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In agronomic problems the sampling procedure may create some con-
fusion and bias in the analysis. Geostatistics provides a method for the
analysis of the spatial and temporal properties in a data set and a
method of interpolation between selected points. This paper describes
the theory of geostatistics and its application to selected agronomic
problems. Geostatistics considers a set of data collected in either space
or time at discrete intervals. These samples may be correlated with
each other to provide some unique information about the parameters
which would not be detected in the classical statistical methods.
Through the application of geostatistics to this type of problem, we
can estimate the spatial or temporal dependence of samples and from
this knowledge arrive at an estimation of the sampling procedures or
structure at a field. The application of these techniques is shown for
air temperature, surface temperature, yield, clay content, and fertil-
izer content in various fields and reveals the versatility of the techniques.

Geostatistics also allows for the evaluation of the dependence be-
tween two parameters in either time or space. From this information it
is possible to develop sampling procedures which would allow the
more costly or time consuming variable to be sampled less frequently
and estimated from the other variable by the method of kriging. This
report summarizes all of these techniques and provides several dif-
ferent examples of their utilization. Examples of the computer code
are provided for the reader wishing to apply these techniques.
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INTRODUCTION

Researchers have been working on variability problems since the early
1900's (Montgomery, 1913; Robinson and Lloyd, 1915; Pendleton, 1919). Very
careful field experiments have been done to determine the effects of soil
variability on plot yields (Montgomery, 1913; Smith, 1910), nitrification
(Waynick, 1918), and nitrogen and carbon (Waynick and Sharp, 1919); a variety
of sampling schemes were used that allowed maximum coverage over the field with
the distances between samples known. Further, Harris (1920) presented a
collection of analyzed data sets using an equation very similar to what we know
as block variance. Sampling soon became a discipline: by the early 1960's many
books had been written on sampling theory, and they had such common schemes as
random and stratified sampling.

Analysis of data used to be conducted using such classical statistical
methods as analyses of variance (Beckett and Webster, 1971), which assume
independence between samples. This assumption is commonly accepted when the
observation follows a normal distribution. However, a given set of observa-
tions may be normally distributed, regardless of the sampling distance, and a
good deal of autocorrelation may exist, depending on the process. Auto-
correlation requires the use of a relatively new statistical approach called
geostatistics.

Matheron (1963, 1971) developed a theory he called "Theory of Regionalized
Variables," which describes the fundamentals of geostatistics. In that theory,
a regionalized variable is a numerical space function which varies from one
place to the next with apparent continuity but which varies in a manner that

tAccepted for publication December 14, 1982.
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cannot generally be represented by an ordinary workable function (Matheron,
1963). The kriging method of interpolation, which is based on the theory of
regionalized variables while using the degree of autocorrelation between
adjacent samples, estimates values for any coordinate position within the
domain measured without bias and with minimum variance. In this sense, kriging
is an optimum interpolator (Burgess and Webster, 1980a). As a result, estima-
tion can be done for as many values as a computer budget will allow. Very
precise contour maps can be drawn for space-distributed variables, and short-
time intervals can be estimated for time variables, reducing sampling and
analysis costs. Kriging has been used successfully in mining (David, 1970),
hydrology (Delhomme, 1976), and soil science (Hajrasuliha et al., 1980; Vieira
et al., 1981).

Similar to one variable being autocorrelated in either space or time, when
two or more variables are measured for the same domain, they may be correlated
to each other or cross-correlated two by two. This allows values of one
variable to be estimated using the measured values of all the variables. This
estimation method, called cokriging, is particularly useful when one variable
is more difficult to measure than the other variables and consequently has
fewer samples than the other variables with which it is cross-correlated. For
example, in most instances, agrometeorological observations such as air and
surface temperatures are easily obtained by either ground or remote measure-
ments. Intuitively, we can expect a cross-correlation between these tempera-
tures and such other variables as surface water content of a bare soil, water
evaporation, sand, clay, and organic matter content of the soil surface.
Values of some of these variables are more difficult to obtain than others, and
cross-correlation functions between them would provide ways to estimate values
for the unrecorded times or locations using the available data.

Therefore, there are potential applications of geostatistical methods for
analysis of variability of agronomical observations. The purpose of this
article is primarily to expose the reader to the fundamentals of geostatistics
and to show some examples of applications using field data. The expression and
applications of the theory have been intentionally kept detailed to provide an
easily understandable reference for particular cases; we feel that most of the
references on the subject are difficult to read, mainly because the theories
are too general. For example, in most geostatistical applications to mining
cases, the samples are defined in three-dimensional space, as a bulk volume
(Blais and Carlier, 1968; Ugarte, 1972; Journel, 1974), and one of the most
complete derivations of the cokriging system is done by Journel and Huijbregts
(1978) for a generic number of variables defined in three-dimensional space.
However, in agronomic studies, we will mostly be dealing with one- or two-
dimensional samples and only two cross-correlated variables, so it is important
that these theoretical derivations be available to the interested agricultural

user for reference.
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THEORY

The Semivariogram

Consider a field of area S, for which we have measured a set of n values
{Z(Xi)’ i =1,n}, in which each X; identifies a coordinate position. The
coordinate position represented by the xi's can be either space or time; for
simplicity of presentation, we will restrict our discussion to space. Each X3
represents a pair of coordinates (&i, 9i), i = 1,n. Each z(xk) can be con-
sidered a particular realization of a certain random variable, Z(Xk)’ for a

particular fixed point, x The regionalized variable Z(xi), for all X; inside

S, can be considered a r:alization of the set of random variables {Z(Xi)’ for
all X; inside S}. This set of random variables is called a random function and
is written Z(Xi) (Journel and Huijbregts, 1978).

Until the late 1960's, analysis of field data such as that described above
has been treated under the assumption of statistical independence or random
spatial distribution so as to allow for the use of statistical methods such as
analysis of wvariance, and parameters such as coefficients of variation
(Harradine, 1949; Ball and Williams, 1968). However, this assumption cannot
simply be made before the correlation of the samples with distance is proven to
be nonexistent.

One of the oldest methods of estimating space or time dependency between
neighboring observations is through autocorrelation. This method, which has
its origins in time-series analyses, has been used intensively in soil science
(Webster, 1973; Webster and Cuanalo, 1975; Vieira et al., 1981). Because it is
a measure of the dependency between neighboring samples, it has several
important applications such as to the location of soil boundaries (Webster,
1973) and to the design of sampling schemes from transect measurements (Vieira
et al., 1981). When the observations are distributed two-dimensionally across
a field surface, two-dimensional autocovariance functions are used to ascertain
the spatial dependency. However, when interpolation between measurements is
needed, a more adequate tool is used to measure the correlation between

measurements. This is the semivariogram, which is defined as
_1 2
¥(h) = 5 E{IZ(x) = Z(x; + M%) (1]

which, in turn, can be estimated by

N(h)

Y (h) = schy NSO h)1? [2]

~

—_
1)

in which E is the expected value and N(h) is the number of pairs of observa-

tions [z(i), z(i + h)] separated by a distance or lag vector h (Journel and
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Huijbregts, 1978, pg. 12). A plot of y*(h) versus the corresponding values of
h, called a semivariogram, is thus a function of a vector h, which may depend
on both the magnitude and the direction of h. In the latter case, when the
semivariograms for different directions are different, the physical phenomenon
under study is anisotropic, and anisotropic semivariograms must be submitted to
some transformation that will make them isotropic. This subject is well
described in the literature (Journel and Huijbregts, 1978, pg. 175; Burgess and
Webster, 1980).

The graph of the experimental semivariogram computed using equation [2]
will display a series of discrete points corresponding to each value of h, to
which a continuous function z*(h) must be fitted. Delhomme (1976) discusses
several theoretical models for this function that are applicable to different
phenomena. Only the ones with particular importance to this paper will be
discussed here.

We should expect that the differences [z(i) - z(i + h)] decrease as h, the
magnitude of the separation between them, decreases. Observations located
close together are expected to be more alike than observations separated by
large distances. For second-order stationary processes, y(0) = 0, as shown in
equation [2]. However, in practice (Delhomme, 1976; Campbell, 1978;
Hajrasuliha et al., 1980; Burgess and Webster, 1980a), as h approaches 0
(zero), y*(h) approaches a positive value called the nugget effect Co. This
value reveals the discontinuity of the semivariogram near the origin at
distances less than the shortest sampling distance. The discontinuity may be
due to variability at scales smaller than the sampling distance or to measure-
ment errors (Delhomme, 1976).

Fitting a theoretical model to the experimental semivariogram is one of
the important aspects of the applications of the theory of regionalized
variables and may be one of the major sources of ambiguity in these appli-
cations, since all the calculations depend on the value of the semivariogram
for specified distances (Vieira et al., 1981). Only the most commonly used
models will be presented in this article; other models may be more appropriate
for particular situations. Automatic curve fitting is not recommended, at
least in mining geostatistics (Journel and Huijbregts, 1978), probably because
these methods (e.g., least squares) do not allow for the flexibility of giving
more weight to semivariogram values that result from more pairs of experimental
values. However, if the theoretical model is a conditional positive definite
function (Journel and Huijbregts, 1978), no restriction should be imposed on
the choice of method used to obtain the model.

Depending on the behavior of the semivariogram at large values of h, the
model to be used can be classified into two distinct categories: models with a
sil11 and those without a sill.

1. Models with a Sill or Transition Models — As h increases from zero,
y*(h) increases up to a certain corresponding value of h, say, a, after which
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it remains basically constant. The value of y*(h) at this point is approxi-
mately equal to the variance of the observations and is called the sill, C, and
the distance, a, is called the range (see Fig. 1). The range is a very
important parameter, since measurements separated by distances closer than a
are correlated to each other, whereas those measurements separated by distances
greater than a are not correlated. When the range, a, is smaller than the
closest sampling distance, we have a pure nugget effect and the physical
phenomenon has a completely random spatial distribution with respect to the
sampling space available; classical statistical methods may be applied.
However, if more samples are taken at closer spacing, the semivariogram may
reveal some structure. In fact, the existence of a pure nugget effect is the
only situation that theoretically allows for the use of classical statistical
methods.

Basically, four transition theoretical models are in use: (a) linear; (b)
spherical; (c) exponential; and (d) Gaussian.

In the following expressions, C0 is the nugget effect, Co + C] is the
sill, and a is the range of the semivariogram.

(a) Linear

y*(h) = C  + B-h 0<shsa
y*(h) = C/ + C, hza [3]
in which B is the slope for 0 £ h £ a.
(b) Spherical
*(h) = 3h_1 h3
Yy =C +C 53-35 3 0<hs<a
[4]
* =
y*(h) C0 + C] hza

The spherical model is obtained by first selecting the nugget effect, Co,
and the sill value, Co + C]. Then a Tine intercepting the y-axis at C0 and
tangent to the points near the origin will reach the sill at a distance a' =

)
% a. Thus the range is a = 2%—. The spherical model behaves linearly up to
approximately % a.
(c) Exponential
y*(h) = C, + Cyl1 - exp(-h/ao)] 0<hsd [5]

in which d is the maximum distance over which the semivariogram is defined.
The parameter, as is obtained by taking a tangent to the points near the
origin, intercepting the y-axis at Co' The distance, a at which the tangent
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line reaches the sill is approximately a, = a/3, where a is the range. Unlike
the spherical and Tlinear models, the exponential reaches the range only
asymptotically.

(d) Gaussian

YA(h) = €+ C4I1 - exp(-h%/a2)] (6]

L

The parameter, ags is related to the range by a = a, in which the

range, a, is obtained visually as the distance after which the experimental
variogram becomes stable.

2. Models Without a Si11 — Models without a sill correspond to phenomena
with an infinite capacity of dispersion, for which neither the variances of the
data nor the covariances can be defined (Journel and Huijbregts, 1978). In
general, these models can be written as

B

y(h) = C_ + Ah 0<B<2 [7]

Parameter B must be strictly greater than 0 (zero) and strictly less than
2 in order to guarantee that the function -y(h) is conditional positive
definite.

Some phenomena may have a semivariogram that shows nested structures, or
more than one structure. In this case, a combination of models may be needed
instead of a single one.

Stationarity Assumptions

With a single sampling, all we know about our random function Z(Xi) is one
realization. If we want to estimate values for the unrecorded locations, we
must introduce the restriction that the regionalized variable must be statis-
tically homogeneous and isotropic, which permits us to make statistical
inference (0Olea, 1975). Formally, a regionalized variable is stationary if the
statistics on the random variables Z(xi+h) are the same for every vector h.
According to the number k of statistical moments that are constants, the
variable is called stationary of order k. Second-order stationarity is all
that is usually required in geostatistics (Olea, 1975).

Suppose random function Z(xi) has expected values E{Z(xi)} = m(xi) and
E{Z(xi + h)} = m(xi + h) and variances var {Z(xi)} and var {Z(Xi + h)},
respectively, for the locations X5 and x; * h. The covariance C(xi, X5 * h)
between Z(xi) and Z(xi + h) is defined by

Clx;s x5 + M) = B{Z(x;) Z(x; + h)} - {m(x;) m(x; + h)} [8l
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and the variogram 2y(xi, x; * h) is defined by

2y(x;s x; + h) = E{LZ(x;) = Z(x; + M%) [9)

i

The variance of Z(xi) is

var {Z(xi)} E{Z(xi) Z(xi +0) - m(xi) m(xi + 0)}

E{Z2(xp) - mP(x)} = C(x0xp) [10]
and the variance of Z(xi + h) is
var{Z(x; + h)} = E{ZZ(xi +h) - mz(xi +h)} = Clx; + h, xg + h) [11]

Then three possible assumptions concerning stationarity of the random function
Z(Xi) can be made, and at least one assumption must be met in order to apply
geostatistical estimation. These assumptions are as follows.

1. Stationarity of Order 2 — A random function Z(xi) is stationary of
order 2 (Journel and Huijbregts, 1978) when: i) the expected value E{Z(xi)}
exists and does not depend on the position x. Mathematically,

E{Z(xi)} =m for all X; inside area S [12]

ii) for each pair of random variables, {Z(xi), Z(Xi + h)}, the covariance
function, C(h), exists and depends on h.

C(h) = E{Z(xi) Z(xi + h)} - m2 for all X; inside area S [13]

Equation [13], the stationarity of the covariance, implies the station-
arity of the variance and the variogram. Thus, using the linearity of the
expected value, E, in equation [10] results in

var {2(x)} = E{Z(x;) 20x; + 0)} - E{n’(x;)}
= E{Z(x)) Z(x; + 0)} - m’(x{)]} [14]

Apply the stationarity conditions [12] and [13] to obtain

2

var {Z(x;)} = E{Zz(xi)} - n? = c(0) [15]

The variogram ZY(Xi’ X; * h) in equation [9] can be developed into

2v(x;, x; + h) = 2y(h) = E{Z2(x;) - 22(x)) 2(x; + h) + 22(x; + W)} [16]

i
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Adding and subtracting 2m2 to equation [16] gives

2 2

2y(h) = E128(x) = nf - 22(x;) 2(x; + h)-+ 2 + ZP(x, + h) - nf) [17]
Since the expected value, E, is a linear operator and the expected value of a

constant is the constant itself, then

2y(h) = E{(Z%(x.)} - - 2[E{Z(xy) Z(x; + M} - nP] + E{Z°(x; + h)} - m 18]
Substituting equations [13] and [15] into equation [18] gives

2y(h) = €C(0) - 2C(h) + C(0) = 2C(0) - 2C(h) [19]
or, simplified,

y(h) = C(0) - C(h) [20]

Therefore, if the assumption of stationarity of order 2 can be made, the
covariance C(h) and the variogram 2y(h) are two equivalent tools for charac-
terizing the autocorrelation between two variables Z(xi) separated by a
distance h. By assuming stationarity, we can essentially repeat an experiment
even though samples must be collected at different points as all samples are
assumed to be drawn from populations having the same moments (Olea, 1975).

However, the assumption of stationarity of order 2 implies the existence
of a finite variance of the measured values, var{Z(x)} = C(0). This assumption
may not be satisfied for some physical phenomena having an infinite capacity of
dispersion. Examples include gold values in South Africa gold mines (Krige,
1951), Brownian motion (Journel and Huijbregts, 1978) and some multiplicative
Markov chains (Bartlett, 1966). In this situation, a weaker assumption, the
intrinsic assumption could be applicable.

2. Intrinsic Assumption — To avoid restricting the existence of a finite
variance, required by the assumption pf stationarity of order 2, the intrinsic
assumption is made, which requires the existence and stationarity of the
variogram only. A random function Z(x) is intrinsic when, in addition to the
condition in equation [12], the increment [Z(xi) - Z(xi + h)] has a finite
variance that does not depend on X; for all vectors h. This is mathematically
written as

var {[2(x;) = 2(x; + M1 = E [2(x;) - 2(x; + W1}
for all X; within the areas [21]

substituting equation [2] gives
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2y(h) = E{[Z(x;) - Z(x; + M%) [22]

The function y(h) is the semivariogram. The reason for the prefix "semi"
is that equation [22] can be written as

¥(h) = 3 E{L2(x;) - 2(x; + WP [23]

The factor 2 was simply introduced in the definition of the variogram, 2y(h),
because the quantity that is used most is y(h) rather than 2y(h).

3. The Hypothesis of Universal Kriging — Under this hypothesis the random
function Z(xi) for every location, Xis consists of two components.

Z(xi) = m(xi) + s(xi) [24]

in which m(xi) is the drift and e(xi) is the residual error. Therefore, for
each position X;, we need to determine the drift m(xi) and have an expression
for the semivariogram of the residuals from that drift (Webster and Burgess,
1980).

Because of the arbitrary nature involved in the expression for the drift
and the amount of trial and error involved in the technique to calculate the
two components, m(xi) and a(xi), we will refrain from presenting any further
theoretical development on universal kriging. An excellent work is reported in
this respect by Olea (1975, 1977), and a good example of the application of
universal kriging is found in Webster and Burgess (1980).

If a random function is stationary of order k (k > 0), then it is also
stationary of all orders smaller than k. Consequently, if a random function
Z(xi) is stationary of order 2, then it is also intrinsic. However, the
converse is not necessarily true.

Kriging

Suppose that we want to estimate values, z*, for all the locations, Xg»
where values have not been measured, and that the estimation is to be a linear
combination of measured values. Thus,

N
z*(xo) = ;Zi Ay z(xy) [25]
1:

in which N is the number of measured values z(xi) involved in the estimation
and Ai are the weights attached to each measured value, z(xi). By taking z(xi)
as a realization of the random function Z(xi) and assuming stationarity of
order 2, the estimator becomes

N
IX(xg) = 1';1 Ay Z(xy) [26]
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Therefore, we must determine the weights, Ai, before our problem can be

solved. There are numerous ways to distribute the weights, Ai, and examples

include the inverse of the square of the distances, the inverse of the dis-
tances, and the inverse of the number of values. The best estimator must be
unbiased and must have minimum variance. This is mathematically written as

E{Z*(xo) - Z(xo)} =0 [27]
and

E([Z*(xy) - Z(xo)]z} = minimum [28]

which are the conditions of unbiasedness and of minimum variance of estimation,
respectively.
Substituting equation [26] into [27] gives

N
E{Z*(xg) - Z(x)} = B 25 Ay Z(x)) - Z(xy) =0 [29]

i=1

Applying linearity of the E operator gives
N
E{Z*(x,) - Z(x )} = 2. A, E{Z(x;)} - EfZ(x)} =0 [30]
0 0 = i 0

Substituting equation [12] into [30] and factoring like terms gives

N
E{Z*(xg) - L(xd} = m 21 Aj-1 =0 [31]
]:

Therefore, the estimation will be unbiased if

N
2 A =1 [32]
i=1

Developing equation [28] gives
EL[Z%(xy) - Z(x)1%} = E{IZ%%(xy) + Z2(xy) - 22%(xq) Z(xy)1} [33]
0 0 0 0 0 0
By linearity of the E operator,

ELLZ*(xg) - 20x1%) = E12¥20x)} + E(Z2(x)} = 2E{ZX(x)) 2(x)}  [34]
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By developing each term on the right-hand side of equation [34] individually
and using equation [26] successively, we get

E1Z*(xg)} = ELLE Ay ZOx)DP) = ELE Ay 20x)) 3 A5 2(x))} [35]
i i J
= E{Z A, A, 2(X,) Z(x.)} =323 A, A, B{Z(x,) Z(x.)} [36]
i j J i J i i"j i J

Substituting equation [13] into equation [36] results in

2

N
2 -
E{Z*°(xy)} = ‘_};1 A Aj Clx;, xj) +m (371

N
J=1
in which C(Xi’ xj) refers to the covariance function corresponding to a vector
with origin at X and extremity at xj. The second term on the right-hand side
of equation [34] is

E{2%(xg)} = E{Z(xg) Z(x, + 0} (38]

Substituting equation [13] into equation [38] results in

E(2%(x)} = C(0) + n? (391
The third term on the right-hand side of equation [34] is
E{Z*(x()Z(x)} = E{? Ay L(x;) 2(xg)} = f Ay BHZ(x;) Z(xg)} [40]
Substituting equation [13] into equation [40] results in
N 2
E{Z*(xg) Z(xp)} = ;;i Ay C(xg, Xg) *+m [41]

in which C(xi, xo) refers to the covariance function corresponding to a vector

with origin at X; and extremity at x Substituting [37], [39], and [41] into

0"
equation [34] results in

2 2

E{[Z*(x,) - Z(xo)]z} = I IA; A COx xp) + 0+ C(0) + m

L

_ _ 2
2 % Ai C(xi, XO) 2m

[42]
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or, simplified,

E([Z*(xy) - Z(xo)]z} = f i A Ay Clxgy X)) + €(0) - 2 : Ay Clxs, xg) [43]

Equation [43] is, therefore, to be minimized under the constraint that Z Ai =1
i
This minimization process can be done using Lagrangian multiplier techniques

thoroughly described in advanced calculus textbooks. In order to satisfy
equation [28], the N partial derivatives,

BLE(LZ*(xg) = Z(x)T?} = 2 1w T A{1/0A, [44]
i
are set equal to 0 (zero); p is a Lagrangian multiplier. Thus,

2 ? Aj C(xi, xj) - 2C(xi, xO) -2u =0 [45]

By canceling the factor 2 in equation [45], rearranging, and combining with

equation [32], we have the kriging system:

N
> Aj E xj) - = C(x;, %g), 1=1 to N

N
2: A, =1 [46]

The first N equations in system [46] can be rearranged into

=

Aj (x5 xj) =p o+ C(x;, Xg) [47]

Jj=1

By substituting equation [47] into equation [43], we have the minimum esti-
mation variance, oi (xo):

o (xg) = E{LZ*(xg) - Z(x)]} = 2 A+ COg xg)] + O
-2 % Ai C(xi, xO) [48]

Rearranging and canceling like terms yields

N
oﬁ (xg) = C(0) +p - ;gi Ay C(xs, Xg) [49]
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The kriging system [46] can be written in matrix notation as
[CIIA] = [b] [50]
whose solution is of the form
_ -1
(AJ = [C] “[b] [51]

in which [C] 1is the covariance matrix, or the kriging matrix in terms of
covariance, [(I]-1 is the inverse of [C], [A] is the matrix of unknown weighting
factors Ai and [b] is the right-hand side of equation [46].

In matrix notation, equation [49] becomes

oZ (xg) = €(0) - [A1*[b] [52]

in which [A]t is the transpose of the matrix of lambdas.
Suppose that N = 4. The matrix [C] is then a 5 x 5 matrix and can be
explicitly written as

C(xl, xl) C(xl, x2) C(xl, x3) C(xl, x4) 1-1
C(xz, Xl) C(xz, x2) C(xz, x3) C(xz, x4) 1
[C] = C(x3, xl) C(x3, x2) C(x3, x3) C(x3, x4) 1 [53]
C(x4, Xl) C(x4, xz) C(x4, x3) C(x4, x4) 1
1 1 1 1 0

The matrix of lambdas can be written as

m

[AT =] A [54]

- -

The right-hand side of equation [46] can be written as

— —

C(Xl’

C(xz, xO)

[b] = | C(xg, Xg) (551

C(x4, xo)
1
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If stationarity of order 2 can be assumed, then the kriging system [46]
can be written in terms of either covariance C(h) or semivariogram y(h), and
shifting from one to the other is done using the relationship between y(h) and
C(h), expressed in equation [20]. There is, however, one strong advantage in
using covariance C(h), which is related to the numerical method used to obtain
the solution of system [46]. Since the covariance function is a decreasing
function, the main diagonal contains the largest values in the matrix. This is
not true when a semivariogram y(h) is used, since all the elements of the main
diagonal in this case are zeros (0). When the diagonal elements are the larg-
est matrix coefficients, efficient Gaussian elimination procedures may be used.

However, if the intrinsic assumption expressed in equations [12] and [21]
is applicable, we can assume then the only alternative is to use the semi-
variogram function y(h). The kriging system in terms of y(h) is, then, easily
obtained by replacing C(h) in system [46] by C(0) - y(h). Thus

N
j>;1 A ¥4 X))+ i = (xg, %), T =1 to N

YA, =1 [56]

and the estimation variance oi (xo)

N
oi (xg) =mu + Z%_Ai Y(x;, Xg) [57]
]:

Cokriging

In soil science, agrometeorology, and remote sensing, very often some
variables are cross-correlated with others. In addition, some of these
variables are easier to measure than others. Examples include the saturated
hydraulic conductivity and the percentage of silt and clay in soil science,
where silt and clay content is easier to measure than saturated hydraulic
conductivity, where surface temperature is easier to measure than surface water
content and surface water content (0-5 cm) and surface temperature of a bare
soil ih agrometeorology. In such situations, estimation of one variable using
information about both itself and another cross-correlated and easier-to-
measure variable ought to be more useful than the kriging of that variable by
itself. This estimation is easily done using cokriging.

Consider a field for which two variables, z; and Z,, have been measured
with numbers of samples n and Ny, respectively. Consider also for didactical
purposes in this article only, that variable z, has been undersampled with
respect to the variable z; (n1 < nz): say z, has been sampled on a 50-m square
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grid whereas 2 has been sampled on a 10-m square grid, and for all the loca-
tions where there is a sample of Z,, there is also one of ;- Now let 2 and
Z, be defined by Zl(xli)’ i=1ton;, and 17(x?i), j=1to Ny, such that the
arguments X15 and x2j correspond to x-y coordinates as Xli = [Xli’ Yli] and x2j
= [ij, Y2j]’ respectively. In addition, Tet Zl(xli) and ZZ(XZj) be particular
realizations of the random functions Zl(xli) and ZZ(XZj)’ respectively.

With the above in mind and assuming stationarity, the first- and second-
order moments of the random functions Zl(xli) and ZZ(XZj) are, respectively,

E{Zl(xli)} =m, for all x

1 15 Within the field [58]

E{Zz(xzj)} =m, for all x2j within the field [59]
The covariance of Zl(xli) is

Cpp(h) = E{Zy (x5 + h) Zy0x )} - md [60]
The cross-covariance between Zl(xli) and ZZ(XZj) i

Clz(h) = E{Zl(XZj + h) Zz(xzj)} - mym, [61]
The cross-covariance between ZZ(XZj) and Zl(xli) is

CZl(h) = E{Zz(x2j + h) Zl(x2j)} - mymy [62]
The covariance of ZZ(XZj)

Cpp(h) = E{Z,(xy5 + h) Zy(xy)} - n [63]
The semivariogram of Zl(xli)

OEE N {e RCHRIO TR O o [64]

The cross-semivariogram between Zl(xli) and ZZ(XZj)’ which is also equal to the
cross-semivariogram between ZZ(XZj) and Zl(xlj)’ is

The semivariogram of ZZ(XZj) is

Ypph) = 3 E{[Z,(xp5 + h) = Zy(xp)17) [66]
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*
The estimator Zz(xo) is

N,

Zl(xli) + E;% A2j Zz(xzj) [67]

Ny
*
Zy(xg) = ;é; Mi

in which N1 and N2 are the number of neighbors of 2y and Z,, respectively, used
x
in the estimation of one cokriged value, ZZ(XO)’
The unbiasedness condition is

*
E{Zz(xo) - Zz(xo)} =0 [68]
and the minimum variance condition is
o2(xy) = E{[Za(xy) = Z,(x-)1%} = minimum [69]
e'”0 2'70 2'70

Substituting equation [67] into equation [68] gives

N N,
*(x) - e D AL 2 + Ny Zo(x,.) = Z(xq)p = 0
BiZy(xg) = Lp(x)b = B Qo Mgy Zy(y ) * e gy Lp(%p5) = (%)) =
i=1 1i j=1
[70]
Using the linearity of the E operator gives
*
BlZytxg) = L0)h = 2 Mgy B () ? ARSI
- E{Z,(x)} = 0 [71]
Substituting [58] and [59] into [71] gives
my ? Ay *+m, § Azj -m, =0 [72]
Factoring m, results in
my % Ali + m2[§ A2j -1]1=0 [73]
*
Therefore, the estimator Zz(xo) will be unbiased if
5
Ay, =1 [74]
IS
and
Ny
Ali =0 [75]

-
1}
—
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Now, by developing the square in equation [69] we get
* 2, _ *2 2 *
B{LZ,(xg) = Z,(xg) 17} = B{Z,7(xg) + Z5(xq) = Z,(xy) Z,(xq)
*
- Zz(xo) Zz(xo)} [76]
By applying linearity of the E operator we get
* 2, _ *2 2 _ *
ELLZ,(xg) = Z,(x)]} = E{Z,7(x)} + E{Z5(x)} = E{Z,(x0) Z,(x)}
x
- E{Z,(xg) Z,(x)} [77]

Developing each term on the right-hand side of equation [77] one by one and
substituting equation [67] in the first term results in

E12,2050)) = EiZy(xg) Zp(ig)) = EALZ Ay Zy0xg) AEACH

(2 A L0 2 Agp 2000 1) (78]
Expanding inside the brackets on the right-hand side gives us
E(2, (xg)} = B2 Ay 2y0x3) 2 gy 2y 0q) + 2 Agq 2y(xg5) 2 2y

Zy(xpg) * ? Moj Lalxgp) 2 Ay 1) * ? Moj La(xag) 2 My

Z,(xp5)} [79]
Rearranging the summations and using linearity of the E operator gives us

E1Z,2(x)} =

—_ M

2 A1i Mk B{Z (x5 Z3(xq ) + 22 A0 M

BEZy(x15) Zy(xp00} # ? 2 Agj Mk BlZp0xgp) 21001

+ ? i A2j AZQ E{Zz(xzj) Zz(xzz)} [80]
Substituting equations [60], [61], [62], and [63] into [80] gives us
E{Z2(x )} = 5 3 A Ary [Cqq(Xass xq0) + m2] + 35 Ars A
270 ik 1i "1k “11' 719 T1k 1 i 1i “22
[C1p(xqis Xpg) + mymyT + ? * Aoj Mk T Oy Xy

2
*ommy ] ? 2 Raj M [Cpp(xp5s Xpg) * M) (81]
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Multiplying inside the brackets gives us

x2 ) 2
B{Z," (xg)} 2205 M Cpalxqyn Xqd +mp 2 2 Ay A ¥

ik

>~

33 AA 0o (Xqsy Xop) +mom, 23 AL, A, 23 AL A
i 1i722712 714 “2¢ 172 i 1i ik
Coq(Xysy Xq ) +momy 3 3 A . Ay, + 23 A, A
21Y723° "1k 271 ik e

22

2
Coplxpj0 Xpg) * my R ) (82]

Substituting equations [74] and [75] into the constant terms in which mys My,

or both appear in [82] gives us
*2 _ + A
B{Zy (xp)} = 22 M5 Mk Cralaie X * 22 25 Ay C1o(x14, X99)

A

+
oM
=M

2
25 Mk C21%250 X d * J Apj Aag Coa(Xpjr Xg9) * M,
[83]

The second term on the right-hand side of equation [77] can now be expressed as
2 _ —
Substituting equation [63] into [84] for h = 0 gives us
E{z2(x )} = C,,(0) + m2 [85]
2'70 22 2

Substituting equation [67] for the third term on the right-hand side of equa-
tion [77] results in

E{Zy(xg) Z,(xp)} = ELLE Ay 230330 *+ 2 gy 2500091 Zp(xp)) [86]

Multiplying inside the bracket and using linearity of the E operator results in
E{Z;(XO)ZZ(XO)} = i A E{Z90xqp) Z(xg)} + i Ayg B{Z,(x54) Z,(xp)} [87]

Substituting equations [61] and [63] into [87] gives us

E(Zy0x0) Zp0x)} = £ Agy L3500, xg) + mymy] + 2 Ayp [Cop000 Xp) * ]
[88]
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Multiplying inside the brackets gives us

x
B{Z,(xg) Z(xp)} = 2 Ak Lr2Cae Xp) MM At 2 Ay CoplXags %g)

+ mg A
2

29 (891

By applying conditions [74] and [75] to the constant terms of equa-
tion [89], we get

* _ 2
E{Z,(xg) Zp(xg)} = 2 Mk Crolxqr %) # 2 A2 Coplxpgs Xg) + my [90]

By substituting equation [67] for the fourth term on the right-hand side of
equation [77], we get

*
EZy(xg) Zp(xg)} = E(Z(x0)IZ Ayy Z3(xyy) + 3 Ay Zp(xp9)]] [91]

Multiplying inside the bracket and using linearity of the E operator yields

E{Z,(x) Zy(x)} = £

> A E{Zp(xg) Z7(x 03 + i Aog E{Zp(Xg) Zp(xp9)}

[92]
Substituting equations [62] and [63] into [92] yields

% _ 2
BiZy(xg) Zp(xg)d = 2 AqylCoy(xgs Xy ) + mpm ]+ 2 ApalCop(xg: Xpg) * Mp] [93]

By multiplying inside the brackets, we get
*
BiZp0xg) 00k = 2 Agy Cpy(xge i) + mamy 2 Ay

+

20 [94]

2
2 Ag Coplxgr Xgg) * M 2 A
2
Applying conditions [74] and [75] to the constant terms of equation [94]
gives us

*
_ 2
E{Z,(xg) Z(x)} = 2 Mk Cor(xgr X # 2 M Coplxgs Xpg) + My} [95]

Substituting equations [83], [85], [90], and [95] into [77] gives us

2,k 2, _
op(xg) = E{LZ,(xg) = Z,(x)17} = 2205 M Cralxq5 X

A z

PR 2 A Agp Crplxg Xp) * 22 Mo M Cor(Xp5n X))

© M

2
+ C22(0) + m,

2
* ? 2 A2j Man CoalXag0 Xg0) * M
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- 2

X )

M Gl %) - 2 A2 Cop(Xpgr %g)

2
2 Mk Cp1{xgs X1 2 Ao CoplXgy Xge) = My [96]

By canceling the mg and remembering that C(h) = C(-h) and Ck k(h) = ckk'( h),
equation [96] can be rewritten as

2 _
op(xg) = HRETRETY CraCagr X * 2205 Ay Ciolxqis Xg9)

* i 2 A5 Mk Carligp X * § Z Ag5 Agg Coplxpin Xpp)
T2 E Ay Gl Xg) T2 2 Ay Cop U Xg) + Cpp() (971

Minimization of the estimation variance on equation [97] may be done by the
application of Lagrangian multiplier techniques with

2 _ _
alop(xg) - 2u, i Aygl/dh,, = 0 [98]
and
2 _ -
3lop(xg) - 2uy i Alk]/axlk =0 [99]
in which Hy and W, are Lagrangian multipliers. Equation [98] yields
22 Agq Cpp Oqe i) 2 A Crpliggn Xpe) * ? Aoz Ca1(xo50 X1
= 20X Xg) " 24y =0 [100]

By remembering the fact that ck'k(h) = Ckk.(-h) and £ is a dummy index, we can
rewrite equation [100] as

22 M Ol X)) * 2 i Aoj Crolxpie %23) = 20qp(xqyn Xg) — 24y = 0

[101]
Canceling and rearranging gives us
2 M bty Xt ? Aaj CraCxqe X250 7 My T Cpalxqp %) [102]

Equation [99] yields

2 Ay Cro(xqqr %) # 2 A 25 C22(%250 *29)

1k C21(xp50 X * 2 § A

-2 CZZ(XZQ’XO) - 2p2 =0 [103]
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or

22 25 Coa(%p50 Xp9) = Hy = CpplXpgs %) [104]

1i C12(*q40 X99) * ? A

Combining equations [74], [75], [102], and [104] yields the cokriging system

N N

1 2
Ai €140 X1 * X Apy Gl X3 7 My T Cppl*qe o)
=1 j:l

-

=z
=

1i C12(%140 X29) 25 C20(xp30 X290 7 My = CpplXpes %),

—
1}
-
(38
"
fay

8= 1,0 N,
N

AMi=0
i=1

[105]

N,

Mg = 1
J=1

Rearranging the first and second sets of equations in system [105] and sub-
stituting them into equation [97] yields the cokriging estimation variance,
2

OkZ(XO)'

N N
2 _ N N
Ta(xg) = Cpp(0) *hy =53 Ay Crplxggn Xg) = 30 Apy CopXp5s Xg) [106]
i1 £
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Solution of system [105] will yield N
Lagrangian multipliers, My and Hy

1 weights Ali’ N2 weights A2j’ and the
The cokriging system can be written in matrix notation as in equa-
tion [50]. Suppose that N2 =2 and N, = 4. Then, matrix [C] will be an 8 x 8

1
matrix and can be explicitly written as

Calapsgy) Ol CpGagug ) € 0oy ) GGk ain)) Cple ) 10 0

Cllar) Syl Claggxg) CyGaxyy)  Cllspning))  Caleauigy) 100

Cnbapey) Claagy) Claggnx ) €y Gagnngy) €0 qu)) €l gux) 100

Cptrrx) S lgexg) Cpleggexg) €y leiixg)) €l k) €Ll 10

is

[c] =

St Cplpg) Gty Cpplegxg))  Cplagpimgy)  Cplxgaxg) 01

Cralhyp®an)  Crpleppexan)  Cppleyquxgy)  Cpolxypuxag)  Conlxgpuxy))  Cpalxgguxyy) 0 1

1 1 1 1 0 0 0o o
0 0 0 0 1 1 0 0
— .
[107]

The matrix [A] of unknowns can be written as

11
12
13
14
A= | Ay [108]

22
“Hy
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The right-hand side [b] can be written as

Fb X ]

1249710
C12(%120 %)
C12(x130 %)
[b1 = | € p(xq. %p) [109]
Co2(%o1>

Cop(x9p>
0

1

Unlike the kriging system, the cokriging system can be written simply in
terms of cross-semivariogram yk.k(h) only if Ck.k(h) = Ckk.(h) (Journel and
Huijbregts, 1978, p. 326). This can be verified in practice by calculating the
two cross-covariograms Clz(h) and C21(h) and determining whether or not they
are equal. This is advisable, since the calculation of the cross-semivariogram
does not require knowledge of the means of the two variables, whereas the
cross-covariogram does require it. The decision as to how to calculate the
mean depends on the distribution function, which describes each one of the
variables and is an inconvenience, as it is one additional assumption to be
made. When Clz(h) = C21(-h) the cokriging system can be written in terms of
cross-semivariograms using the relation

Yklk(h) = Cklk(o) - Cklk(h) [110]
Notice that the cokriging system [105] was derived using Clz(xli’ X2j) using
the relation ClZ(Xli’ XZj) = C21(x2j, Xli)‘ Therefore, it should not make any
difference whether clz(xli’ xzj) or C21(x2j, Xli) is used. Notice also that

matrix [C] (equation [107]) is symmetric.

Unique Neighborhood and Neighborhood of Estimation

When the size of the data set is reasonable relative to the computer
facilities available, the entire data set may be used with the kriging
system [46] constituting (N + 1) equations, in which N is the number of values
in the data set. If matrix inversion is used on matrix [C] to obtain the
lambdas [A] (see equation [51]), then only one inversion is required for any
number of kriging estimations, Z (xo), whatever Xg within the field. This is
true because matrix [C] will be invariant with Xg» and only the right-hand side
[b] changes with g However, semivariograms and covariograms (or cross semi-
vario grams and cross covariograms) are not defined for distances h > L, in
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which L is one-half the extension of the field. Therefore, unique neighborhood
is not advised since exceeding the distance, L, is unavoidable when this
technique is made. This is the first -limitation of the estimation neighbor-
hood.

Since the weights, Ai’ decrease as the distance between Xy and X5 in-
creases, points far from Xy may be omitted without resulting in serious
consequences (Burgess and Webster, 1980a). Journel and Huijbregts (1978)
recommend a size of estimation neighborhood A(xO) that provides sufficient
screening of the data exterior to A(XO)‘ However, the meaning of "sufficient"
remains subjective until the desired precision of estimation is defined. The
precision of the estimation or the estimation variance and also the screen
effect are inversely related to the nugget effect, CO. Burgess and Webster
(1980b) found that the nugget effect makes the largest contribution to the
estimation variances even at points midway between sampling points. Vieira et
al. (1981) used the decrease of the estimation variance with the increase of
neighborhood of estimation A(xo) as a basis for selecting the ideal value of
A(xo), estimating four arbitrarily selected points; the results of this
technique may change with different choices of points estimated and may be
meaningless without tests. Other suggestions can be found in the literature,
such as the two nearest points in each octant around Xy for irregularly spaced
data (0lea, 1975) or the nearest 16 or 25 points for data sampled on a square
grid (Burgess and Webster, 1980a).

In conclusion, it appears to us that there is not a definite rule appli-
cable to all situations, and common sense added to a great deal of arbitrari-
ness is usually involved in selecting the neighborhood of estimation. The
analysis of the estimation error presented in the next section may be of use in
supporting the value A(xO) selected. The discussion above is also applicable
to cokriging, although some further and obvious complications can be expected
owing to the introduction of a second variable.

Estimation Error

Both kriging and cokriging, like any other method of estimation, involve
an error. This error is due to the fact that the variable to be estimated is
generally somewhat different from the estimated value (Journel and Huijbregts,
1978). The estimation error, e(xk), if thus defined as the difference between
the measured z(xk) and estimated z (xk) values for the same location Xy
Thus, if we have a set of n measured valuis, z(xi), we can obtain a set of n
estimated values fo: identical locations, z (xi), and then calculate a set of n
errors, e(:i) = [z (xi) - z(xi)] (Vieira et al., 1981) or n reduced errors,
r(xi) = [z (xi) - z(xi)]/ok(xi), in which Ok(xi) is the standard deviation of
estimation. It seems logical to prefer the reduced errors, r(xi), over the
estimation errors, e(xi), because the first are dimensionless and, therefore,

independent of the unit in which the measurements are expressed.
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The reduced errors, r(x.), can be considered a particular realization of
the random var1ab1e R(x ) for the point X5 The set of all random variables
R(X]) [Z (x ) - Z(x )]/S(x )} is a random function, R(xi), in which S(xi) is
a random var1ab1e correspond1ng to the standard deviation of estimation,
ok(xi). We can now make statistical inference on R(Xi) and calculate the
expectation mp = E{R(xi)} and variance og = var {R(xi)} as the two parameters
for the distribution function of the reduced errors R(Xi)' R(xi) can be
considered stationary when Z(xi) itself is stationary.

The quality of the estimation method can then be verified through two
conditions of the reduced errors (Delhomme, 1976):

1. The mean error, UMY must be close to zero.

2. Variance og must be equal to 1.

To calculate confidence intervals, some kind of two-parameter (mR and og)
distribution function must be found to describe the distribution of the reduced
errors. The normal distribution has been the one observed most often in
practice (Journel and Huijbregts, 1978).

Under the assumption of normal distribution of the reduced errors, R(xi),

a t-test can be performed on the mean error, to test the significance of

mg,
the assumption mp = 0. For the variance of theRreduced errors, it is expected
(Delhomme, 1976) to be equal to 1, and again a t-test can be performed.
Further, 95% of the reduced errors are expected to be within *2, which is
equivalent to expecting the reduced errors to follow a normal distribution
function with parameters mp = 0 and Op = 1 (Snedecor and Cochran, 1967).

The requirement of closeness to normal distribution of the reduced errors
with parameters mp = 0 and oR = 1 makes sense, since any deviation from it
would mean either systematic underestimation or overestimation.

Another option, less quantitative than the above, is to examine the plot
of paired measured versus estimated values for the same location and measure
the deviation of a regression line from a one-to-one relationship.

Some practical explanation as to how to calculate the above reduced errors
is necessary owing to the importance of the effect of the errors on the evalu-
ation of the quality of the estimation and the assumptions under which the
estimation is made. The technique is commonly called cross-validation or jack-
knifing.

Suppose we have a set of n measured values, z(xi), distrlbuted over a
field of area S, and for which an experimental semivariogram, y (h), has been
found to be adequately fitted by some model. Suppose further that for every
position, X;, we estimate a value z*(xi) and the estimation variance cé(xi)
using the n nearest neighbors of X; but not X5 itself. In other words, for
every position X;, we will pretend that the value z(x ) has not been measured
and the remaining n-1 measured values still have the same variogram y (h) As

a result, we will have the sets of n measured values z(xi), estimated values
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z*(xi), and estimation variances oé(xi), which make it possible to calculate
the reduced errors, r(xi).

A similar approach can be used for cokriging calculating the reduced
errors, R2(x21) = [Z;(x2i) - ZZ(XZi)]/OkZ(XZi)' Similar interpretations can be
obtained, such as the quality of the cokriging estimation, the quality of the
structural models used (cross-semivariograms), and validity of the assumptions
made.

We shall discuss the main aspects later using field data as examples.

DESCRIPTION OF THE DATA SETS

The number and variety of data sets used as examples are purposely large
to illustrate the different agronomic areas in which the theoretical concepts
presented above may be useful. Each variable will be referred to by a short-
hand notation for simplification of understanding and identification. Table 1
contains a 1ist of all the variables with shorthand names in alphabetical order
along with their corresponding statistical moments of interest in this paper.
In the paragraph headings that follow, reference is given to the source of the
corresponding data sets. The reader is encouraged to consult the sources of
the data for details not mentioned here.

Remote Sensing--Vieira and Hatfield (1982)

During the winter growing seasons of 1976-77, 1977-78, and 1978-79, air
temperature (TA77, TA78, TA79) and surface temperatures (TS77, TS78, TS79) were
measured daily on the bare soil of a field at the University of California,

Davis. Other variables measured are analyzed elsewhere (Vieira and Hatfield,
1982). Air temperature (TA) was measured using a standard meteorological
thermometer, and surface temperature (TS) was measured using hand-held infrared
thermometers. A1l measurements were made within 15 minutes of 1330 PST. The
main objective of the experiment was to quantify the temporal variability of
these measurements for remote sensing purposes and to use the autocorrelation
for individual measurements with time and the cross-correlation between them to
define frequency of sampling.

Variables TA and TS are one dimensional, where the coordinate is time in
days, beginning in late November and ending in late April for 1976-77 and
1978-79 and in June for 1977-78. C(limatologically, temperatures in 1976-77 and
1978-79 were close to the normal average and those in 1977-78 were higher than
normal.
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Soil Classification--R. B. Grossman (personal communication)

In an intensive and detailed soil survey at the Agronomy Research Center,
Boone County, Missouri, several variables normally researched in soil surveys
were measured from September through December 1977. The data used in this
paper come from field H, blocks 3a, 3b, 4a, and 4b. The variables used were
the depth (inches) to an estimated 40% clay (GRDEPTH) and the percentage of
clay in the plow layer as estimated by finger examination (GRCLAY). The
sampling grid was irregular. Basic distance was 35 ft: some samples were
separated by only 25 ft, some were farther away, and at some points samples
were missing. The measurements for clay percent were made on only some
stations to provide evaluation for delineations, and no measurements of this
kind were made on blocks 3a and 4b. Block 4a had more samples than block 3b

Table 1. List of variables with their respective statistical moments.

Coeffi-
Variable Number cient of
name of samples Mean Variance variation Skewness Kurtosis

GRCLAY 74 23.97 5.810 0.1005 0.1704 2.331
GRDEPTH 484 13.91 5.430 0.1675 0.5428 4.368
MONIT 224 1.89 0.96x10-2 0.057 0.4270 2.428
MOYLD 224 680.70 7729.000 0.1291 -0.1566 4.413
TA77 150 16.99 29.950 0.3220 -0.0385 2.515
TA78 224 19.03 37.640 0.3225 0.7092 3.001
TA79 142 15.89 24.450 0.3110 0.4838 2.971
1577 150 26.28 89.290 0.3595 0.2149 2.170
1578 224 25.36 195.300 0.5510 0.7529 2.612
TS79 142 19.11 121.700 0.5774 1.0890 3.466
WAAMSU1 81 5.03 2.220 0.2962 -0.4562 2.850
WAAMSU2 81 2.81 1.449 0.4292 0.5763 3.422
WABLOD1 81 20.93 32.980 0.2744 0.3637 3.508
WABLOD2 81 10.71 30.720 0.5173 0.6977 2.912
WACADA 100 1.12 0.019 0.1216 2.7570 18.090
WACAOK 100 0.43 0.013 0.2648 1.4310 6.567
WAIN281 81 3.54 1.196 0.3174 -0.3833 2.576
WAIN282 81 1.42 0.292 0.3810 1.3170 6.736
WANIDA 100 ].00x10-1 8.87x10-5 0.0937 0.0142 2.951
WANIOK 100 3.26x10-1 5.27x10-5 0.2225 1.689 7.173
WASOIL1 81 2.75 0.812 0.3279 0.900 5.587
WASOIL2 81 0.74 0.137 0.4977 1.414 5.344
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over approximately the same areas. For these reasons, we used only block 4a
for clay percent and the entire blocks 3 and 4 for depth to an estimated 40%
clay.

Agronomy--Montgomery (1913)

The data used from the agronomy experiment constitute nitrogen percentage
in the grain (MONIT) and yield of grain (MOYLD) from a field experiment
involving turkey wheat. The author (Montgomery, 1913) was concerned with
experimental error and variation and objectively suggested questions such as
"Why should one plant, growing under practically the same environment as
another, collect from the soil two or three times as much nitrogen?" or "Why
should two plants yielding different quantities of grain collect the same
quantities of nitrogen?" In an attempt to answer these questions, a field of
77 x 88 ft with a 5-ft margin outside was sown with turkey winter wheat. After
a secured uniform stand and growth, the field was divided into 224 blocks of
5.5 x 5.5 ft each at harvest. The harvest of each block was recorded and a
composite sample from each block was analyzed for total nitrogen.

Nitrification in Soil--Waynick (1918)
On October 20, 1917, soil samples were collected from a selected field on

the University Farm at Davis (now the University of California, Davis)
at Tlocations shown in Fig. 2 (Waynick's Fig. 1). During the three preceding
years, corn, Sudan grass, and grain sorghum had been grown (in the order
named), and the field was kept bare during 1917 and free of any vegetation when
the samples were taken. The soil surface was practically air-dry, since no
rain had fallen since April, but the subsoil was quite moist. The area chosen
was apparently uniform in texture and color level, and free of small depres-
sions. Samples were taken from the surface (1-6 in) and subsoil (6-24 in).
The surface samples were taken with a trowel, and an area approximately 6 in.
in diameter was included in each sample. Subsoil samples were taken with a 3
in. auger. Samples were placed in sterile soil bags and shipped to the
laboratory at the end of the sampling. After air-drying and sieving, four
100-g portions of each sample were weighed and placed in tumblers. One tumbler
from each sample was reserved for the determination of the residual nitrate
(WASOIL1 surface and WASOIL2 subsoil). To a second, no nitrogen compounds were
added (WAIN281 and WAIN282); to a third 0.2 g of ammonium sulfate (WAAMSUl and
WAAMSU2) was added; and to the fourth, 1 g of dried blood (WABLOD1 and WABLOD2)
was added. The last three tumblers were brought to an optimum moisture and
incubated for 28 days at 28°C, after which the nitrate was determined colori-
metrically.
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Soil Nitrogen and Carbon--Waynick and Sharp (1919)

Figure 3 shows the diagram of the areas sampled showing the locations from
which the samples were taken and the sample numbers (Waynick and Sharp's
Fig. 1). Two fields in California were sampled: one on the University Farm at
Davis from a silty clay Toam soil and the other near the town of Oakley from a
blow sand. The fields were selected for their apparent uniformity and were
free of vegetation at the time of the sampling. Samples were taken with a
3-in. auger and analyzed in the 1laboratory for nitrogen (WANIDA-Davis and
WANIOK-Oakley) and carbon (WACADA and WACAOK). Results are given as percent.

The coefficients of skewness and kurtosis are presented in Table 1 for
comparison with a normal distribution, in which these coefficients are 0 and 3,
respectively. We have no intention of finding the exact distribution function
for the variables studied, nor do we present a test of significance between
calculated and theoretical coefficients, which are beyond our objectives. The
majority of the variables in Table 1 approximate a normal distribution as shown
by the coefficients of skewness and kurtosis. Some (WACADA, WANIOK, and
WACAOK) have a very high coefficient of kurtosis and, therefore, an excess of
values near the mean and far from it, resembling the manner in which the
t-distribution departs from the normal (Snedecor and Cochran, 1967, p. 86).
Our intent is to call attention to the fact that most of the variables approxi-
mate a normal distribution, and yet all except three, have adequate structure
and therefore are not independent. As was stated in the Introduction, normal
distribution of observations is commonly confused with independence between
them.

RESULTS AND DISCUSSION

Semivariograms
Semivariograms can be calculated easily using hand calculators or a

computer program capable of computing Eq. [12]. The semivariogram programs
GAMA1D and AVARIO, listed in Appendices Al and A2, respectively, constitute a
very simple algorithm for performing Eq. [12]. The program GAMA1D can be used
for only one-dimensional variables, such as transects or time-variable data.
The program AVARIO can be used for either one- or two-dimensional variables;
when that program is used for two-dimensional variables, the average semi-
variogram for all directions is computed. Semivariograms for specific direc-
tions can be calculated usina the program MAREC2 (David, 1977, p. 149) or
program GAMA3 (Journel and Huijbregts, 1978, p. 224). The parameters for the
models fitted to each semivariogram are shown in Table 2, where the variables
are in alphabetical order.
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Table 2. Parameters of semivariogram models. Gamma is the kind of model

that best fit the experimental semivariogram.

Variable

name Gamma C0 C1 Range Sill
GRCLAY spherical 1.80 6.40 550.0 ft 8.20
GRDEPTH  spherical 3.00 2.70 300.0 ft 5.70
MONIT linear 8.8x10™3 5.57x107°  21.0 ft 0.01
MOYLD spherical 4000.00 4000. 00 20.0 ft  8000.00
RTA77 spherical 0.00 12.00 8.0d 12.00
RTA78 spherical 0.00 8.00 4.0d 8.00
RTA79 exponential  0.00 8.50 9.0 d 8.50
RTS77 spherical 10.00 25.00 6.0 d 35.00
RTS78 spherical  20.00 24.00 3.0 d 44.00
RTS79 spherical 10.00 25.00 8.0 d 35.00
WAAMSUL  Tinear 1.80 0.012 33.0 ft 2.20
WAAMSU2  spherical 0.00 0.35 27.0 ft 0.35
WABLOD1 ~ ===--========-mmmmmo- NUGGET EFFECT----mmmmmmmmmmmmmee
WABLOD2  spherical 11.00 20.00 27.0 ft 31.00
WACADA ~ =====-mm=mmmmmmmmeoen NUGGET EFFECT---m-=m=mmmmmmmmmmn
WACAOK spherical 0 9.5x1073 75.0 ft 9.5x1073
WAIN281 ~ —====-====mommmmmmoooe NUGGET EFFECT---=mmmmmmmmmmmmme
WAIN282  Tlinear 0.125 5.8x10 3 30.0 ft 0.30
WANIDA linear 1.11x107° 5.4x1077  143.0 ft 8.9x107>
WANIOK  spherical 0 4.1x10"°  90.0 ft 4.1x107°
WASOIL1 spherical 0 0.85 10.0 ft 0.85
WASOIL2  spherical 0.013 0.127 30.0 ft 0.14

1. One-Dimensional Problem

The air and surface temperatures (TA and TS) measured over the winter
growing season are an example of a one-dimensional problem in which the coor-
dinate is time in days. The semivariograms for TA and TS for the three years
are plotted in Figs. 4a and 4b, respectively. One common point about these
semivariograms is the linear increase but not Tleveling to a sill. The only
one that shows an apparent sill is that for TA77 (Fig. 4a, unbroken line): the
sill occurs around h = 30 and extends to about h = 60 days. However, another
abrupt increase takes place after that. The experimental semivariogram should
become level or fluctuate at the sill value up to at least one-half the length
of the series of measurements; otherwise drift or nested structure could be
present in the data. Now, one-half the length of TA77 is 75 days, which
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suggests the presence of drift. Similar to the semivariogram estimation, the
drift can be estimated by

1 N(h)
D*(h) = ) igl [z(i) - z(i+h)] [111]

The drifts for TA and TS for the three years are plotted in Figs. 5a and
5b, respectively. The negative sign of the drifts shows that all these
measurements increase with time. This is not surprising since the measurements
start in late November, generally with low temperatures in Davis, and end late
in May with higher temperatures. This is commonly called seasonal trend, but
we prefer to refer to it as drift to avoid ambiguity. The main reason drifts
are undesirable in a data set like this is that the seasonal variation is quite
well defined and can be inferred from net radiation measurements. However, the
variation at short scale is not known and is important in designing sampling
frequency for these measurements. The plot of the spectral density function,
the Fourier transform of the autocorrelation function, showed that the period-
icity in this data exists only at low frequency (Vieira and Hatfield, 1982).
For this reason, we decided to use a moving average with a large number of
points to follow the seasonal variation of these measurements, and a 29-point
moving average appeared to be the shortest able to do that. A 29-point moving
average avoided the shorter intervals which would be affected by frontal
passage and daily weather. Once we had the moving average, we calculated the
residuals by subtraction (RTA and RTS). The statistical moments of the RTA and
RTS for the three years, shown in Table 3, again approach normal distribution.
The high coefficients of variation come from the fact that the mean values are
very low, since the residuals are monthly fluctuations from zero.

The semivariograms for RTA and RTS for the three years are shown in Figs.
6a and 6b, and the corresponding drifts are shown in Figs. 7a and 7b, respec-
tively. Now, the semivariograms have a sill although with a pronounced
fluctuation from the sill value, mainly for RTA77 and RTS78. The drifts shown
in Figs. 7a and 7b are no longer as pronounced and steady an increase as that
for TA and TS (see Figs. 5a and 5b). This is true mainly for 1978 for both
temperatures, meaning that the 29-point moving average removed the drift more
completely for TA78 and TS78 than for the other years.

Table 2 shows the parameters for the models fitted for these semivari-
ograms. A spherical model describes all semivariograms except that for RTA79,
which required an exponential model. The ranges of these variograms are an
indication of the ideal frequency for sampling. Although more research is
needed to support these results over more years, it seems that generally both
air and surface temperatures could be sampled every two days and estimated for
every day by kriging. This represents a decrease in the number of samples by
one-half, which is encouraging from our point of view.
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2. Two-Dimensional Problem

Except for the air and surface temperatures, all variables used in this
paper are in two dimensions: the measurements come from an area in a given
field. That means that for each data point, x and y coordinates are attached,
and magnitudes depend on an arbitrarily fixed point.

The semivariograms for GRDEPTH and GRCLAY are shown in Figs. 8a and 8b,
respectively. A spherical model fits almost exactly to the one for GRDEPTH
(Fig. 8a), with a nugget effect of 3.0, a range of 300 ft, and a sill of 5.7.
The semivariogram for GRCLAY shows a sill that is higher than the variance of
the observations. For this reason, it may be safer to restrict the approach to
the intrinsic hypothesis, since a finite variance may not exist.

Figures 9a and 9b show the semivariograms for MONIT and MOYLD, respec-
tively. The nitrogen in the grains of turkey wheat have a weak and unclear
structure (Fig. 9a), whereas the one for the yield is much better described
with a spherical model. A tentative linear model was fit to MONIT, and the
parameters can be found in Table 3.

The semivariograms for WASOIL2 and WABLOD2 shown in Figs. 10a and 10b,
respectively, have a low nugget effect and clearly defined sill, with ranges of
approximately 30 feet; spherical models describe them reasonably well. Some
periodicity may exist in the data, as shown in Figs. 10a and 10b by a peak in
the semivariograms at about 20 feet.

Nitrogen and carbon measured on identical grids in Davis and Oakley have
very different semivariograms, as shown in Figs. 1la, 11b, 12a and 12b, respec-
tively for WANIDA, WACADA, WANIOK, and WACAOK. In Fig. 1lla, the semivariogram
for WANIDA shows a linear increase with distance without a sill, resembling the
semivariograms for surface temperature shown in Fig. 4b, in which a strong
drift was found, as shown in Fig. 5b. However, it is more difficult to deter-

Table 3. Residuals of air temperature (RTA) and surface temperature (RTS) and
their statistical moments.

Coeffi-
Variable Number cient of
name of samples Mean Variance variation Skewness Kurtosis

RTA77 122 0.0457 11.47 74.14 0.1820 2.252
RTA78 196 0.1253 8.65 23.47 0.3457 2.710
RTA79 114 0.0582 8.38 49.35 0.0726 3.062
RTS77 122 0.2264 31.77 24.90 0.3867 3.696
RTS78 196 0.2313 43.50 28.51 0.5324 3.708
RTS79 114 0.1379 32.51 41.34 -0.0015 3.889
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mine the significance of a drift in two dimensions than in one dimension,
mainly because the calculation of an average drift for all directions is
meaningless. Examination of the drift calculated for a fixed direction is
useful for only that direction. We calculated semivariograms and drifts for
the four main directions: zero, 90, 45 and -45 degrees, were zero degrees is
parallel to the x-axis. These calculations revealed isotropy up to approxi-
mately 50 feet and no drift for any of the four directions calculated. There-
fore, we can conclude that those measurements of nitrogen in Davis do not have
a finite variance and are not second-order stationary. In Fig. 1lb, the semi-
variogram for WACADA shows an unclear structure, which we consider a pure
nugget effect. The semivariograms for WANIOK and WACAOK shown in Figs. 12a and
12b, respectively, have a sill that is smaller than the variance. Spherical
models were fitted to them, and the parameters are shown in Table 2.

The next six semivariograms are examples of difficult situations in which
it is not clear whether a structure exists. Figs. 13a, 13b, and 13c show the
semivariograms for WASOIL1, WABLOD1l, and WAIN281 respectively, and Figs. ‘14a,
14b and 14c show those for WAAMSUl, WAAMSU2, and WAIN282, respectively. The
semivariograms in Figs. 13b and 13c are probably pure nugget effect. The one
in Fig. 14c is not clear enough to allow for any assumptions. In short, the
only one that has a more or less clear spherical structure is the one for
WAAMSU2, shown in Fig. 14b.

A1l of the above two-dimensional semivariograms have been calculated using
the computer program AVARIO listed in the Appendix.

Cross-Semivariograms

A1l the cross-semivariograms have been calculated using the computer
program XGAMA listed in the Appendix, without distinguishing between one- or
two-dimensional problems, since calculation of a drift when mixing two vari-
ables is meaningless.

1. One-Dimensional

The cross-semivariogram calculated for the raw values of TA and TS for the
three years 1977-79 are shown in Fig. 15, and the corresponding ones for the
daily residuals from a 29-point moving average are shown in Fig. 16. The
cross-variograms in Fig. 15 are apparently linear without manifesting a sill
For all practical purposes, the cross-semivariograms for the residuals shown in
Fig. 16 for the three years should fit one spherical model. This kind of
result we consider especially desirable for future research.

2. Two-Dimensional

A linear model describes the cross-semivariogram for GRCLAY vs. GRDEPTH,
shown in Fig. 17, although a very low correlation coefficient was found between
these variables. Figure 18 shows the nitrogen content of the turkey wheat
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grains to be negatively correlated to yield, although the negative correlation
was low, and the cross-semivariogram was not very well defined. For variables
having an unclear cross-semivariogram such as these, not much gain can be
expected using cokriging instead of kriging. This will be illustrated by the
contour maps of measured-plus-kriged and measured-plus-cokriged values.

The amount of nitrate produced from the addition of 0.2 g of dried blood
to 100 g of subsoil (WABLOD2) seems to be well correlated to the amount of
nitrate existing in the subsoil itself, judging from the spherical cross-
semivariogram in Fig. 19. The peak at around 20 feet in Fig. 19 is more
pronounced than that found for the semivariograms of each variable shown in
Figs. 10a and 10b. We do not have a clear explanation for this fact.

Nitrogen and carbon appear to be well correlated for both the Davis and
Oakley soils, as shown by the correlation coefficients in Table 4 and Figs. 20
and 21. The two cross-semivariograms are almost identical in shape, even
though carbon in Davis had no clear structure. This is a very important
result, since for the variable WACADA, the only choice of geostatistical
estimation we have is cokriging.

One. point in common to all the cross-semivariograms above is the low
nugget effect, which reflects the continuity of one variable with respect to
the other on a small scale.

Kriging and Cokriging

Five variables were used as examples for the estimation methods used in
this article: GRCLAY, WABLOD2, MOYLD, WACAOK, and WACADA. The contour maps
for the estimation variance of cokriging are shown as an illustration of the
different sampling schemes. Contour maps for the original values are shown in
Figs. 22, 23, 24, 25, and 26, respectively.

Table 4. Parameters of the cross-semivariograms. Gamma is the model that best

fit the experimental cross-semivariogram.

Z1 Z2 Gamma C0 C1 Range Sin r
GRDEPTH  GRCLAY  linear 0.25  3.3x10°>  600.0 ft  2.25  0.1406
MONIT ~ MOYLD  spherical 0 -1.20 25.0 ft  -1.20  -0.1200
RTA77  RTS77  spherical 2. 10.00 0d 12.50  0.5453
RTA78  RTS78  spherical 4.0  10.00 .0 14.00  0.6739
RTA79  RTS79  spherical 2.5  10.50 7.0d 13.00  0.7815
WASOIL2 WABLOD2  spherical 0 0.55 30.0 ft  0.55  0.3832
WANIDA  WACADA  Gaussian 0 5x10”3 57.7 ft  5x107  0.5531
WANIOK  WACAOK  Gaussian 0 ax10”% 4.2 ft  4x10°%  0.7410
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Since GRCLAY was originally measured on an irregular grid, we estimated
values to regularize the grid to 35 x 35 feet. The contour map for the
measured-plus-kriged values is shown in Fig. 22, and the one for measured-plus-
cokriged values is shown in Fig. 22. These maps show that the addition of
kriged or cokriged values produced identical maps. Thus there is no gain in
applying cokriging instead of kriging, so kriging should be preferred because
it is easier. This is no surprise, since the correlation between GRDEPTH and
GRCLAY 1is only 0.14 (Table 4), and the cross-semivariogram between these two
variables is not very well defined (Fig. 17).

The contour map for the estimation variances of cokriging is shown in
Fig. 22. This map does not add much to the interpretation of the ones for
kriged or cokriged values, except for the fact that the locations were samples
far from each other and had higher estimation variances (Fig. 22). Since the
sampling was irregular, the map for the estimation variances also has little
pattern. It will be interesting to compare this map with the one for other
sampling schemes. Comparison between contour maps for kriged (Fig. 22) or
cokriged (Fig. 22) does not reveal significant differences, except for the left
top corner, where very few measurements were taken. This is exactly the area
that shows the highest estimation variances. Obviously, if an increase in
precision of estimation is sought, more samples should be taken in this area,
decreasing the spacing between samples. Addition of other contour levels did
not improve the appearance of the above maps, which is why they are shown as
they are.

The contour maps for measured, kriged-plus-measured, and cokriged-plus-
measured values and cokriging estimation variances for MOYLD are shown in
Figs. 23a, 23b, 23c, and 23d, respectively. MOYLD contained only part of the
original data set, with measurements considered only on an 11-foot-square grid.
This was done to examine the effect of cokriging using the correlated variable
MONIT, with the complete data set on a 5.5-foot-square grid. The contour maps
for kriged and cokriged values, however, are practically identical, again
reflecting the poor correlation between the variables. Both kriged and
cokriged maps, however, are different from the one for the measured values
alone. The high estimation variances shown in Fig. 23 reflect the high nugget
effect of the semivariogram for MOYLD (see Table 2 and Fig. 9b). Because MOYLD
had a high variance of 7729, estimation variances should be expected to reflect
this value. The regions on the map in Fig. 23d with longer contours with label
6900 correspond to the regions in which MOYLD changes the fastest with dis-
tance, as shown by the posted numbers in Fig. 23a.

Figures 24a, 24b, 24c, and 24d show the contour maps for measured,
measured-plus-kriged, measured-plus-cokriged, and cokriging estimation vari-
ances, respectively, for WABLOD2. Little difference is found between kriged
and cokriged maps, except that the cokriged maps seem to be slightly smoother
than the kriged. However, both estimated maps are very different from the map
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for measured values alone. Both kriging and cokriging estimations were made
every 5 feet for the entire area covered in the maps, and since the original
sampling was made in 8 radii, the areas between the extremes of the radii away
from the center have very few measurements. Again, those are the areas in
which the estimation variances are the largest, as shown in Fig. 24c for the
cokriging estimation variances. Except for its curious appearance, this map
does not show much information, since this pattern should always be expected
for this kind of sampling pattern.

Figures 25a, 25b, 25c, and 25d show the contour maps for the measured,
measured-plus-kriged, measured-plus-cokriged, and cokriging estimation variance
values, respectively, of WABLOD2. Both kriging and cokriging estimations were
made for every 15-foot interval. Little difference is noticed between the map
for estimated values and either of those kriged or cokriged and the map for the
measured values. The reason for that is probably the large number of meas-
urements. In Fig. 35d, only three contour levels were used: 0.0030, 0.0035,
and 0.0040. The five areas with contour level 0.0030 correspond to areas more
intensive]& sampled, with a sampling distance between 10 and 15 feet. The
oval-shaped contours are the 0.0035 levels and correspond to the areas exactly
around the measured values on a 30-foot-square grid. The diamond-shaped con-
tours are the 0.0040 levels and correspond to areas in between measured values,
where the distance between measured and estimated values was the greatest.

The semivariogram model used for the kriging estimation to obtain the
contour map in Fig. 25b had a pure nugget effect, with the value equal to the
calculated variance, 0.019. With this model the solution of the kriging system
produces identical weights for any neighboring distance. The similarity of the
kriging to the cokriging map is attributed to the low correlation between
WANIDA and WACADA. We believe that if the number of samples of WACADA were
smaller, with larger sampling distances compared with WANIDA, these maps would
be significantly different. We can cokrige WACADA using its nugget semivario-
gram, the semivariogram for WANIDA, and the cross-semivariogram between them,
even though WACADA itself was randomly distributed in space, which means that
we can decrease the number of samples for a variable difficult to measure (even
if the variable has no structure) and still cokrige, provided the correlated
variable has adequate structure and cross-structure.

The contour maps for the measured, kriged-plus-measured, and cokriged-
plus-measured values of WACAOK, shown in Figs. 26a, 26b, and 26c, respectively,
are quite different from each other, which reflects the correlation between
WANIOK and WACAOK of 0.74 and their structures and cross-structures, shown in
Figs. 12a, 12b, and 21. The discussion for the estimation variance contour map
in Fig. 25d is also applicable to the one in Fig. 26d for WACAOK.

The kriging estimations were done using the computer program KRIGE and the
required subroutines, listed in Appendix A4. Similarly, the cokriging estima-
tions were made using the computer program COKRI listed in Appendix A5.
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Estimation Error and Neighborhood of Estimation

The "jackknifing" procedure described earlier was used to aid in selecting
size of the neighborhood of estimation and validation of the assumptions under
which the estimations were made. As an example, the results from "jackknifing"
WACAOK with increasing neighborhood size are shown in Table 5. Ideally, when
this kind of calculation is done, the mean reduced error is zero and the
variance of the reduced error is one (Delhomme, 1976). However, when the
estimation variances are less than one, the variance of the reduced errors may
become large and different from 1. An alternative is to use the absolute
error: the mean should be close to zero and variance should be small enough to
allow for 95% of the error within m * 208 (Journel and Huijbregts, 1978, p.
49). This is the same as requiring the estimation errors to be normally
distributed. A third alternative is to examine the linear regression Tline
between measured and estimated values, and as the slope approaches one and the
intercept approaches zero, the ideal situation is being achieved. However, the
third alternative really has no basis, since all that either kriging or cok-
riging is required to do is to be unbiased and to have a minimum variance.
That only means that the estimated values need to be equal to the measured
values on the mean and the variance of estimation must be the minimum, but
point-to-point agreement is not guaranteed.

In Table 5, except where indicated, the neighborhood used was based on a
fixed number of neighbors. An overall judgment of the results in Table 5 using
the concepts above reveals that the results seem to be best when four neighbors
are used for each estimation, although not very much difference is found when
other numbers of neighbors are used. When all neighbors within 30 feet were
used, the results were a little better than those with four neighbors. We have
not always found this result when using a completely regular square grid,
since, for the regions away from the edges of the field, the two neighborhood
choices produce identical results. At the edges, however, fewer neighbors are
used in each estimation when a fixed neighborhood distance is used, as compared
with the number of neighbors. 1In this sense, for a completely regular square
grid, a number of neighbors that is a multiple of four (4, 8, 16, 32, etc.)
seems to produce better results than the corresponding distance neighborhoods.
If WACAOK were sampled on a completely regular square grid, then all neighbors
within 30 feet, or four neighbors would be identical neighborhoods, since the
basic sampling distance was 30 feet.

The fact that there are five clusters of measurements in the field at
distances closer than 30 feet may have given the distance neighborhood some
advantage over number of neighbors. For irregular grids of sampling, such as
for GRCLAY, or even the radial sampling for WABLOD2, a neighborhood based on a
fixed distance is quite impractical for programming purposes. The reason for
that is the difficulty to predict the number of neighbors for a given point,

causing difficulties in dimensioning the matrix system. However, it is equally
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difficult to predict the distances over which neighbors are located when fixed
numbers of neighbors are used. Moreover, a neighborhood based on a fixed
number of neighbors is not easily interpreted from the physical sense, because
the kriging and cokriging systems constitute the semivariogram and cross-
semivariogram values computed for specified distances, not number of neighbors.
In short, what is easily programmable does not make much physical sense, and
what makes physical sense is not easily programmable unless for idealized
situations such as a completely regular square grid.

The calculations contained in Table 5 show the effect of the number of
neighbors on the estimations and serve as an example of the neighbor effect.
Also shown in Table 5, that the results produced from cojackknifing WACAOK with
four neighbors of each WANIOK and WACAOK are better than any jackknifing
results.

A11 variables estimated or used in estimation in this article were subject
to the procedure above until the best and smallest neighborhood could be
selected.

SUMMARY AND CONCLUSIONS

A long and detailed theoretical development was necessary for the reader
to understand what kriging and cokriging equations are and how they can be used
effectively. To illustrate the theory, a wide variety of data sets was used as
practical examples using field data from many agronomic disciplines such as
remote sensing, soil science, and agronomy.

Semivariograms calculated for a variety of data sets such as surface
temperature, yield of turkey wheat grains, and carbon percentage of the soil,
obtained from a variety of sampling schemes, such as transect, regular square
grid, and radial direction, had ranges from a few meters to more than 100
meters, even though many of these variables approach a normal distribution

Removing the regional drift from air and surface temperature data with a
29-point moving average rendered the residual correlated to around 5-6 days and
enabled the design of frequency for sampling to allow for estimation at any
desired finer interval. The semivariograms of the residuals had a reasonably
defined sill and the drifts computed for the residuals were practically
negligible. Semivariograms for the residuals for different years were somewhat
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different, having different ranges, nugget effects, and sills, most Tlikely
owing to extreme climatic changes for the years analyzed. The 29-point moving
average removed the seasonal drift better for 1978 than for the other two
years. The reason for this has not been completely identified, but the winter
season of 1978 had higher temperatures than the other two years, which may have
caused this difference. The cross-semivariograms between the residuals of air
temperature and the residuals of surface temperature follow one single spher-
ical model closely. This is a desirable result that needs more research for
verification. If after some years of experimentation the same relationship is
repeated, the cross-semivariogram can be catalogued for those experimental
conditions and can be used with high confidence for sampling design and estima-
tion of unrecorded data.

Soil survey variables had a strong spherical structure with ranges within
300 feet. The cross-semivariogram between depth to 40% clay and clay percent
of the plow layer had a linear structure with a range of 600 ft even though the
classical correlation coefficient between the two variables was not very high.

Semivariograms for nitrogen content of turkey wheat grains and yield of
grains had good structure, with ranges of approximately 20 feet. The cross-
semivariogram between these variables had a negative spherical structure with a
range of 25 feet. The negative structure does not make much sense, because in
general it is not expected that as the nitrogen content of the grains in-
creases, the yield of grain decreases. This was in fact part of the thought of
the author (Montgomery, 1913).

Soil nitrate data obtained from samples collected in Davis, California, by
Waynick (1918) in a radial sampling scheme (see Fig. 2) produced semivariograms
and cross-semivariograms in general not well defined for detecting presence of
structure. The causes have not been identified and are not thought to be
related to the sampling scheme. On the other hand, carbon and nitrogen con-
tents of the soils of Davis and Oakley have very well defined structure and
cross-structure, except for carbon in Davis which showed a pure nugget effect.
Semivariograms and cross-semivariograms for carbon and nitrogen in Oakley
samples had very similar structures which probably differ only by a constant.
Another curious point is that the cross-semivariograms for nitrogen and carbon
in Davis had structure, even though the semivariogram for carbon itself showed
a pure nugget effect.

Contour maps were drawn for GRCLAY, MOYLD, WABLOD2, WACADA, and WACAOK for
measured values alone, kriged-plus-measured values, cokriged-plus-measured

values, and estimation variances of cokriging. The contour maps for estimated
values are generally different from the ones for measured value alone, which is

caused by the addition of unbiased estimated values. However, the contours
obtained for kriged-plus-measured values are identical to the ones obtained for
cokriged-plus-measured for all variables except WACAOK. For those variables,
therefore, there is no gain in using cokriging instead of kriging. For WACAOK,
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however, the three maps are different from each other, reflecting the good
correlation between WANIOK and WACAOK. The contour maps for the estimation
variances generally show what common sense would indicate: high variances for
the locations at which samples are far from each other, and low variances for
those close to each other.

Jackknifing has been shown to be useful as a guide in the choice of
estimation neighborhoods and in validation of assumptions made. This procedure
should be used routinely before any estimation is made.

From our view, future research should be moving toward measuring field
variables for different environmental conditions, including the soil itself,
and computing semivariograms and cross-semivariograms, which we hope will show

results similar to the ones shown in Fig. 16 for many years of experiments.
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Figure 24a
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Figure 25c
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APPENDIX

A. Computer Programs

GAMA1D--Semivariogram in one-dimension.
AVARIO--Average semivariogram.

XGAMA--Average cross-semivariogram.

KRIGE--Kriging program.

COKRI--Cokriging program.

CORSP--Spectral analysis program.
SUBROUTINES--Called by KRIGE, COKRI, and SPECT.
NBHOOD--Selects the neighborhood of estimation.
KRIX--Builds the kriging system.

N OO s w N =

COKMS--Builds the cokriging system.
SIMQ--Solves a linear system.
REG--Calculates the jackknifing parameters.
CIV--Calculates gamma and x-gamma values.
SORT--Sorts neighbors by distance.

JTQ —H ®©o o O T o

AUTO--Calculates autocorrelation function.

—

SPECT--Calculates spectral density.

© 1983 by The Regents of the University of California.
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