. We compare the performances of the one- and two­
dimensional models to show the limitations of the former when variations occur along
both axes of the field as in natural conditions. Although soil surface temperature was
the object of observation in this study, any other property that varies with space or time
could have been selected.

THEORETICAL DISCUSSION

Two-Dimensional Spectral Analysis

A process X(5) is said to be multidimensional. when the parameter 5, which indexes
its values, has several components. This often occurs when a process depends on spatial
coordinates as well as on time. If the process is observed and measurements are taken at
a fixed time, the model may not involve time at all. For a plane, such as the soil surface,
where variability is minor over the depth of interest, the process can be represented by
X(51J52), where 51 and 52 are the field coordinates. Conceptually, for a discrete parame­
ter spatial process,
51J52 == O,±1,±2, ...
can be observed at equal intervals. We assume that the two-dimensional process is
stationary. That is,

is constant for all 51 and 52, and the two-dimensional autocovariance function

R(mlJ m2) == E{[X(51 + m2J 52 + m2) - tL] [X(51, 52) - Jl]} [1]

depends only on m 1 and m 2J where (m 1, m 2) is the coordinate of a displacement vector
(Shumway 1988).

Suppose that the two-dimensional field is measured at the integer spatial coordinates
51 and 52 (0 ~ 51 ~ 5 1 - 1 and °~ 52 ~ 5 2 - 1), where there are 51 values in one
direction and 52 values in the other. The autocovariance function R(ml, m2) can be
thought of as the average covariance of all observations whose coordinates differ by the
vector displacement (m IJ m2). The autocorrelation function (ACF) is defined by

R(mlJ m2)
p(mlJ m2) == R(O,O) .

'Accepted for publication March 4, 1988.
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We estimate the autocovariance function using

Sir m. + 1 52-m2+ 1

R(ml m2) == (5152 )- 1 L L [X(51 + ml, 52 + m2) [3]
, 51 == 0 52 == 0

- X] [X(51,S2) - X],

where 0 -s ml -s (5 1 - 1), 0 -s m2 ~ (52 - 1), and X is the estimate of the overall mean
u, given by

51 52

X == (5152 ) - 1 L L X(5J, 52).
51 == 0 52 == 0

The estimate of the standardized ACF is given by

If one assumes that

(X) (X)

L L IR(ml,m2)1 <00,
ml==-OO m2=-OO

there exists a function,

00

[4]

[5]

j(Vl,V2) == L
ml==-OO

L R(mJ, m2)exp{-2rr[(vlml + Vl m2)]},
m2 == -00

[6]

[8]

(Shumway 1988) called the two-dimensional wave-number spectrum. The wave num­
bers VI and V2 are measured in cycles per unit of distance over the two directions of the
random field. The wave-number spectrum measures the variability of the two-dimen­
sional process for each spatial frequency pair (Vl,V2).

We estimate the wave-number spectrum as

j(Vl,V2)==(L IL2 )- 1 L L IX(kl+ll,k2+12)12, [7]
11 12

where -Y2(L2- 1 ) -s 11 -s Y2(L l - 1 ), - Y2(L2 - 1 ) -s 12 ~ Y2(L2 - 1 ), andX(kl,k2 )

is the two-dimensional discrete Fourier transform (OFT) of the process X(51,S2),

obtained by applying the one-dimensional OFT successively over both directions.

51 - 1 52 - 1

X(k2,k 2) == (5152)-~ L L X(51,52)exp[-2rri(vI51 + V252)],
k l==O k2=O

where VI = k l / 51, and V2 == k2/52.
The function of!( VI, V2 ) in equation 7 is called the estimated two-dimensional wave­

number spectrum. When the total number of observations is high, the values

22L L - 2L IL2!(Vl,V2)X 12- ------
j(Vl,V2)



HILGARDIA • Vol. 56 • No.3· June 1988 3

are approximately independent at different frequencies with a chi-square distribution
with 2LIL2 degrees of freedom except at (0,0), (0,Y2), (¥2,0), and (~,Y2) where the
degrees of freedom are LIL2 . This is an extension of the one-dimensional situation, and
permits us to detect wave numbers (in both directions) that contribute significantly to
the process.

Different smoothing or averaging windows can be obtained by varying L, and L2 in
equation 7 in order to remove noise in the wave-number spectrum, leaving only the
highest peaks. Their choice is not arbitrary and depends on the number of observations
in the data set and experience with similar data. When L, = L2 = 1, we have the
unsmoothed periodogram. '"

Three-dimensional plots Ofj(Vl,V2) as a function of VI and V2, for - ~ < VI < ¥2
and - ¥2 < V2 < ¥2 would provide us with the behavior of X(51J52) as two-dimensional
periodic process. As mentioned above, smoothing windows and the chi-square test are
available for detecting wave-number pairs that provide significant contributions to the
variance of the process.

Signal Detection

If two-dimensional analysis indicates that the wave numbers predominate over one
direction of the field, we can describe the process using a one-dimensional model, tak­
ing into consideration that we have repetitive measures over one of the directions.
Suppose, for instance, that noise is uncorrelated over the direction 51 and that the pre­
dominant periodicities are in the 52 direction. The appropriate model for detecting the
signal in the direction of 52 (Shumway 1988) is given by

[9]

where W(52) is the common signal and V(51J52) is the noise, assumed to be uncorrelated
in the 51 direction, but stationarily correlated in the 52 direction.

Note that in equation 9 the noise is in two directions, indicated by 51 and 52. The
estimate of the signal W(52) is given by the sample mean

51 - 1

X(52) == 52 - 1 L X(5J, 52),

51 =°
and the one-dimensional DFT of this sample mean is given as

52 - 1

X(52,k2)=52-~ L X(52)exp{-2rriv252}.

52== °
We also define the one-dimensional OFT of the original series as

52 - 1

X(5J,k2) = 52- In L X(51J52)exp{-2rriv252},

52= °
where V2 == k2/52 defines the wave-number coordinate in both of the equations with
k2 == 0,1, ... ,52 - 1.
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[10]

We can test the hypothesis that the signal is absent rather than arbitrary as a func­
tion of wave number U2. This is Shumway's test, and yields the Analysis of Power
(ANOPOW) given in table 1. For a type I error (falsely reject the null hypothesis) at a
significance level of a, the ratio

F ) - Power due to signal
2,2(51-

1
- Power due to error

would be compared with the tabulated value of F2 ,2(5 1 _ 1) (1- a). Smoothing in a
neighborhood of k2J say over the interval of {k2 +12 ; - V2 (L2 - 1) < 12 < Y2 (L2 - 1)}
introduces 2L2 and 2L2 (S1 - 1) degrees of freedom instead of 2 and 2(S1 - 1) degrees,
respectively.

TABLE 1. ANALYSIS OF POWER (ANOPOW)

Source of power variation

Signal

Error

Total

Power

51 - 1

L. IX(51,k2)-X(k2)1 2

51 == 0

51- 1

L IX(51,k2)1 2

51 == 0

Input-Output Models

Degrees of freedom

2

2(51 - 1)

Suppose that in the one-dimensional spatial context, two zero-mean stationary series
X(s) and Y(s) might be related by a linear filter model,

00

Y(s) = ~ a(/)X(s-/) + v(s),
1= -00

[11]

with a(l), 1= 0, ±1,±2, ... fixed unknown (Shumway 1988), coefficients, and v(s) an
unobserved stationary noise process. The sequence a( I) is called the impulse response
function of the spatially invariant filter defined by equation 11. We assume here that

00

~ la(l)I<oo.
1= -00

The situation in equation 11 may arise whenever the series X(s) and Y(s) represent
physical phenomena that are highly related. This is a frequent situation in soil science.
For instance, X(s) and Y(s) may represent soil water content and soil water pressure at
the identical location. This relationship can be applied to the multiple-input case. If the
coefficients a(l) are known, one can determine the behavior of Y(s) based on the reali­
zations of X (s) or vice versa (input-output relationship). In certain instances, measure­
ments of both X (s) and Y(s) are available, and we might be interested in determining



[12]

[13]
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whether the two series relate. The filter output given in equation 11 will be known
once the impulse response function a( I) and the input process are both known. The
impulse response function is estimated from the observed series X (s ) so as to minimize
the mean square error (MSE) between the output and the linear filtered input, where
the MSE is given by

MSE == E[Y(s) - L a(/)X(s-/)]2,
1== -00

and we assume that X(s) and Y(s) are stationary, zero-mean series.
The relationship between X(s) and Y(s) as a function of v can also be characterized

using the co-spectral properties of the two series, and this allows analysis of the phase
response of the linear filter relating the two series. The squared coherence is defined by

2 ( ) _ I!xy(v) 1
2

Yyx 1] - !x(v)h(U)'

where Ix( u) and h(v) are the one-dimensional spectra of the input and output series,
respectively, and !Xy(v) is the cross-spectrum function, defined as the Fourier transform
of the cross-covariance function

say

00

!xy(v) == L Rxy(m )exp( - 2rrivm).
m==-OO

The coherence can be thought of as the frequency or wave-number dependent corre­
lation between the two series X (s) and Y(s). It gives a measure of how well the input
and output series are related and is similar to the ordinary covariance used in classical
statistics. For instance, the squared coherence is 1 at all frequencies when Y(s) is an
exact, linearly filtered version of X(s) and the noise term in equation 11 is zero.

The impulse response function a(/) can be computed as the Fourier transform,

A(v) == hx(v) ,
!x(v)

of the squared coherence. Impulse response functions are estimated using the smoothed
sample spectra and cross spectra, defined by

Jx(v) == L-I L IX(k + 1)1 2

1

and

hx(v) == L -1 L Y(k + I)X* (k + I),
1
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where

and
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5-1
X(k)=5-~ L X(s)exp{-2rrivs}

s=O

5-1
Y(k) = 5-~ L Y(s) exp {-2rrivs}

s-O

are the DFTs of the original sample series with v = k/ S, k = 0,1 ... , 5 - 1. The sta­
tistical method for testing the strength of the linear input-output or regression relation
is by comparing

with the constant

where

K=~
a 1 + Ca '

2F2,2(L - 1 )(a)Ca = --------
2(L-1)

[14]

[15]

[16]

and a is the type I error for testing HO:y 2x y(v ) = 0 versus the alternate hypothesis that
it is significantly different from zero.

MATERIALS AND METHODS

Measurements of soil surface temperature were conducted on a 6-hectare field located
near Corcoran, California. The field is part of a large farm but is dealt with as a dis­
tinct unit for all agricultural operations. For any management operation, it is consid­
ered to be uniform and is treated as such. The deep soil consists mostly of heavy clay
(60 to 80 percent) deposited during the Quaternary.

We conducted our measurements in late December following a 3-day period of light
precipitation. Water contents at the time of measurements were below field capacity for
the top 10-cm layer, and decreased with depth. Temperature of the soil surface was
measured by infrared thermometer every 5.18 m (17ft) in both directions on a 64-by­
36-point grid (fig. 1), giving 2,304 points measured. All measurements were made
with the thermometer at a 45° angle from the horizontal, 80 cm above the ground.

To account for temperature changes during the time it takes to do one set of mea­
surements of the entire area, we adopted the following method. The measured area con­
sisted of 64 rows running the length of the field and 36 columns running its width.
The 36 columns were divided into three groups (I, II, and III), each consisting of 12
adjacent columns, and each group was divided into three subgroups (1, 2, and 3), each
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Fig. 1. Schematic diagram of the experimental field, illustrating six salinity levels of irrigation
water used respectively on four replicates. Soil surface temperature was measured at each intersec­
tion of a row and a column.

with four adjacent columns. Measurements over the entire area were performed six
times, alternating the groups in a Latin Square fashion - that is, in all six possible ways
of ordering the three groups. Within each group, the subgroups were also treated in a
Latin Square fashion. Within each subgroup, the four columns were picked at random.
While we made our measurements, we monitored two covariates: soil surface temper­
ature and air temperature near the soil surface. These were measured at fixed locations
at both ends of the field before and after measuring a column. The temperature values
considered in this study are averages of the six measurements with no correction for
the covariates, since we found that two locations differing in temperature by a certain
value at a given time did not show the same difference later when their temperatures
had changed. In order to record a complete set of measurements in as short a time as
possible, we read the measured values into a portable tape recorder. Finally, in order to
determine the variability (noise) associated with the measurements, we measured cer­
tain columns five times instead of one whenever their turn came for measurement,
thus yielding five averages for these specific columns.
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RESULTS AND DISCUSSION

Analysis by Conventional Statistics

If we assume that all observations are measuring the same parameter (mean soil tem­
perature in this case) - that they are identically distributed and are independent of each
other-we can rely on conventional statistics to estimate the parameters of interest with
a specified level of accuracy. Conventional statistical analysis is used here only for con­
trast against two-dimensional spectral analysis, which will be covered in the next section.

Let !(X, (}) be the probability distribution function of the variable X J where X is
the soil surface temperature and is assumed for the time being to be independent of
the field coordinates (51,52), and {} is a vector whose components are the parameters
describing! Both! and {} are unknown, and we have Xl,'" x.; realizations of the vari­
able X. For the present situation, N is equal to 2,304. Our purpose is to find the distri­
bution! and then estimate {} based on the observed values.

We determine the distribution by subjecting the data to a variety of tests. This is
equivalent to supposing that! comes from a certain family of distributions, estimating
{} for that particular family, and then seeing how well!describes the process X. Normal­
ity is the first candidate in most tests, especially when the number of observations is
large, as is the case for the present study. Theory provides a variety of tests for nor­
mality, and we chose the tests of skewness and kurtosis because of the behavior of the
observed sample. Figure 2 shows histograms of the sample and of an equal number
of pseudo-random numbers generated from a normal distribution having the same mean
and variance as the observed sample, 6.644 and 0.9232, respectively. To generate this
pseudo-random sample, we modified the Marsaglia method (coupled generator), using
only one generator (Kennedy and Gentle 1980).

From figure 2, we can see that even though the sample yields a bell-shaped histo­
gram, the tails of that curve are more distinct than those of the curve for the generated
sample, especially the right tail. Although more temperatures fall in the mean region
for the observed sample than for the generated sample, the distributions attenuate at
different rates. This phenomenon suggests the presence of some kurtosis in the observed
sample. In samples that are very large, deviations from normality are not uncommon.
Even though statisticians do not deny that some real data sets are symmetric and have
distinct tails, theory has concentrated on "gentler, well-behaving data sets." As noted
by Poincarre (1912), "everyone believes in the normal law, the experimenters because
they imagine it a mathematical theorem, and the mathematicians because they think it
an experimental fact."

To test for departures from normality, we estimated the sample coefficients of skew­
ness and kurtosis (Snedecor and Cochran 1972). We found their values to be 0.047 and
4.498, respectively. The measure of skewness can be positive or negative (for a normal
distribution it is equal to zero), and for large samples (n > 150) it is generally dis­
tributed with a mean of zero and a variance of (6/N)~-0.051 in our situation. For
0.047 to be significantly different from zero, the p-value must be between 0.01 and
0.05, not very supportive of the normality of the sample, especially with such a large
number of observations. Kurtosis values of less than 3 characterize distributions with
flatter than normal tops, whereas values greater than 3 indicate fatter tails. The latter
is the case in our situation, as reflected in the shape of the histogram (fig. 2). The
sample kurtosis is normally distributed, especially if the sample size is greater than
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Fig. 2. Histograms of observed and generated soil surface temperature values.

1,000 (Snedecor and Cochran 1972) with mean 3 and variance (24/N)Y.2-0.102 in
our case. Again, the test rejects the normality hypothesis with a p-value less than 0.01.
Figure 3 shows a normal probability plot of the sample from which we can see that the
non-normality is due exclusively to extreme values on both tails. Unless we wish to
look at the world through Cauchy-colored glasses, we must consider these extreme
values as outliers and take care of them with a slight trimming. A 5 percent (or less
than 5 percent) trimmed mean is a more robust estimator than the usual mean, but
only if the data comes from a normal distribution. Another way of bringing these out­
liers back is by taking logs and performing the normality test on the transformed data.

The normal plot in figure 3 is obtained as follows: If X (1 ), X (2) , ••• X (N) are the order
statistics from the observed sample, then the expected normal value for the rank j (out
of N) is estimated by ¢J - 1 [( 3j - 1)/(3N + 1)]. That is, the standard normal value
corresponds to the probability (3j - 1)/( 3N - 1). When the sample comes from a
normal distribution, the resulting plot is a straight line.

Another method of estimating the mean temperature and the variance associated
with it, if one assumes that observations are independent and identically distributed, is
through a one-way analysis of variance model. Neither method above considers the spac­
ings between measurements, so neither is able to provide us with the shortest distance
over which to correlate temperature values. The determined sample size does not relate
to some specified area to be considered if measurements are to be repeated.
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Figures 4 and 5 show three-dimensional plots of all 2,304 observations viewed from
the east and north, respectively. The most striking feature of the plots is that variability
is not the same across the field. The observations are noisier in the center, milder in the
northern portion, and smoother in the southern portion. This nonstationarity phe­
nomenon cannot be attributed to measurement errors, since all measurements were
performed along columns running in the north-south direction, one column at a time,
and under the same circumstances. The phenomenon must be innate in the field itself.
Another obvious feature is that variability is completely stationary on the east-west axis
as compared with that in the other direction. Whether noisy or smooth, the behavior of
temperature along any given row is very much the same. A third but much less obvious
feature is the probably cyclic behavior on the north-south axis. Temperature is high in
the central portion, all across the width of the field, it goes down both to the north and
to the south, and then it goes back up at the ends of the measured area. That the data
set behaves in a cyclic manner in the north-south direction is not very evident from the
three-dimensional plots (fig. 4 and 5).

Plots of temperature distributions for each of the 64 rows and for their respective
autocorrelations exhibited different shapes, and tests for detecting signals in individual
rows indicated no significant signal of any kind in any of the 64. Although an auto­
regressive model or a periodic function could be fitted, the fit was statistically poor.
Similar plots for the 36 columns revealed a variety of shapes, and even though many
plots looked alike, the corresponding estimated autocorrelations indicated different be­
haviors. Most plots indicated a slight departure from stationarity due to large variances
in the central region of the field. Columns 2, 3, 7, 10, and 14, for example, exhibited
their highest autocorrelations at lag 7; column 8; at lag 9; columns 1, 5, and 9, at lag
8; column 6, at lag 10; columns 11 and 13, at lag 2; column 12, at lag 4; and so on. In
certain cases (columns 4, 7, 8, 9, 17, and 33), the autocorrelation indicated a periodic
behavior. In other cases (columns 12, 15, and 20) such behavior is not very obvious.
Modeling the columns individually would yield a variety of models. By relying on only a
few columns to describe the entire field, we felt we could probably get unrealistic mod­
els. Just because a particular model fits a couple of columns does not mean that it can
be generalized-to the entire field. For instance, if we consider only columns 19,30, and
34 we will conclude that only white noise exists. For these columns, the autocorrela­
tion at all lags falls well within its 95 percent confidence interval, and the model that
we fit may not be statistically strong. The best model is obtained by considering be­
tween 20 and 36 columns simultaneously. The fewer the columns considered, the less
precise is the description of the average field situation given by the resulting model.

So far, we have only looked at individual rows and columns, a statistically legitimate
approach so long as we do not consider averages over either direction. Averaging over
one direction can lead to an erroneous model if there is a significant signal in the or­
thogonal direction. We nonetheless show the average behavior of all columns (fig. 6)
and the average behavior of all rows (fig. 7) without model fitting. The autocorrela­
tions of these averages are given in figure 8. As far as the column averages are con­
cerned, we can make the following remarks: (1) all averages show little variability, since
all 36 values fall between 6.4 and 6.9°C with the majority around 6.6°C; (2) the vari­
ability of these column averages appears to exhibit stationarity; (3) the autocorrelation
is well contained in the 95 percent and 90 percent confidence intervals for all lags; and
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Fig. 5. Soil surface temperature observations for the experimental field, viewed from the north.
Column and row numbers represent increments of 5.18 m.
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(4) if we are fitting a model, a harmonic function would be the candidate, given the
behavior of the autocorrelation function.

The situation is much different for the row averages. The most striking features of
these are their cyclic pattern and the range of temperatures covered, from slightly above
5° to almost goC (fig. 9). This periodic behavior was not seen in individual columns,
and is only depicted well when about 15 or more columns are averaged. This supports a
remark made earlier: that measurements made along one or a few transects do not
describe the average situation of the entire field. The autocorrelation of these row aver­
ages (fig. 8) strongly supports the harmonic behavior and is well outside the 95 percent
confidence interval for many lags. Individual columns were unable to depict periodicity
in soil temperature, they were associated with high variability (fig. 9).
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Fig. 9. Average soil surface temperature versus row number.
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When variability of a given variable occurs in more than one direction, the best way
to model the variable is by considering a multidimensional stochastic process. In the
present study, we have a two-dimensional process Xt.sj.ry): 0 < 51 < (51- 1), and 0 <

52 < (52 - 1), with Sl and 52 equaling 36 and 64, respectively. The two-dimen­
sional autocorrelation of the process, viewed from different lags in both directions 51

and 52, is given in figure 10. The autocorrelation function plot exhibits striking perio­
dicity along the 52 direction, relatively high values at lag zero for all rows, and stability
in the 51 direction (from one column to another). The high values at lag zero prob­
ably indicate that along the rows, temperature behaves more smoothly than along the
columns.

Because the autocorrelation behaves in this fashion, a periodic signal is suitable for
describing the process. This signal accomplishes about four cycles along the north-south
axis of the measured area. In order to test whether this signal is indeed significant and
whether any significant periodicity exists in the east-west direction, we need to examine
the two-dimensional periodogram estimating the spectrum. Figure 11 shows such a
periodogram for different ranges of the frequencies 171 and 172, where these correspond
to the coordinates 51 and 52, respectively. The graph is actually for natural logs of the
periodogram, a common way to reduce the range of values covered. The spectrum is
estimated with L1 == L2 == 1. Because of the noise associated with the periodogram,
little can be concluded from this graph except for certain peaks for the pairs of
frequencies given by 171 == 0, 172 == 0.06, 0.23, 0.32, 0.38, and 0.44. No major peaks
occur when 171 =1= 0, so all the variability along the 51 coordinate is essentially
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Fig. 10. Two-dimensional autocorrelogram of soil surface temperature.
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Fig. 11. Two-dimensional periodogram of soil surface temperature.

insignificant noise. To eliminate some of the noise associated with the periodogram, we
smoothed the latter (fig. 12). In the smoothed version, (1 ) the only significant signal is
in the 52 direction, since for all values of n1 the spectrum is flat, and (2) the signal can
be described by a linear combination of harmonic functions whose frequencies are the
'f/2 values corresponding to the significant peaks.

Having concluded that the process X(51 J 52) can be described by cyclic functions in
the 52 direction, we now proceed to determine the values of the frequency nz- which
contribute significantly to the process. This can be tested by the method shown in table
1. The observed values of the F statistic as a function of the frequency n2J for L = 1
(non-smoothed spectrum) are given in figure 13. The partitionings of the total power
into the fraction caused by signal and caused by error are shown in figures 14a and b,
from which we can see that four out of the nine peaks in figure 13 are actually caused
by signal, and that the remaining five are mostly caused by insignificant noise. We can
also see that, once the power due to signal is extracted, the remaining noise power
is nearly constant for all values of n2. Figures 15a and b show the observed F statis­
tics after smoothing the spectrum with L equal to 3 and 5, respectively. In both cases,
smoothing eliminated the minor peaks and left only the four peaks found to be signal­
caused in figures 14a and b. The numerator and denominator degrees of freedom of the
F statistic for L = 1, 3, and 5 are 2 and 70, 6 and 210, and 10 and 350, respectively.
For a 0.01 level of significance, these correspond to 4.90, 2.80, and 2.32, respectively,
meaning that all four peaks are significant. By Scheffe's method (Scheffe 1959), the
overall level of significance of the tests is 0.04, since we have four peaks, each tested at
a = 0.01. In other words, the 96 percent confidence bands for these peaks are approxi­
mately n = 0.057, 0.24, 0.33, and 0.4. This means that the process X(51 J 52) can be
described by the model
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4
X(51, 52) == J1 + L [ai cos (2rr17i52) + hi sin(2rr17i 52) + e(51,52)], [17]

i==1

where 171, 172, rJ3' and 114 are equal to 0.057,0.24,0.33, and 0.40, respectively; a, and hi
(i == 1, 2, 3, 4) are estimated by

and

and

52 - 1

d, == 52 - 1 L X(52 ) cos(2rrrJi 52 )

52==0

52 - 1

bi == 52- 1 L X(52 ) sin(2rr17i 52),
52==0

5 1 - 1

X(52) == 51- 1 L X(51,52)
51 ==0

51 - 1 52 - 1

{L == X == (5152 )- 1 L L X(51,52).
51 ==0 52==0

[18]

[19]

That is, the superposition of four combinations of sine and cosine functions constitutes
the signal in the 52 direction, and when associated with the noise e(51,52), describes the
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Fig. 13. Observed F-statistics for the non-smoothed spectrum (L = 1).

process X(Sl,S2). The coefficients a, and hi (i = 1,2,3,4) can also be estimated using
the least squares method applied to the model in equation 17. Solutions of equations 18
and 19 yield the diS and hiS, and the model in equation 17 becomes

X(Sl,S2) = 6.664 - 0.412 cos[2rr(0.057)S2]

+ 0.497 sin[2rr(0.057)s2] + 0.176 cos[2rr(0.24)S2]

- 0.002 sin[2rr(0.24)s2] - 0.044 cos[2rr(0.33 )S2]

- 0.004 sin[2rr(0.33)s2] + 0.106 cos[2rr(0.4)s2]

- 0.01 sin[2rr(0.4)s2] + e(sl,s2) [20]

The performance of the model is shown in figure 16. The model describes the aver­
age temperature distribution remarkably well. Absolute deviations from the observed
mean values are less than 0.25°C in about 50 percent of the cases and slightly more
than 1°C in only two cases. Although the model tends toward slight underestimation
of high-temperature values and overestimation of low-temperature values, the mean
square deviation is less than 0.25. By inspecting the estimates ai and hi (i = 1, 2, 3,4),
we can see that some of them are very low and can be eliminated from the model. Even
though all four peaks in the spectrum were significant, the process can be described
by fewer harmonic functions than we previously thought. This is because when we fit
one harmonic function, it usually takes care of more than one peak in the spectrum.
Another reason is that sometimes only the cosine or sine part of the function is needed
to describe the process for a given frequency. The model (equation 20) was reduced to

X(Sj,S2) = 6.644 - 0.412 cos[2rr(0.057)S2]

+ 0.497 sin[2rr(0.057)s2] + 0.176 cos[2rr(0.24)S2]

+ 0.106 cos[2rr(0.4)s2] + e(sl,s2), [21]



a

O~--_...&----:;~_---a..._-_---I""-----~---""

o

Fig. 14. Signal spectrum compared to (a) total spectrum and (b) error spectrum.
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Fig. 16. Performance of the fitted full model.

and the fit is shown in figure 17. The reduced model still does a good job, though not as
good as the full model. In fact, we can use only the frequency that gave the highest
peak, and the fit will still be good for practical purposes. That is, a regression through
cos(2rr(0.057)52) and sin(2rr(O.057)52) yielded a correlation coefficient of slightly less
than 60 percent. The frequency that gave the highest peak (112 == 0.057) corresponds to
a period of 17.5 points, and all three other periods have values less than this-hence
17.5 points, or about one-quarter of the field in the 52 direction, is enough to describe
the process in the entire field. The sample should not be taken as 18, however, since
this result is based on 36 repetitions and does not apply to fewer than 10 to 15 repe­
titions. If we want to reproduce the field situation accurately, we need at least 12 repli­
cates along the 52direction, each of which must consist of 18 observations 17 feet apart.
The number of replicates to consider could be determined through a study comparing
precision to the cost of measurements.

To find out why the soil temperature fluctuates cyclically in the 52direction while it
fluctuates randomly in the 51 direction, we looked at the history of the field over the
past few years. It turned out that about 1 year before we made our temperature mea­
surements, six concentrations of salt had been applied to the entire field as part of a
long-term study. The concentrations were distributed in four replicates and applied
cyclically, as shown in figure 1. The numbers in figure 1 indicate the target salt concen­
trations of the applied water in grams per liter. A plot of the initially applied salt distri­
bution is superimposed over a plot of the mean temperature across the field in figure
18, and we can see that high temperatures correspond to low salt levels and vice versa.
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Measurements of the electrical conductivity of soil extracted after we measured the
temperature revealed that the pattern of salt distribution still persists.

To further investigate the relationship between salinity and average soil temperature,
we determined the separate spectra for both variables as shown in figure 19. (The spec­
trum for soil temperature was obtained from the 64 row averages, and should not be
confused with the spectrum in fig. 14, which represents the sum of the spectra from
the 36 columns. If all columns were exactly the same, the spectrum in fig. 14 would be
36 times higher than the antilogarithm of that in figure 19 for every frequency.) The
major peaks discussed above exist in both spectra and for the same frequencies. In fig­
ure 19 we can see that even though the magnitudes of the spectra of salt and tem­
perature differ, their shapes are similar. In particular, the highest values occur at the
same frequencies in both cases. This is not surprising, considering the common behav­
ior of the two variables (fig. 18).
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We have now shown that temperature could be described by a linear combination
of two harmonic functions. For salinity, only the highest peak, that corresponding to
the frequency 0.06, is significant-that is, salt distribution can be described by only
one harmonic function. This is because salt content follows a more rigorously cyclic
pattern than does soil temperature, since the salt was applied as part of a controlled
experiment. The period of the function describing salt levels is equal to 17( == 1/0.06),
which corresponds to one-fourth of the field-exactly the distance corresponding to
one replicate.

Figure 20 plots the cross spectrum between salt content and soil temperature. Recall
that the cross spectrum is a measure of association between the two variables at differ­
ent frequencies. It is near zero everywhere except around 1]2 == 0.06, where it is deeply
negative. The negative sign indicates that the two variables are negatively correlated,
and the large magnitude indicates that the two variables are highly correlated at the
frequency 0.06. We have already seen that both variables can be described exclusively
by harmonic functions with this frequency; the cross spectrum reflects the same result.
Figure 21 shows the coherence between the two variables. Recall that the coherence is
analogous to the covariance in classical statistics and measures the correlation between
the two variables for every frequency. We can see that the coherence is high at the fre­
quencies that correspond to simultaneous peaks in the spectra of salt and temperature
(fig. 19); that is, the two variables correlate at those particular frequencies. The high­
est correlation (almost equal to 1) occurs at 1] == 0.06, the frequency whose harmonic
function describes the distribution of both variables.

The yardstick for determining which frequencies show significant coherence is given
by equations 15 and 16 and yields K O.0 5 == 0.7. This eliminates all small peaks, leaving
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Fig. 21. Coherence between temperature and salinity.

only that corresponding to Yf == 0.06. Again, this corresponds to the observation that
both variables can be described well using only this frequency. Because of this result,
we can use either variable to estimate the other through the filter given by equation 11.
Using salt as the input variable (X) and temperature as the output variable (Y), we
estimated the filter coefficients, or impulse response function, a(l) by the method de­
scribed in the theory. These estimates are shown in figure 22, where we can see that all
values are near to zero except when I is near to 32. The peak with the highest mag­
nitude occurs at I = 34, indicating that temperature lags salt content by 1 to 2 points
on the average. A lag of two points means that the highest temperature occurs 34 feet
behind the lowest salt content. This lag is estimated using all salt levels.

Perhaps temperature lags salt because the salt was applied in strips 51 feet wide, much
larger than the lag interval. The lag may also have resulted from the distribution of salt
levels as a step function - in fact, this lag is not seen in figure 18, where salt and tem­
perature seem to show no phase shift. All of this supports the hypothesis that salt and
temperature vary in opposite directions with no lag or lead. The phase shift may also be
realistic, as pointed out by Nielsen, Tillotson, and Vieira (1983 ), who described how in
a field situation a shift may result from microtopography and the angle of the incident
radiation. In fact, the shift we have observed is in the north-south direction, exactly as
predicted by Nielsen, Tillotson, and Vieira. For the present study, the phase shift for 1]

= 0.059 is of the order of 4°, which is very small. Another possible explanation is that
in the time since salt was applied, water movement on the soil surface and underground
may have caused the shift. The fitted filter between X and Yusing the results shown in
figure 22, is

Y(S2) == Y - 0.15[X(s2 - 2) - X] == 1.98 - 0.15 X(S2 - 2), [22]
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where < 52 < 63 and X is taken as the averages of the six salt levels applied. This
model (equation 22) can be used to predict either variable from the other, provided suffi­
cient measurements of the predictor are used. Since temperature can be measured more
easily than salinity, it would be more practical to use temperature as the predictor.

The cyclic behavior of temperature may well result from some other phenomenon
not investigated here, and more studies are needed before we can conclusively articulate
its relationship with salinity. The only available history of the field besides salinity is
texture, but no correlation was found between texture and temperature. Schumgge
(1980) found texture to influence microwave emission from the soil, but in the present
study the field was texturally uniform. The almost perfect fit between the salt appli­
cations and the temperatures prompted us to suspect a cause-effect relationship between
the two.

Several hypotheses can be proposed to explain why soil salinity influences temper­
ature. For instance, we would expect a highly saline spot to have a lower water potential
and a lower relative humidity than a spot where salinity was relatively low. This differ­
ence would cause evaporation rates to differ for the two soils. High-salt soil would tend
toward less evaporation, and vice versa. Since our measurements of soil temperature
followed the dry season, we would expect salinity at the soil surface to be many times
higher than at lower depths as a result of the salt deposition that accompanies the evapo­
ration process. This would result in extremely high salt levels where high salt concen­
trations were applied (9,6, and 4.5 grams per liter). Temperature measurements were
conducted right after a light precipitation period that followed more than 4 months
of dry season. The showers wetted only the top 5 to 10 em, raising the potential for
large differences in the salt concentrations.
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Another possible reason for the correlation of differences to salinity differences is
that soil high in sodium may be dispersed, and as a result that its hydraulic conductivity
may be reduced. High sodium is known to reduce hydraulic conductivity as a result of
soil dispersion, especially in clayey soils (in the present situation, clay content ranged
from 60 to 80 percent). This phenomenon would cause water to infiltrate faster in
zones of low salinity than in salty zones, hence the difference in water contents.

Both hypotheses support the association of high water contents with salty spots and
vice versa. Because water has a higher heat capacity than the mineral or organic com­
ponents of soil, water heats much more slowly. For a given amount of energy, water
temperature increases much less than do the temperatures of the other fractions of the
soil core. Besides, water reflects more energy than dark soil and organic matter, and its
temperature remains lower through loss of some energy by evaporation (latent heat).
Hence the chain of physical phenomena: higher salt ~ higher water content ~ lower
temperature, and vice versa. Morkoc et al. (1985 ) also found soil temperature and water
content to correlate strongly and to vary in opposite directions.

CONCLUSIONS

The present study demonstrates that spectral analysis can be used to (1) detect peri­
odic signals describing two soil physical properties, (2) estimate sample sizes while con­
sidering the spacing between the measurements, and (3) relate the two variables as a
function of location. We have also seen that, although periodic signals may not seem
obvious upon casual observation of a graph, they may provide the only way to describe a
phenomenon. We pointed out that, once the sample size is determined using spectral
analysis or other techniques, classical statistics can determine the number of replica­
tions necessary for a desired level of accuracy. The accuracy level would be determined
through an optimization study. Two-dimensional spectral analysis considers variability
in both directions of a field, and is thus more realistic. The technique can also be exten­
ded to further dimensions in order to include variability as a function of soil depth or
time. When applicable, the method is without substitute, since the natural way to rep­
resent periodic functions is through sine and cosine functions.

The theory for conducting tests and determining significant components already ex­
ists. None of the earlier methods could have described the present situation's cyclic
behavior, even though each of them is powerful under appropriate conditions. This leads
to the conclusion that, in order to get the best results possible, one should first find out
which of the methods is best suited for the data set of interest. This can be accom­
plished through a general inspection of graphs, tests of independence, multidimensional
autocorrelation, and the like. It may be inappropriate to decide on the method of anal­
ysis before looking at the data, since each method works best only when the require­
ments of its use are met. The two-dimensional analysis method has the inconvenience
of requiring large, complete, and regular, stationary data sets. However, its use is justified
by its lack of substitute and its suitability under conditions that are likely to occur in
field situations.
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