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and Surface Water"

I. INTRODUCTION

DEVELOPMENT OF water resources has
largely become the responsibility of
public institutions. Within some areas
of the economy, it would appear that a
large divergence between net social and
private benefit exists; water resource de-
velopment is one of these areas. There-
fore, private enterprise lacks adequate
incentive to undertake many invest-
ments in water resources which are
justified from the point of view of wel-
fare economies. This has led to extensive
governmental activity in the develop-
ment of our water resources.

Public agencies responsible for allo-
cating investment funds are faced with
an extremely complex problem. A pub-
lic agency cannot rely entirely on mar-

Many factors which are taken as fixed
by a private firm become variables for
a public agency. An example is the
quantity of ground water in storage.
For an individual firm, the amount of
water it withdraws from storage has a
negligible influence on pumping costs in
subsequent years. But a public agency
formulating an optimal ground water
inventory policy must evaluate the ef
fect of present withdrawals upon future
pumping costs.

‘With millions of dollars being spent
each year in water resource develop-
ment and considering the complexities
in the optimal allocation of these funds,
research on efficient methods for mak-
ing investment decisions in this area

ket values and dollar measures of out- will bring high returns.
comes resulting from various choices.
OBJECTIVES

The present study is concerned with
only one phase of investment decisions.
To place this research in the over-all
public investment problem, an echelon
of decisions associated with public in-
vestment is defined. The first level of
decision concerns the quantity of funds.
to be allocated for public investment as
opposed to private investment. The see-
-ond level is deciding how a fixed
amount of funds available for public

! Submitted for publication, December 3, 1963.

investment is to be divided among vari-
ous broad categories of outlets such as
eduecation, national defense, and water
resources development. The third level
is allocation of limited funds for water
resources development among potential
water resource projects. A fourth level
of decision is determining the optimal
design or physical structures for a spe-
cific project. Finally, the fifth level of
decision is optimal management of

[31]
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water over time. We are primarily con-
cerned with this last type of decision
under conditions of eonjunective use of
ground and surface water.

The question for which we try to
help provide an answer is: given physi-
cal storage and distribution facilities
for water, how can present value of net
output from a basin operating under
conditions of conjunctive use of ground
and surface water be measured em-
pirically? A satisfactory answer to this
question eclears the way for objective
evaluation of alternative wuses for
limited investment funds in water re-
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source development programs where
conjunctive use is feasible.

The primary objective of this study
is to explore methodological procedures
for measuring expected present value
of net output from a basin under speci-
fied storage and distribution facilities
for water, and to illustrate these pro-
cedures by an empirical application. A
secondary objective is to estimate the
marginal value of imported water to
the basin chosen for study, taking into
consideration the time dimension with
respect to delivery of additional water.

INVESTMENT DECISIONS UNDER CONJUNCTIVE USE

To arrive at an optimal investment
policy one has to evaluate various alter-
native possibilities for allocating limited
investment funds, available now and in
the future. The evaluation is economic;
an essential feature is the temporal use
of the water of a basin under considera-
tion: the choice of allocating investment
funds depends on how the basin’s water
supply is managed. We specify water
supply to be managed by a policy which
maximizes present value of expected net
benefits. Thus, measures of benefits ob-
tained by methods of this study are ap-
propriate if investment decisions are
made subject to a water management
policy which is optimal in this sense.

Some important interrelationships

Important relationships exist among
several alternative outlets for invest-
ment funds in a basin operated under
conditions of conjunctive use. There are
three competing segments (with respect
to their relative magnitudes) of a water
resource development on a stream with
a highly variable flow: (1) surface stor-
age, (2) the surface distribution system
(involving canal capacities), and (3)
artificial recharge.’

Surface storage permits capture of
large flows when the water cannot be
used productively because of low irriga-
tion demand or limited eanal capacity,
and storing the impounded water until
it can be utilized economically. Increas-
ing the reservoir size permits capture of
more water and/or using the water
when it has a higher economic value.
Under conditions of conjunctive use,
artificial recharge or increased canal
capacity can substitute for reservoir
capacity.

A larger canal system permits irriga-
tion of more area with surface water
and provides a productive outlet for
larger quantities of stream flows as they
oceur randomly during the irrigation
season. The water can be used as it be-

_comes available in the stream and need

not be stored (stored as long a time) to
have an economic use. Firms using sur-
face water during the season when it is
available rely on ground water during
the dry season when supply of surface
water is inadequate.

Artificial recharge is a substitute for
either of the other two outlets for in-
vestment funds because the under-
ground reservoir can be recharged as

2 Artificial recharge is the deliberate transfer of surface water to underground storage. Such
transfer requires investment in additional facilities other than surface storage and many times
is implemented without utilizing a surface storage facility. For a discussion of artificial recharge

methods see Todd (1959).
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water becomes available and drawn
from later in the season as water is
needed. These three means of providing
water are, of course, not complete sub-
stitutes. A given temporal supply of
water can be provided with various
combinations of development of these
three competing outlets for investment
funds. The economic question is: to
what level should each be developed in
an optimal investment policy? Essen-
tially, we want to maximize net benefits
from a limited supply of investment
funds allocated to these three categories
of development.

It is instructive to think of an ex-
pected net benefit surface composed of
three arguments; one each for surface
storage, surface distribution, and arti-
ficial recharge. The objective of an in-
vestment policy is to attain as high a
point on the surface as possible with
limited funds for financing develop-
ment. The expected net benefit surface
is implicitly defined subject to an op-
timal water management policy. A
fourth dimension may be ground water
pumping capacity and its spatial ar-
rangement. This, however, is usually
determined by private decisions, not by
a public agency. If private decisions on
pumping capacity could be projected
in relation to public decisions on the
other three variables, public investment
policy could be made conditionally on
private behavior.

This study focussed attention only on
those factors in conjunctive water use
that are most important as to invest-
ment decisions. An excellent summary
of economic advantages and disadvan-
tages of conjunctive use of ground and
surface water is given by Todd (1959,
pp. 215-17). Most of these factors
would enter into the analysis of the in-
vestment problem through evaluation
of net benefits from various alternative
investments. Careful consideration of
each in relation to the basin being ana-
lyzed delineates the set of alternatives.
The number of possible alternatives is
infinite and a feasibly small number

33

must be selected for analysis since eval-
uation of each alternative is costly.

W ater management for a given
investment situation

Attention is now turned to the ques-
tion of how water is to be allocated over
time under a specified level and pattern
of development. Interest centers pri-
marily on cases where water supply is
stochastic. A part of the supply in some
basins may be regarded as provided
with certainty but part of the supply
will be random, thus making total
supply stochastie.

Dealing with ground and surface
water management decisions jointly is
complicated by the fact that the rele-
vant time period for decisions is dif-
ferent for each source of water. Sur-
face water storage policy is primarily
concerned with intra-year storage de-
cisions while ground water storage is
primarily for cyclical or inter-year stor-
age. The logical time period for ground
water decisions is a year or longer while
that for surface water decisions is a
month or shorter period. A further com-
plication is the seasonal nature of agri-
cultural production. The total quantity
of water to be used during a year must
be specified early in the year to permit
rational planning of produetion, and
preferably the annual quantity used
should be known several years in ad-
vanee.

As to maximizing net benefits, two
conflicting forces are operating: On the
one hand, the decision on how much
water to use during a forthcoming pe-
riod can be made most advantageously
by waiting until the beginning of the
period and utilizing the information
about water storage conditions at that
time. (Storage conditions are known in
advance only as a probability distribu-
tion.) On the other hand, greater net
benefits can be obtained by advance
planning as far as organizing produc-
tion is concerned.

Let us suppose a farmer does not
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know how much water will be available
during the year ahead; he is notified
only at the beginning of each month
as to how much he will receive. The
quantity for each month is determined
by a random stream flow. He knows the
probability distribution for his monthly
supply and must make decisions on the
basis of this information. In this situa-
tion net returns would probably be
lower than if the monthly supply were
known with certainty. But on the other
hand, random stream flows could be
captured more efficiently on a month-
by-month decision rule than by speci-
fying a year in advance the guaranteed
monthly water supply. This is an ex-
treme example as to the length period
for which water supply decisions might
be made, and we would expect that any
period shorter than a year is imprae-
tical for such decisions. Conceptually
the length of period is a variable with
choice of its magnitude a part of the
optimization process.

Ideally, we would like a surface water
policy specified by short periods, say by
months, and a ground water policy de-
fined by longer periods, say five years.
The policy ean be formulated in such a
way that total water to be used an-
nually is specified by five-year intervals,
but the amount to be pumped annually
from ground water is a random variable
dependent upon the monthly surface
water supply. Ground water pumped
each month is the difference between
total quantity to be consumed during
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the month and the amount provided
under the surface water policy for that
month. The ground water policy defines
the total water quantity to be used an-
nually during each five-year period; the
primary decision variable here is quan-
tity of ground water available in stor-
age at the beginning of the five-year
period. The surface water policy de-
fines the amount of water to be used
each month as a function of surface
water in storage at the beginning of
the month and other relevant variables
(explained in Chapter II).

The surface water decision rule is ap-
plied each month, the ground water de-
cision rule each five-year period. By this
type of over-all management of water
in the basin, a stable water supply for
planning production is combined with
a flexible surface water policy to cap-
ture as much of the random supply as
possible. It is convenient to think of
the surface water policy as determining
the quantity of water captured in the
basin and the ground water policy as
controlling the temporal allocation of
water presently in storage and captured
in the future. However, the two policies
should be determined together and are
closely interrelated. The time periods
chosen for discussion are those used
later in the empirical analysis. Apply-
ing the procedures sketched above, a
model for deriving an optimal water
management policy is given in Chapter
11.

THE EMPIRICAL PROBLEM

The study area was chosen because
the results would be potentially useful
there, data were available, and a realis-
tic model would be computationally
feasible. A further possible advantage
was the existence of a public institution
which could conceivably become the
water management agency for the en-
tire area, at least with respect to ground
water.

A sketch of the study area is given in

figure 1. Its boundary coincides with
the Kings River Conservation District
except for the hatched areas.

The northeastern part of the area is
presently serviced by surface water pri-
marily from Pine Flat Reservoir on the
Kings River. Surface water is used
when available and supplemented by
ground water as needed. The western
and most southern portion of the area,
comprising about one-half the total
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area, depends almost entirely on ground
water.

There exists little or no potential for
further water development within the
study area, its only source of additional
water being from some outside source
such as the Central Valley Project. The
maximum price which the area could
pay per acre-foot of water imported is
one of the questions considered in this
study. The present mean supply is aug-
mented by an inerement of 250,000
acre-feet for this analysis. An answer
to the question is of practical impor-
tance since the Kings River Conserva-
tion District is presently considering
the procurement of additional water.
The analysis of this study abstracts
from institutional difficulties, while a
complete answer requires consideration
of present water rights and controlling
agencies’ behavior.

It is assumed that ground water
quality is equivalent to that of surface
water and does not change with depth
of pumping. The maximum depth per-
mitted is slightly greater than 400 feet.
This maximum was chosen in part to
facilitate empirical analysis; presuma-
bly water could be pumped from greater
depths. Preferably, economic costs of
pumping or physical limitations would
determine the lower limit to ground
water pumping.

The study area is not a true basin,
that is, the ground water reservoir is
not an isolated unit. The area is par-
tially isolated by mountains on the east
and the San Joaquin River on the north
but these only partially restrict ground
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water flows in and out of the area. A
preliminary evaluation of the area by
the California Department of Water
Resources indicated no large net flows
into or out of the area under existing
ground water conditions. However, this
tells us very little about what the situa-
tion would be with changing depths to
ground water in this and surrounding
areas. We proceed as if the study area
were an isolated basin, recognizing that
conclusions will be in error if net
ground water flows, from or into the
area, are large. The large size of the
study area (over 1,000,000 acres) re-
duces chances of a gross error due to
net flows of ground water. Any net
flows into or from the unit will be small
relative to total ground water storage.
To take account of ground water move-
ment, complete hydrological data speci-
fying net movements of water into or
out of the area as a function of depth
to ground water would be required.
Data of such detail are practically im-
possible to obtain.

The entire study area is treated as a
single aquifer of free ground water.
Small portions of the area contain con-
fined ground water but these are of rela-
tively minor importance. They are lo-
cated below the region of recharge and
do not interfere in this way. '

A considerable amount of technical
data was provided by the California
Department of Water Resources, most
of which is unpublished. Practically all
are tentative estimates subject to revi-
sion as more information is eompiled.

II. OPTIMAL STORAGE UNDER CONJUNCTIVE USE
OF GROUND AND SURFACE WATER

Investment decisions, as here viewed,
involve comparison of net benefits re-
sulting under various alternatives,
where an alternative completely speci-
fies physical facilities for storage and
distribution of water. Net benefits for
any given alternative depend on the
way in which water is to be used over

time. We are presently concerned with
finding a policy for using water over
time which will maximize the mathe-
matical expectation of net benefits at
present value when a specific invest-
ment alternative has been defined.
The problem confronted is stochastic
since net benefit aceruing in a time in-
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terval is a random variable. The sto-
chastic nature of net benefits arises
from uncertainties associated with
many economic variables as well as fu-
ture water supplies. Fortunately, the
uncertainties associated with economic
variables can be analyzed separately
from the variable water supply. This
study assumed that a measure of ex-
pected net benefits can be ascertained
for a specific time interval if the quan-
tity of water consumed within that in-
terval is given. Thus we coneentrate on
the problem of optimal water manage-
ment independently of the problems in-
volved in estimating net benefit per
time period for a given consumption of
‘water per period.

Water management is an inventory
problem under conditions of uncertain
supply and eontrolled demand. The ob-
jective is to control demand in such a
way that expected value of net benefits
at present value is maximized. This in-
ventory control is of extreme impor-
tance for ground water because its
quantity in storage is often large rela-
tive to the annual use rate. The inven-
tory problem is similar for surface
reservoirs, but the time periods are dif-
ferent: usually, ground water storage
can be treated as cyclical or inter-year
storage, and surface water storage as
seasonal or intra-year storage. This is
especially true for a surface reservoir
which is small relative to the annual
stream flow feeding the reservoir. In
this case the opportunity cost for eyli-
cal storage in the small surface reser-
voir is too great to warrant its use in
this way. The average annual quantity
of water supplied by the small surface
reservoir is much less when using it for
eyelical storage since the reservoir must
be kept more nearly full, thus increas-
ing the frequency with which water
escapes because the reservoir is filled to
capacity.

The supply of water becoming avail-
able for possible capture is a random
variable and solution of the inventory
problem requires an estimate of the
probability distribution for this water
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supply. It is assumed that the proba-
bility distribution is known or a good
estimate is available from time series
data.

Origin of the sequential decision
model used traces back to Massé (1945).
Early pioneering works in the theory
of inventory control are those by Arrow
et al. (1951) and by Dvoretzky et al.
(1952). Bellman (1957) generalized the
concepts of sequential decision processes
and coined the term dynamie program-
ming. One of the first applications of
modern sequential decision theory to
water storage problems was by Little
(1955). Several other water storage
problems have been formulated in the
general dynamic programming model
during recent years, but interest has
concentrated on hydroelectric systems.
A model for a single, multiple purpose
reservoir which is applicable under
rather restricted conditions is con-
sidered by Thomas and Watermeyer
(1962). This paper also contains addi-
tional references to recent work in the
theory of water storage.

In our study the simplest water man-
agement problem is considered first—
the case of only underground storage.
A mathematical model is constructed
which permits maximization of present
value of expected net benefits for any
length planning horizon, under speci-
fied physical conditions of recharge,
storage capacity, ete.

The case of two storage facilities is
considered next: a single surface reser-
voir and one underground reservoir.
The mathematical model formulated as
a basis for quantitative analysis of this
situation becomes quite complex and the
need for simplification is recognized.
Approximation procedures are sug-
gested, but completely rigorous mathe-
matical analysis to support them is not
given. Solution of the empirical prob-
lem represents a simplified application
of the approximation methods discussed
here. Most of the analysis in subsequent
chapters will be understandable with
only the immediately following single-
storage facility case as background.
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SOLUTION OF THE INVENTORY PROBLEM
WITH ONE STORAGE FACILITY

The one-reservoir case may be re-
garded as characterizing the problem
existing in a basin or it may be con-
sidered as part of an iterative process
for solution of a problem involving a
more complicated set of storage facili-
ties. For instance, some management
rule might be assumed for the surface
reservoir which effectively determines
the probability distribution of annual
water supply to the underground aqui-
fer, thus reducing a two-storage facility
case to a one-storage facility case. The
reduction of problems to simpler ones
by such means will be discussed in de-
tail later.

Let us now formulate the inventory
problem for a basin having only ground
water storage in a stochastic dynamiec
programming model. Net output per
period from the basin is a funetion of
the quantity of water used during a
period and the level of storage at the
beginning of the period. Level of stor-
age influences the pumping costs re-
quired to deliver the water at the sur-
face for use in production. For exposi-
tory convenience, we assume no effec-
tive upper limit on storage capacity,
but the model is easily modified to ac-

fn(‘S) = Max [Bn(Xn) S) + (1 +
X, =8
2.1

= Max [Bu(Xn, S) + (1 +
x,<8

The above functional equation for an
n-stage process may be interpreted
literally as the maximization, with re-
spect to water consumption at stage n,
of the immediate net benefit plus the
discounted expected value of net bene-
fit in the (n—1) remaining stages, given
that an optimal policy will be used
during the remaining (n — 1) stages (the
maximization being carried out for all
relevant storage levels at the begin-

1) E(fur(S + W, —

count for an upper limit. The computa-
tions are essentially the same in an ap-
plication under either situation.

The following definitions and nota-

tions are used:

X, = quantity of water used during
the n'® period from the end of
the planning horizon.

8 = quantity of ground water in stor-
age at the beginning of a period.

W, = water added to storage during
the nt® period from the end of
the planning horizon (a random
variable independently distrib-
uted over time).

h(W,)dW, =probability density
function for W,.

B,(X,,8) = net benefit (not dis-
counted) resulting from X, units
of water with storage at level S,
during the n'* period from the
end of the planning horizon.

r = relevant diseount rate to reduce
the stream of benefits to present
value.

Using the “principle of optimality”
(Bellman, 1957, p. 83) and thinking of
our problem as a multistage decision
process over time we can write the fune-
tional equation .

)]

r! fo ) focr(S + W — X)R(W,)AW,] .

ning of the n-stage process).

Making the variables, X, W, and S
diserete will reduce the problem to a
finite Markovian decision process which
can be solved by a digital computer.
Define N discrete levels for storage, S,
Sz ... 8y Let W and X take on m
discrete values W, W2, ... W™ and X3,
X2 ... X™ The value S; must be
thought of as an interval but always as-
signed its mid-value such that S; +
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W,J — X,* takes on the discrete value
8¢ if it falls in the interval covered by

(89 = Max [Bu(Xn, S) + (1 + 1)

X’,:gs;.

For 8; we can define a probability,
pf, for each X*, which is the prob-
ability of going to state S;, given that
storage level S; existed at the beginning
of the period and X* units are with-
drawn from storage during the period.
The discrete intervals for W and X are
quite arbitrary and need not be the
same for both variables. There may exist

2.2)

The solution procedure is easily illus-
trated. Start with a one-stage process
(the last unit of the planning period)
carrying out the maximization for all
8. Then take a two-stage process, using
the results from a one-stage process, to
carry out the maximization on & for all
Si. Then a three-stage, four-stage, . . .
n-stage process is treated giving the
largest expected net social benefit ob-
tainable. The optimum management
rule is implicit in the solution to the
functional equations. The n-stage proc-
ess supposedly leaves us at the current
period looking n periods into the future
with- the problem of managing the
water used each period. We know the
quantity of water in storage at the be-
ginning of the current period and
fn(8i) gives us a value for k& which is
optimum. Upon reaching the (n — 1)-
stage we will find ourselves in another
state (not known until the period fol-
lowing the current one) and f,.,(S;)
gives us a k& which is optimum, ete.

The quantity of water that will be
used each period is not known until
that period is reached; the information
on the quantity of water in storage is
used sequentially as it becomes avail-
able. The funectional equation, however,
gives the expected net social benefit at
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S:. The functional equation can be re-
written as the recursive relation

; fror(Ss + Wi — XDP(W, = W]

more than one Wt such that S; + Wt —
X* = 8; (the equality meaning that the
left side falls in the interval implied by
S;) and therefore, the p¥ do not co-
incide with P (W = W) but are a simple
function of the latter probabilities. The
recurrence relation ean be written in
terms of the p ¥, as

N .
1(S) = Max [Bu(S) + (L + )" 2 p%ifua(S)],mn =0,1,2, ---.

=1

present value for the entire planning
period given that an optimal policy is
followed with respect to periodic water
use (optimal within the acecuracy of our
discrete model simplification).

A numerical example will help
clarify the conceptual framework and
show the mechanies of solving relation
(2.2). The example is the very simplest
case—two storage states and two alter-
native quantities of water for use per
period. Since the actual magnitude of
the quantity in storage does not enter
in numerical solution of the problem
after it is formulated in the form of
(2.2), the storage level is denoted by the
subseript, 4. Table 1 summarizes the
data for the numerical example. Note
that the net benefit funetion, B,*(S;),
is invariant over n, the stage of the
process. The discount factor, (1 + r)-3,
is specified at 0.9.

For n = 0, we assign f,(8;) the value
zero. The justification for this value is
implied by the definition of f,(S;)
which is the present value of expeected
net benefits from n periods under an
optimal policy. Thus we see by relation
(2.2) that f,(8;) =Max B*(S;) which

k

is the maximum expected immediate net
benefit. This is the result that would be
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TasLE 1
ILLUSTRATIVE PROBLEM
Probabilities
State | Alterna- Expected
1 tive net benefit
k Pkt phi2 Bk(S;)
1....... 1 .3 7 38
2 .9 .1 40
2....... 1 1 .9 41
2 .5 .5 43

expected with only one period left in
the planning horizon. From table 1 it is
seen that f,(S;) = 40 and f.(8.) = 43;
these numbers are used to compute
f2(83). ,
Applying relation (2.2), f2(8:) =
Max[38 +.9((.3) (40) + (.7) (43)),40 +
9((.9)(40) + (1) (43)) ] =
Max (75.89, 76.27) = 76.27, given by al-
ternative two. Likewise, 2 (8:) =
Max[41 +.9((.1) (40) + (.9) (43)), 43 +
9((.5)(40) + (.5) (43))] =
Max (79.43, 80.35) = 80.35, given by al-
ternative two. We now have f,(8;)
and can proceed to compute f5(S;) in
exactly the same way as f.(8;) was
computed above.
Table 2 summarizes the iterations for

Burt: Economics of Conjunctive Water Use

n=1,2,...5, where d;(n) denotes the
optimal alternative for state . Observe
that the decision rule appears to have
converged to the same rule regardless
of the stage for n greater than two. It
can be shown that such convergence will
always take place when the net benefit
funection is invariant over stages (Bell-
man, 1957, p. 121). With respect to the
numerical example, we may conclude
that the optimal poliey is to use alterna-
tive use rates one and two for storage
levels one and two, respectively, if the
public agency’s planning horizon is
greater than two periods. The next see-
tion gives a method to verify whether
the decision rule has econverged and the
method is applied to this example for
illustrative purposes.

TABLE 2
NUMERICAL SOLUTION OF THE
EXAMPLE

n=1|n=2|n=3|n=4|n=>5
fa(S1).ovinin 40 76.27 | 109.22 | 138.98 | 165.76
dn).......... 2 2 1 1 1
falS2). oot 43 80.35 | 113.48 | 143.22 | 169.99
dan)......en. 2 2 2 2 2

AN OPTIMAL POLICY INVARIANT OVER STAGES

The recursive relation of (2.1) has a
convenient property when B,*(8;) is in-
variant over m, thus denoted by B*(S;).
The property is convergence to an op-
timal policy which is independent of
the stage when the number of stages be-
comes very large. In other words, the
optimal quantity of water to be used at
the 7t® storage level is the same whether
n or n -+ 1 periods remain in the plan-
ning horizon when n is very large.

It is convenient to write relation
(2.2) in matrix form. Define,

f(n) = N-component column vector

2.3

Solution of (2.3) is accomplished by
specifying a terminal value of the op-

with it* component f, (8;)
q = N-component column vector with
components comprised of magni-
tudes of k&
bn(q) = N-component column vector
with t® component B,*(S;)
P(q) = N x N matrix elements pi;¥,
where % for the #** row is de-
termined by the 4'® component
of q.
B= (1+7’)_1 < 1.
Then matrix form relation (2.2) is
written

f(n) = M'a;X [bn(Q) + BP(Q)f(n -1],n=01,2,---.

eration for the end of the planning
horizon. This value is conveniently
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taken as zero; thus giving f(0) = 0.
Equation (2.3) is solved successively
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forn=1,2,3,...as follows:

fa) = M;ax [b:(g) + BP(g)f(0)] = Max by(q)

(2.9

@) = Ma;x [b2(g) + BP(9) f(1)]

fo+1) = I\’Eax [bari(g) + BP(9) f)] .

When # reaches the number of periods
in the entire planning horizon, the solu-
tion being sought has been found. That
is, maximum expected present value of
net benefits is given by f(n) and an
optimal decision rule g(n) is given by
the ¢ which maximizes the right-hand
side of (2.3). Note that f(n) and q(n)
are vectors with 4" components being
the respective measure and rule for
water storage level S; of (2.2).

It is quite likely that decisions in
water storage control will involve an
infinite planning horizon. Obviously the
iterations of (2.3) must stop at a finite
number and from the point of view of
computational economy the number of
iterations should be as small as possible.
With these facts in mind, we exploit a
convergence property of (2.3) for the
case where b;(q) =b.(q) =...=0bs(q).
This is the situation where expected im-
mediate net benefits from a water use
policy are invariant over time.

The convergence property can be pre-
cisely stated

lim g (n) = ¢* = a constant vector,

limf(n+1) =f(n).

Convergence to a fixed optimal policy,
q*, is usually much more rapid than
convergence of the functional value
f(n) to a constant vector. We would
like a means to verify whether a policy
actually has converged when the itera-
tions of (2.3) suggest convergence has
taken place.

Such a means is provided by the
work of Howard (1960) although he
develops a different approach to solving
the problem and does not explicitly con-

sider the following method. We first
look at the asymptotic solution of (2.3)
under a constant policy and invariant
return function over n. Denote the con-
stant vector b,(q) by b and the con-
stant matrix P (q) by P. Iterating (2.3),
f(n)=b+BPf(n-1)=b+BPb

+BPf(n-2)

=b+ BPb+ B2P%b + BPf(n-3)

= (I+BP+pB2P2+...+B™1P"1)D,
where I is the identity matrix. It is
easily established that lim f(n) = (I -

BP)~b by the limit of the matrix (I +
BP +B*P2+...+B"P*). (Kemeny and
Snell, 1960, p. 22.) Obtaining expected
present value of net benefits over an in-
finite planning horizon, under a con-
stant policy and net benefit function, is
seen to require solution of N linear
equations. That is, solution of

(2.5) (I-BP)X =0

for the N-component, unknown veec-
tor X.

The computational algorithm can

now be stated:

(1) Carry out the iterations of (2.4)
until several repetitions of the
same policy have taken place,
giving an indication that con-
vergence to a single optimal pol-
iey has been attained.

(2) Solve the system of equations of
(2.5) for the constant policy sug-
gested in step (1).

(3) Obtain the solution to

(26)Y = M:gx [b(q) +BP(q)X].

If Y=X, the policy associated
with X is the optimal policy for
an infinite planning horizon and
the policy derived in (2.6) will
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be that same policy. If Y=X,
then the iterations of (2.4) must
be continued, and ultimately a
different policy will result for

some larger n. The above pro- .

cedure is repeated again when
it appears convergence has taken
place on another policy. In prac-
tice the iterations of (2.4) and
solution of (2.6) are carried out
component by component instead
of by veectors, i.e., in the form of
relation (2.2). Justification of
step (3) of the algorithm is im-
plied by the work of Howard
(1960, pp. 86-8T).

The above computational method is
used in the empirical investigation of
this study because it provides a con-
venient means to analyze alternative
dates at which water might be imported
to the study area. The method also

L -l

with the solution being
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makes economical use of machine stor-
age capacity and the same program can
be used with a variable as well as con-
stant return function over stages. The
invariant return function case without
discounting can be worked as a linear
programming problem (Manne, 1960).
Only very recently was a method devel-
oped for handling discounting in a
linear programming model (d’Epenoux,
1963).

The method of verifying that a policy
is optimum for an infinite planning
horizon is now applied to the numerical
example of table 1. The first step is to
solve the system of equations given by
(2.5) for the policy that is repeating
itself in the computational procedure.
This policy is given by table 2 as: use
rates one and two in storage states one
and two, respectively. Therefore, the
system of equations to be solved is

AL

[xl] _ [406.69:|
s 410.93

The next step is to substitute the vee-
tor X into relation (2.6) and solve
for Y.

Y, = Max [38 +.9((.3) (406.69) + (.7)

(410.93)), 40+.9((.9) (406.69)
+ (.1) (410.93) )] = Max (406.69,
406.40) = 406.69.
y,=Max [41+.9((.1) (406.69) + (.9)
(410.93)), 43 +.9((.5) (406.69)
+ (.5) (410.93))] = Max (410.46,
410.93) =410.93.
Since y; = x; and the optimal decision
rule is unchanged, we conclude that the
policy suggested by Table 2 is the op-
timal policy for an infinite planning
horizon.

An approximate decision rule for
the model of this section has been de-
rived by Burt (1964). In order for the
approximation to give good results,
water in storage must be large relative

to the optimal periodic rate of use.
Therefore, the approximation will not
be in serious error for basins in early
stages of development where current
inventory is large compared to rate of
use, even though at some later date stor-
age will have been reduced to the point
where the method would no longer be
appropriate. The approximation will
always be acceptable for basins in which
cost of inereased pumping depths limits
ground water mining (as contrasted to
physical limits on pumping depth be-
ing the limiting factor). These asser-
tions are justified in the above men-
tioned reference.

An infinite planning horizon

The convergence property of recur-
sive relation (2.2) for an invariant ben-
efit function gives us a fairly general
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method of working with an infinite
planning horizon. Assumption of a con-
stant net benefit function after a finite
number of periods from the present is
required. For example, we might feel
reasonably comfortable making mnet
benefit projections separately for each
period from the current period up to
say 50 years into the future. Uncer-
tainty about periods beyond fifty years
may be so great that extension of the
50th year’s projection indefinitely into
the future is considered essentially as
reliable as additional projections. Sup-
pose our stage is defined to be a year
and ¢t measures time from the present
with ¢ = 0 being the ecurrent year. Un-
der our hypothetical case we have an
estimated net benefit function

B%S),t=10,1,2, --- 49

and
f1(85)

fg(Si)
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By(S), t = 50, 51, ---

where B#(8;) is the net benefit under
the %t level of water consumption dur-
ing the tt* year, if ground water in
storage is at the 4'® level. Time, £, has
been substituted for the stage, n, of the
decision process; care must be exercised
to avoid confusion in interpreting
and n (¢ denotes time measured from
the present and n denotes the number
of stages remaining in the planning
horizon ).

The first step in solving the problem
is solution of recurrence relation (2.2)
using B,*(8:) = Bso*(8:),n=0,1,2,...
for n—> 0. The next step is to consider a
finite planning horizon of fifty periods
with a variable return function B,*(S:),
n=0, 1, 2,...50. We set f,(S;) equal
to lijg fn(8;) obtained above using

B;*(8;) in the recurrence relation.
Then we perform the iterations

Mkax [B%(S) + 8 ;1 pi:fo(S5)]

f5o(S) = Mkax [B5(S:) + 8 JZS; p5ifu(S)] .

Note that the subscript on the net ben-
efit function denotes the stage in the
above iterations; n = 50 is equivalent
to =0 and n =1 corresponds to ¢ =49.

Continuous variable refinements

Numerical solution in the preceding
diserete models gives points as approxi-
mations to the continuous variable
equation (2.1). A curve can be fitted

2.7
Xn

and it is assumed the constraint X, < S
is met for the magnitudes of 8 to be
analyzed at present. The maximization

(2.8)

fn(S) = Max [Bn(Xm S) + BEfn——l(S + Wn -

fn(S) = Bn(Xm S) + ﬁEfn—l(S + W, —

to the derived points in order to esti-
mate the continuous relationship which
actually underlies the analysis. This
continuous function can be used to fill
in the gaps in the discrete approxima-
tion and the caleulus can be used to
refine the optimal levels of X, for any
quantity in storage S.

Relation (2.1) is conveniently writ-
ten

»)]

can be expressed by an additional
equation under the proper specifica-
tions, i.e.,

»)
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2.9) 3’; BEfor(S + W —
(2.10) T+ BERL(S + W -

It will be found advantageous to
approximate f,1(8 + W, — X,,) by a
Taylor’s series in the proximity of S

(2.11)

This relationship is particularly useful
when a polynomial is fitted to estimate

(2.12) 9B

If B,(X,S8) could also be approxi-
mated in the interval where solution
takes place by a quadratic function,
(2.12) gives a linear decision rule.

An economieally important measure
in our continuous model is f.’(S)
which is marginal value of stored

Ef, s(S+ W, — X,) = foulS) + EW —
+ E(W

% = BUa(S) + EOW —
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n)=0

m <0.

in order to obtain a convenient form
for Ef,’ (S + W, — X,,). The relation-
ship is

Xn) ff'z—l(s)

Xﬂ) fn—-l(S) +

f,,-l(S). For example, a quadratic in
fn1(8) would let (2.9) be simplified to

Xo) fala(9)] -

ground water. This marginal value is
an indicator of the merit of investment
to increase the basin’s water supply.
Caution must be exercised, however,
because additional water supplies
might alter the function for net ben-
efits—B, (X ,,S).

A PROBLEM INVOLVING TWO STORAGE FACILITIES

The basin for which the following
model is most appropriate has a single
isolated aquifer for underground stor-
age and a surface reservoir. The under-
ground reservoir receives recharge
from natural runoff, artificial recharge
from the surface reservoir, and ineci-
dental recharge from the surface water
distribution system. We note that the
latter two sources are variables subjeet
to manipulation for purposes of eco-
nomie optimization although the inci-
dental recharge is a fixed proportion
of the surface water used directly for
productive purposes.

Straightforward treatment of the
larger problem in the same manner as
the one storage facility case leads to
several difficulties. In nearly all cases
storage capacity of a surface reservoir
is small relative to annual stream flows
feeding the reservoir. Extremely in-

efficient management of the reservoir
would result if the decision variable
were quantity of water in storage at
the beginning of the year and the max-
imum amount that could be used was
that quantity. In other words, a year is
too long a period upon which to base
surface water management decisions.

On the other hand, allocation of
water for productive purposes should
preferably have at least one year as the
length of period for which water sup-
ply needs to be known. We could pro-
ceed on a short period decision basis,
leaving producers with an uncertain
water supply from one period to the
next, but this approach is not consid-
ered practical, particularly under con-
ditions of conjunctive use. It would be
more suitable if the only supply of
water were a surface reservoir.

It is concluded that under conditions -
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of econjunctive use, it is reasonable that
producers have a known water supply
at least a year in advance and prefer-
ably longer. At the same time, surface
water supply should be managed on
the basis of a relatively short period,
perhaps a month or even a shorter
period. This is especially true if arti-
ficial recharge is to be a produective in-
vestment. These two conditions rule out
the simple model used for the previous
case involving only ground water
storage.

Another consideration in surface
water management based on short pe-
riods is stochastic dependence among
stream flows of different periods. But
this can be handled with a Markov
dependence relationship in most in-
stanees.

Our first approach is to formulate a
complex dynamic programming model
with several variables in the functional
equation to express the state of the
process. This can be done by making
long period decisions as to the total
quantity of water used during that
period and optimizing short period de-
cisions subject to each possible long
period decision. The stage of the proe-
ess is defined on the short period and
the long period is a simple multiple of
the short period. For convenience in
discussion, let the long period be com-
prised of m-short periods.

Decisions on surface water utiliza-
tion are made at each stage while
decisions on total water used over the
m-stage period are made systematically
for each m stages and primarily based
on ground water storage conditions.
Assume the stream flow carrying water
to the surface reservoir can be ade-
quately described by a Markov prob-
ability distribution with respect to the
short period (stage of the process).
Formulation of the problem in a dy-
namie programming model requires
four variables to describe the state of
the process: (1) ground water storage,
(2) surface water storage, (3) stream
flow during the preceding stage (short
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period), and (4) total water to be used
during the long period (m stages or
short periods) within which the pres-
ent stage is contained. )

Maximization takes place with re-
speet to surface water for direct con-
sumption and surface water for artifi-
cial recharge at each stage. However,
maximization with respect to total
water used at each stage takes place at
the beginning of each m-stage (long)
period. It is assumed that optimum
allocation of water within an m-stage
period can be determined exogenously
from the present model, for any speci-
fied quantity. For example, if the long
period is a year and the short period
a month, the stage is a month and m
stages are a year (m = 12). The pre-
ceding assumption is that the monthly
allocation of a specified annual supply
of total water consumed can be made
without incorporating the decision into
the dynamic programming model.

The example of months and years for
short and long periods, respectively, is
continued for convenience in discus-
sion. We shall consider interrelation-
ships among variables of the model
from stage to stage. Direct consump-
tion of surface water contributes to
the ground water supply during sub-
sequent periods through ineidental re-
charge from the surface distribution
system and possibly deep percolation
of irrigation water applied to farm
land. Artificial recharge in one stage
contributes to ground water in fol-
lowing stages. The quantity of surface
water used for both direct consump-
tion and artificial recharge influences
the water in surface storage during
subsequent periods. In summary, the
two variables, direct surface use and
artificial recharge, determine para-
meters in the joint probability distri-
bution of surface and ground water
storage for the following period, given
storage conditions in the current pe-
riod. The above is with reference to
short periods (months), although true
in the aggregate for long periods
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(years). The variable, total water to
be used during a year, which implies
total quantity used each month, also
affects parameters of the joint prob-
ability distribution of ground and
surface water storage. This variable is
manipulated only at the beginning of

N
J(iw) = Max B + 8 ; P far(im))] i =

(2.13) 0<B<1

Jo(i(n)) = ¢: .

This system of diserete relations is
used as an approximation to the con-
tinuous model deseribed above. The
state, 1(n), is determined by one of the
possible set of discrete values which the
four state-variables are permitted to
take. The four variables defining the
state of the process, which we call state-
variables, are listed on page 45. An al-
ternative, k(n), is defined by a set of
discrete values assigned to the decision
variables: (1) direet surface consump-
tion, (2) artificial recharge, and (3)
total water to be used. The alternatives
permitted are a function of the stage,
n, because the third decision-variable
is permitted to change only at the stage
defining the beginning of a year. The
states, ©(n), are a function of n because
the fourth state-variable (total water
to be used during the forthcoming
year) is a decision-variable at the stage
defining the beginning of the year and
thus missing from the set of state-
variables. In other words, the fourth
state-variable is the third decision-
variable and it is either one or the
other, but not both, at any stage of
the process. It is a decision-variable
one-twelfth of the time and a state-
variable eleven-twelfths of the time
when our short and long periods are
months and years, respectively.
Solution of relation (2.13) gives a
decision rule which depends on three
variables: (1) ground water in storage
at the beginning of the long period,
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each year and remains unchanged dur-
ing the following twelve months, but
direct surface water consumption and
artificial recharge magnitudes are sub-
ject to change each month.

Let us now introduce the recursive
relation,

1,2, ---N

1,2, .

(2) surface water in storage, and (3)
stream flow in the preceding short pe-
riod. After solution of the problem is
complete, quantity to be consumed
during the long period is no longer a
state-variable at any time because a
one-to-one correspondence exists be-
tween the above listed state-variables
and the consumption rate of the long
period.

The model can be solved theoretically
by the iterative methods previously
described with a variable return fune-
tion over stages, but a serious difficulty
is met in practice. The number of states
required to obtain aceceptable precision
in analysis is likely to be beyond the
capacity of available computers. The
difficulty is accentuated by the neces-
sity of having discrete ground water
storage intervals in the same order of
magnitude as short period recharges.
Ground water storage capacity is ex-
tremely large relative to this magni-
tude making the number of discrete
storage intervals prohibitively large.

In order to show the necessity of
having a maximum limit on the size
of diserete storage intervals, let us look
at the one storage facility case where
only ground water storage exists. A
very large interval is considered first
and we look at the consequences. Some
diserete measure must be used for the
interval; we assign the mid-value of the
interval. The probability of moving out
of the interval is next considered. At
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least a periodie recharge equal to one-
half the interval is needed to show a
movement into another interval be-
cause measurements are made at the
mid-value of each diserete interval. Ob-
viously, as the storage interval is in-
creased, the probability of moving from
the present storage state goes to zero.
The decision model for a given discrete
approximation will tend to choose con-
sumption rates giving an expected net
effect which puts storage below the
midpoint of the present interval but not
into the lower interval, and an anal-
ogous expected net effect for movement
to higher or lower storage states. This
tendency leads to a bias, the size being
determined by the erudeness of the dis-
crete approximation to the true con-
tinuous relation.

In case of only underground storage,
the time period defining the stage of the
process can be increased to compensate
for a larger storage interval. The quan-
tity of recharge per stage increases
with the length of the stage and per-
mits a larger discrete storage interval.
When both ground and surface water
storage are incorporated in the prob-
lem, lengthening the stage is mnot
possible because the stage is determined
by surface storage decision require-
ments.

There is a method of meeting the
difficulties associated with a large num-
ber of state-variables (in dynamic
programming a large number is more
than two). The method is essentially
representation of the funection,
fa(¢(n)), by a polynomial approxima-
tion with the arguments being the state-
variables. A discussion of the method,
in general, is given by Bellman (1961,
p. 244). Computer time required for
solution may become excessive; but if
the problem is important enough eco-
nomiecally, a solution can be obtained.
The method has the advantage that it
can be adapted to less precise discrete
approximations without making the
analysis invalid. That is, less precision
is lost by a crude approximation to
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continuous variables with discrete in-
tervals when using a polynomial ap-
proximation to the function, f,(¢(n)),
than when working directly with the
diserete values.

For example, a small quantity re-
charged to ground water during a
single stage, n, of the process exerts its
influence because the polynomial of
faa((n—-1) is evaluated for the new
storage level resulting from the small
inerement of recharge. Without the
polynomial approximation, the storage
level with the small increment of re-
charge would fall in the same discrete
interval as that existing in the current
stage, n. Thus, the storage state would
show no change from the n*® to (n —-1)*"
stage with respeet to ground water
storage. In this situation optimum de-
cisions would not be made since one of
the interrelationships between the nth
and (n — 1)*® stages is not taken into
consideration; namely, the effect sur-
face water decisions in stage n have
upon ground water conditions in stage
(n-1).

To show how rapidly the number of
states increases when several state-
variables are present, consider a prob-
lem with four state-variables. Suppose
each variable is permitted ten discrete
values. The number of states is
10*=10,000 which is beyond the rapid
computing storage capacity of present
computers when the pl associated
with each of the 10,000 states are con-
sidered.

Several assumptions are implicit in
the preceding discussion. The model
requires that pumping of ground water
be uniformly distributed over the basin
so that local overdrafts do not occur.
A quantity of water in storage must
reflect a depth to ground water which
has a unique pumping cost associated
with it.

Our solution can only be optimum
within the limits of the discrete ap-
proximation to the more realistic con-
tinuous model. We note that time has
been treated as diserete from the be-
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ginning of the discussion, which is also
a convenient approximation to a more
precise continuous formulation of the
problem.

Several variables have been left out
which could be important under some
circumstances. Precipitation has not
been included explicitly as a deter-
mining variable in the net benefit fune-
tion. It does contribute to agricultural
output even in the most arid regions
of irrigated farming. The importance
of including precipitation explicitly
depends on its absolute contribution to
net benefit and its variance. If either
is small, little precision is lost by as-
suming an average contribution by
precipitation to net benefit during each
period.

Evaporation from surface reservoirs
and inflow or outflow of ground water
to or from the basin aquifer have not
been considered. These additional vari-
ables can easily be included in the
model at the expense of introducing
more alternative decision rules and
states in the multistage decision proc-
ess, or by adopting a less precise dis-
crete approximation to the problem.
The magnitudes of these variables will
be the primary criteria in deciding
whether to include them in the model.

The quantity of water in surface
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storage is a relevant variable in the net
benefit funetion when hydroelectric
power is being generated from the dam.
There is also the problem of scheduling
short period releases from the surface
reservoir for generating power. This
problem was dealt with using a dy-
namic programming model, by Little
(1955). Under the conjunctive use
problem considered, the scheduling of
releases for power generation is only
one of several variables to be managed
optimally. This can be handled by a
more detailed model than the one pre-
sented, but the basic principles are the
same, and it could be reduced to a
finite Markovian decision process by
allowing variables to take on only suit-
able discrete values. -

A different approach to numerical
solution of the complex two storage
facility problem is presented in the fol-
lowing section. The method most appro-
priate for a particular basin is
determined largely by characteristies
of the basin and computer facilities
available. A tolerable level of accuracy
under restrictions on funds for the
analysis is another factor. The method
which follows has the advantage of
requiring only a small computer and a
simple program, and can make use of
a priort knowledge very effectively.

AN ALTERNATIVE APPROACH FOR
MULTIPLE STORAGE UNITS

If we are willing to assume that
ground water in storage dominates the
decision on total water consumption
for the long period, making the influ-
ence of other state variables negligible,
the decision rule can be thought of as
comprised of two components. First,
there is a total water econsumption pol-
iey for the long period which is defined
on the basis of ground water in storage
at the beginning of the long period.
Second, there exists a family of surface
water policies, one for each of the pos-
sible states of ground water storage at
the beginning of the long period.

In order to facilitate the exposition,
only one surface water reservoir will
be assumed. However, the basic ap-
proach can be extended to more than
one surface reservoir although compu-
tational burdens increase rapidly. The
surface reservoir is permitted to release
water for direct surface use or for ar-
tificial recharge and benefits might be
partially derived from generation of
hydroelectric power and from flood
control.

The first step in the approximating
procedure is to guess an optimal policy
for surface water based on a fairly
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short time period, say a month. The
rule specifies how much water will be
released for artificial recharge and di-
rect use in production, given the quan-
tity of water in the surface reservoir
at the beginning of the month being
considered. The rule will change from
month to month, but remain constant
annually with respect to monthly deci-
sions. A more precise rule may be de-
sired, taking into consideration the
stochastic dependence of stream flows
for periods as short as months. The
number of states would be increased
for a given number of discrete reservoir
levels. The more complete decision
process would have the state defined
by the ecalendar month, quantity of
surface water in storage at the start of
the current month, and stream flow of
the preceding month.

In some basins, excellent estimates
of stream flow for a short period into
the future are available. Better results
can be obtained by utilizing these esti-
mates, taking full advantage of all
information available. The model is not
adequate to take errors in estimation
into account, but can be adapted to the
case where estimates are completely
correct. Errors in estimation will re-
duce the present value of expected net
benefits attainable, but are not likely
to change the decision rule significantly
unless the errors are relatively large
and the estimates quite biased. The
state of the process (with stream flow
for the next stage known) is defined by
quantity of surface water in storage,
identification of the period (the
month), and stream flow during the
next period. A surface water policy
designates the amount of water to be
allocated each to artificial recharge and
direct consumption, with one of the
states as defined above specified.

The decision rule for management of
surface water defines the probability
distribution of annual recharge to
ground water. We therefore have an in-
ventory problem that fits the model
with one storage facility presented
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earlier. The problem is small enough
to be easily computed with a reasonable
degree of precision on a modest size
computer. The solution implies a mar-
ginal value of ground water for any
quantity in storage. The marginal value
function is obtained as the first deriva-
tive of a fitted function to the discrete
empirical relation (2.2).

This marginal value function for
stored ground water serves as a basis
for deriving a new approximation to
the optimal surface water policy. Sur-
face water used directly is worth the
same as marginal value of ground
water plus pumping cost. Thus, at a
given ground water level we have a
price to apply to surface reservoir re-
leases determined by the ultimate desti-
nation of the water. Hydroelectric and
flood control benefits are added to the
value as ground or surface water.

The approximate per unit values of
surface and ground water let us formu-
late the decisions relative to surface
water in a finite Markovian model ex-
emplified by equation (2.3). The state
is determined by a set of magnitudes
of the state-variables, which in this
case is quantity of surface water in
storage and the predicted stream flow
to oceur during the stage (or the stream
flow having occurred during the pre-
ceding stage, whichever is applicable).
An alternative is defined by a combina-
tion of the decision-variables, which
are the quantity of surface water used
directly and the amount devoted to ar-
tificial recharge. The expected imme-
diate net benefit for a given state and
alternative is determined by the two
prices and the magnitudes of the de-
cision-variables. The magnitudes of the
decision-variables determine flows from
the reservoir, which can be used to es-
timate hydroelectric benefits and ex-
pected flood control benefits (negative
of flood damages). Therefore, estimates
of per unit value of surface and ground
water for irrigation and industry per-
mit relatively complete optimization of
surface water releases.
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At this phase of the estimation pro-
cedure, we have a choice of two levels
of precision in determining an optimal
water policy. A separate surface water
poliey can be estimated for each ground
water storage condition or we can be
more crude in our optimization and
use the same surface water policy at all
ground water levels.

In either case the surface water pol-
icy (or policies) is used in place of the
initially assumed surface water policy
in the next cycle of iterations. The sec-
ond surface water management policy
(or policies) yields a probability dis-
tribution for recharge to ground water
and a second ground water manage-
ment policy can be derived, completing
another cycle in the computational al-
gorithm. The iterations are continued
until the improvement in total net ben-
efit for the basin is no longer considered
significant enough to warrant further
computations. The result gives us ex-
pected present value of net benefit for
a particular investment situation, given
that the water in storage and subse-
quent additions to storage are used in
an optimum way over the entire plan-
ning period of the public agency.

Provided that convergence is quite
rapid, this method has the advantage
of treating surface water with a deci-
sion period which is short (perhaps a
month) and ground water with an an-
nual or longer decision period. Agri-
cultural production is conveniently put
on an annual basis. A probability dis-
tribution with stochastic independence
over time is feasible using the year as
a unit, and the large storage capacity
and inventory associated with ground
water make the year (or a longer pe-
riod) necessary in order to give ade-
quate precision and computational fea-
sibility. The small storage capacity of
a surface reservoir, relative to the an-
nual supply of water serving the stor-
age facility, makes a smaller period
than the year desirable for manage-
ment decisions. The month appears to
be a feasible unit and has the added
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convenience of being the unit in which
stream flows are summarized.

An optimal surface water policy
must give the right weighting to saved
pumping costs by direct surface use
relative to lost water and flood dam-
ages resulting from a more nearly full
surface reservoir. More surface water
is made available for direct use by
carrying a larger inventory of surface
water, but the larger storage on the sur-
face uses reservoir space and lets more
water escape capture. The uncaptured
water has a positive opportunity cost
in itself and is of negative value in the
sense that flood damages may result
from its escape. The marginal value
function for stored ground water is im-
portant because it reflects the oppor-
tunity cost of uneaptured water. These
interrelationships are very complex
and explicit marginal conditions for
an optimal policy apparently cannot
be derived. We can only formulate a
mathematical model to permit numeri-
cal solution.

The two-storage facilities problem
involving a surface and underground
reservoir was analyzed by Buras and
Hall (1961). However, their simplify-
ing assumptions completely removed
the water inventory question. It was
assumed that periodic water demands
were known and in the form of fixed
requirements. Thus gross benefits (ben-
efits before deduction of storage and
withdrawal costs) were taken as inde-
pendent of management of surface and
underground storage, and the conjunec-
tive use problem reduces to minimizing
costs of storage and withdrawal of
water.

In reference to the model outlined
in the preceding section, the Buras-
Hall model assumes that the policy for
what was called the “long period” is
known o priori, and that the policy is
independent of either ground or sur-
face water storage levels. Although this
simplified model might be appropriate
for some basins, its limitations should
be obvious. Even for a basin with stor-
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age near a level which would imply
safe yield as the optimal quantity for
withdrawal, we would expect that with
normal fluctuations in the storage level,
the optimal water consumption policy
would not be invariant with respect to
water in storage. Qualitative state-
ments for optimal use rates in relation
to ground water storage are derived
by Burt (1964).

It is seen that a major problem in
obtaining expected value of net bene-
fit, for a given investment situation, is
that of determining optimum manage-
ment of the stochastic supply of water.
Another difficult problem is that of
evaluating the net benefit function in
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terms of the quantities of ground and
surface water used during a period of
time. A completely satisfactory solu-
tion is not available and compromises
must be made. This part of the analysis
must be treated separately for each
basin considered. The methods used
depend on the nature of production
within the area and the data available.
Therefore, the area being analyzed die-
tates, to a great extent, the methods.
The techniques used in the empirical
investigation are discussed in a later
chapter. The next chapter considers the
general problem of estimating net ben-
efit per time period as a funection of
water use.

III. ESTIMATING NET SOCIAL BENEFITS AS A
FUNCTION OF WATER CONSUMED

This chapter is concerned with the
general methodology of obtaining net
benefits as a function of the quantity
of water made available per time pe-
riod. Such a funection is needed to solve
the inventory problem concerned with
optimal allocation of water over time
under a specific state of investment. A
simplified method is explained with the
understanding that the model ean be
refined to the degree of accuracy appro-
priate for the problem under considera-

tion. Additional constraints and chang-
ing functions through time would im-
prove estimation, but at the expense of
increased complexity.

Market value of net output from the
region is used as a measure of net ben-
efits. This measure is deemed appro-
priate for a partial equilibrium analysis
although the wusual limitations of
partial equilibrium analyses are recog-
nized.

SOLUTION OF A LINEAR PROGRAMMING PROBLEM WITH
DEMAND CONSTRAINTS ON THE ACTIVITIES
AND SIMULATED PURE COMPETITION

Linear programming is useful at one
step in deriving an optimum decision
rule with respect to water inventory
control, and thus the discounted ex-
pected value of net benefits. The use
of linear programming is limited to de-
termination of the optimum combina-
tion of various activities under a
specified water constraint per time
period. We do not have a standard
linear programming problem with lin-
ear objective function and linear con-
straints. If we disregard the pure
competition requirement, we have a

mathematical programming problem
with a nonlinear objective function but
linear constraints. Solution of that
problem will give us the results which
would prevail under a monopoly con-
trolling the entire production of the
study area. This is not the solution
being sought.

Let us consider the monopoly prob-
lem in order to distinguish it from the
problem with which we are confronted.
Define z; as the level of the 4tt activity
which specifies the quantity of a com-
modity or aggregate of commodities
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produced. Let x; = D;(c;) be the de-
mand equation for activity ¢, where
¢; is the price of the commodity (or
aggregate of commodities) associated
with activity ¢, transformed into its
activity equivalent. The funection, D;,
is the demand function for the commod-
ity (or aggregate of commodities) in
terms of activity unmits. It is a net de-
mand function in the sense that cer-
tain costs (negative benefits) have been
deducted from the price c¢;. The objec-
tive funetion is

n n

Zl ciT; = El D7l (x);

Jj= J=
where Dy is the inverse function of
Dy (cx). We also have a system of linear
constraints

n
lea,-,-x,-s biyi=1,2, -+ m

anthhe restriction 2,20, k=1, 2, ...
n. The constraints are limitations on re-
sources of the region, primarily land
and water. We have a mathematical
programming problem with a nonlinear
objective function to be maximized and
linear constraints in the form of in-
equalities. The maximizing solution of
this problem takes into account the
negatively sloped demand functions,
D;(c;), and gives the results applicable
if the area of study were under control
of a monopolist.

Suppose that all demand functions
are completely elastie, then the prob-
blem faced is a standard linear pro-
gram since prices may be treated as
constant. The solution is identical
under simulated ecompetition or monop-
oly control. Solution of the standard
linear program with prices of activities
at a fixed level will give the result
which is implied by pure competition
if prices happen to be consistent with
the activity levels in the solution and
the demand functions. Only when de-
mands are infinitely elastic can we be
sure that the levels of activities will be
consistent with prices used in the ob-
jective function. We are forced to use
fixed prices in the objective function
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because individual firms do not take
into account the influence of their pro-
duction on price. Therefore, prices of
activities must be fixed in the maximiz-
ing procedure used in order to simulate
the results implied by pure competition.

Pure competition contributes to the
validity of fixed technical coefficients of
production, a necessity for linear pro-
gramming. The production function for
an individual firm may be of any form,
but long-run equilibrium conditions of
pure competition under specified prices
determine a set of fixed technical co-
efficients of production. We may think
of production, in an aggregate model
for a region, as being increased by the
addition of firms instead of expansion
of existing firms; thus giving fixed co-
efficients of production under the as-
sumption that individual firms are at
their long-run equilibrium positions.
Conceptually, the coefficients change
with the set of prices assigned to the
activities. An activity price implies a
price of the commodity aggregate com-
prising the activity and the price of
any variable factors of production.

Usually only one set of prices for
variable factors of production is used
in empirical investigations and the co-
efficients of production are treated as
constant regardless of prices implied
by the ultimate solution. Justification
of this simplification is possible if the
solution does not diverge “too far” from
the situation assumed to exist where the
empirical measures were appropriate.
Of course, the procedure can be justi-
fied by assuming the coefficients of pro-
duction are applicable for all levels of
production of the individual firm, but
the reality of this assumption is open
to serious criticism.

Define the linear programming prob-
lem with fixed prices to be

Max ¢’z
z

Ax

subject to

1A

x

v
=]
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where ¢, x, and b are vectors and 4 is a
matrix with components and elements,
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ci, Ti, bi, and a;j, respectively. We may
think of a vector funection

F(c) = Max ¢’z

3.1 subject to

Ax

x

Define the demand equations for x to
be z; = Di(ci),1=1,2, ... n; n being
the dimension of z. From the function
F(¢) we may define a new function

xX; =
3.2)

x; = filcy, co
contains 2n unknowns and is comprised
of 2n equations in ¢, Cs . . . Cny T1, Lo,

. . Zn. Therefore, our problem does
have a unique solution with nonnega-
tive prices and levels of activities. The
difficulty is that the solution only exists
implicitly in the solution of an infinite
number of linear programming prob-
lems.

Complete solution of this general
problem does not appear to be possible.*
The primary difficulty stems from the
fact that the entire convex surface de-
fined by Az < b must be considered in a
solution method, and not only extreme
points of the set as in conventional
linear programming. Since the price
vector ¢ is a variable changing with
each change in the solution vector z,
we are most likely to have a solution
which is not an extreme point contain-
ing m positive x;, but instead a convex
combination of two or more extreme
points. The number of vectors ¢ which
can be obtained from solving the de-
mand equations for extreme point solu-
tions of Az < b is finite and equal to the
number of combinations of m + n things
taken m at a time, where m equals the
number of inequality restrictions.
Therefore, the odds are against our
finding the solution of the linear pro-

IIA

b

=z0.

x; = fi(C1y €2y - . . Cn) because F(c) de-
termines a unique z for each c.
The system of equations

Di(c,-),i = 1, 2, e M

...c"),j= 1’2’ ceen

gramming problem which is consistent
with the demand constraints at an ex-
treme point of the convex set because
the possible number of values of the
vector ¢ is infinite.

The empirical problem encountered
supports the above conjecture about
solutions not being at extreme points.
For example, one case where m = 2
yielded a solution containing m + 3 =5
activities at a positive level instead of
m as would result with a fixed vector c.

An approximate solution to the prob-
lem expressed by (3.2) is possible by
some iterative technique and one such
procedure is outlined below. The con-
straints of (3.1) are augmented by =
inequalities
B3) z; = Dye),j=1,2,--n.
We have a linear programming prob-
lem with more constraints than ac-
tivities, but when slack variables are
introduced to transform the inequalities
into equalities the number of activities
is 2n + m and there are m + n equations.
A set of prices {c;} is chosen such that
all dual prices associated with the con-
straints of (3.3) are positive. Denote
these dual pricesby dj, j=1,2,...n.

These dual prices are used to modify
the prices in the objective funection, i.e.,

¥ At the time this study was going to press, the author discovered a mathematical programming model which
will solve this general problem. The objective function is the sum of the areas under activity demand functions
with constraints as given in (8.1). Proof that this model is equivalent to the competitive equilibrium can be
made by utilizing the Kuhn-Tucker theorem for nonlinear programming.
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the ¢j, j =1, 2, ... n. Solution to (3.2)
is approximated when all the d; are
sufficiently close to zero but still posi-
tive. The best way to obtain rapid con-
vergence to an approximate solution is
not clear and only computational ex-
perience will shed light on the problem.
A tentative suggestion is to reduce c;
directly in relation to the magnitude of
d; and inversely in relation to elasticity
of demand for the j** commodity rela-
tive to all commodities. It is noted that
a zero d; is of no consequence if the
level of the j** activity is insignificant
e.g., at the unit level. This situation
would imply a zero level for that ac-
tivity within the limits of an approxi-
mate solution.

The linear programming problems
appearing in the empirical work under-
taken here turn out to be extremely
simple and the problems just discussed
are readily solved. Only the water con-
straint is effective and the reduced
problem is solved in a straightforward
way. This single study might be typi-
cal; in which case, we need not concern
ourselves with solving the complicated
general formulation just discussed.
Nevertheless, the general model may
have application elsewhere for regional
economie activity analysis.

‘We now consider the case most likely
to occur in analysis related to water re-
source development—physical restric-
tions in the linear programming model
involving only water and land. The
water and land available may be classi-
fied by quality, thus introducing a re-
striction for each quality of land or
water. We assume water is homoge-
neous, giving only one water restriction.

An approximate solution procedure
is proposed which selects one quality of
land as the standard and all land is as-
sumed to be of that quality for solution
purposes. The linear programming
problem now has only two restrictions,

2 Under monopoly the net marginal revenues
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one each for water and land. The value
of the objective function and the as-
sociated selection of activity levels is
desired for various magnitudes of the
water constraint, i.e., we wish to treat
the water restriction as a parameter
and derive the optimum solution for
various magnitudes of the parameter.
There must exist a small value for the
water restriction such that the land re-
striction is not effective. For these
values of the water parameter under
which the land constraint is ineffective,
it is easily shown that returns are
maximized by equating returns per unit
of water among those activities enter-
ing at a positive level.® Recall that per
unit return from an activity is a de-
creasing function of the level of the
activity because of negatively sloped
demand functions.

Likewise for large enough values of
the water parameter, land is the only
effective constraint and the optimum
levels of activities entering at a posi-
tive level are those which equate re-
turns per unit of land among the ac-
tivities. Finding the activities which
enter the solution is not too difficult,
but requires an iterative procedure in
most cases. When a relatively small
number of activities is involved, finding
the set of activities which enter at a
positive level is quite feasible by trial
and error. Starting from a small magni-
tude of the water parameter and going
to larger values permits using a great
deal of information from one magni-
tude of the water parameter to the next
with respect to the set of activities
entering the solution.

What about the values of the water
parameter for which both the land and
water constraints are effective, and how
do we find them? This case is unimpor-
tant if the set of activities entering the
solution is the same under either the
water or land restriction considered

with respect to water would be equated when

water is the most limiting factor of production. Under pure competition each entrepreneur looks
at price as his marginal revenue and the motive of profit maximization leads to equating of
average returns with respect to water among all commodities (see Appendix C).
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separately. The reason it is unimpor-
tant is that only a single value of the
water parameter can be involved in
such a situation, and consequently, the
chance of encountering it is extremely
small.

Suppose the problem has been solved
under our assumption of a homogene-
ous land constraint. The levels of ac-
tivities specified by this solution are
only approximations to those implied
by solution of the general problem
where land is not treated as homogene-
ous. We treat them as the solution to
the more general problem, but evaluate
returns from them in relation to the
general problem, not the simplified one.

For example in the empirical prob-
lem, land is assumed homogeneous ex-
cept for irrigation development costs.
Net returns under the general problem
(with activity levels specified by the
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simplified problem) are equal to re-
turns under the simplified problem
minus the minimum development costs
for the quantity of land used. The ac-
tivity levels used are not optimum for
the general problem but provide a good
approximate solution.

The procedure described in this see-
tion for cases involving only land and
water constraints, with water homoge-
neous in quality, should prove quite
satisfactory for most analyses. Never-
theless, situations may be encountered
which require a great deal of trial and
error calculation and we have no sug-
gestions to avoid the dilemma. Suffice it
to say that more research is needed in
solution of the general problem de-
seribed in the last sectionm, i.e., a linear
programming model subjeet to demand
constraints on activities and simulated
pure competition.

LABOR AND CAPITAL CONSTRAINTS

It is assumed that an unlimited sup-
ply of capital and labor exists at the
prices prevailing during some base pe-
riod chosen. It is further assumed that
the opportunity cost of using the capital
and labor in the study area is equal to
its cost during the base period. The pre-
ceding assumptions imply perfect mo-
bility of labor and capital as well as a
full employment economy. It also ex-
trapolates returns to capital and labor
from the base period into the future.

The eonditions imposed by these as-
sumptions are not proposed as holding
true exactly, but only as a reasonable
approximation to the real situation.
Complete mobility of labor and capital
is not unreasonable when considering
the long-run economic organization of
an area. The assumption is here made
for short-run adjustments, but adjust-
ments are allowed to take place only at
five-year intervals and the final solu-

tion of the inventory problem is likely
to indicate very small probabilities for
large adjustments at the five-year in-
tervals. Thus, what appears to be a
questionable assumption may lead to
final results which are largely free from
these first impression objections. More
precisely, the assumption would not
have been necessary if we had had @
priort knowledge about the final solu-
tion to be obtained. It is seen that the
final results must be derived before the
consequences of certain initial assump-
tions can be evaluated. The mobility
assumptions with respect to capital and
labor can be reconsidered in light of
the empirical results fortheoming. Some
attention is given to this in Chapter VI,
beginning page 83.

The assumption pertaining to cost of
labor and capital is here accepted due
to its simplicity and due to lack of a
feasible alternative.
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RIGIDITIES IN PRODUCING CERTAIN
AGRICULTURAL CROPS

Tree crops are not subject to short-
term changes in production and must
be given special treatment in the esti-
mation of net output as a function of
water. In a sense trees are a special
type of capital goods that is completely
immobile and requires a development
period before contributing to produe-
tion. The question is, what proportion
of the study area should be devoted to
each tree crop in order to maximize net
output under an optimal water inven-
tory policy? It is assumed that propor-
tions will remain unchanged due to the
lengthy production cycle of tree crop
production. Projection of demand con-
ditions to only a single point in time
also makes constant proportions more
acceptable in the model. Allowance of
some changes over time would be more
realistic but the computational burden
prevents consideration of more than
one point. The present discussion is
easily extended to several discrete pe-
riods in time where tree crop produc-
tion is held fixed only during each
separate period.

Suppose the optimal inventory policy
were known—then we face the task of
determining the production of various
tree crops, with a known probability
distribution for water supply. Treated
conceptually as a maximization prob-
lem subject to the constraints of pure
competition and product demands, this
is obviously an extremely ecomplex prob-
lem. Ultimately we want a measure of
net output which could result under an
optimal water inventory policy carried
out by a public ageney. A method is de-
sired which approximates the results
which would oceur in a competitive in-
dustry where private firms make the
production decisions.

Under the supposition that the prob-

ability distribution of water to be con-
sumed in the area is known, we need to
know how this water is to be allocated
to individual firms in order to examine
the firms’ possible behavior. Let us as-
sume water rights are attached to the
land in a fairly uniform way over the
entire region of study; thus each firm
has a known probability distribution
for water supply over time. What pro-
portion of the farm will a firm plant to
tree crops?

Trees represent a large fixed invest-
ment, and a conservative entrepreneur
would not risk the loss of part of his
acreage from a deficient water supply;
at least the probability of loss would be
kept quite low. We must hypothesize
firms’ behavior under conditions of risk
and imperfect knowledge, choosing a
policy which is optimum subject to this
behavior. Imperfect knowledge is in-
troduced recognizing that a firm will
not be making decisions utilizing an
abstract probability distribution, but
rather, only some rough, subjective ap-
proximation to it.

A difficult situation is confronted in
guessing private firms’ behavior under
the conditions implied by a known
water management policy. Even if firm
behavior were known, the choice of the
optimum management rule would be
extremely complex. It would involve
comparing expected net output from all
possible decision rules. A relatively
simple approach is taken in the em-
pirical study. Producers are assumed
to use long-run mean supply of water
as a fixed supply on the basis of which
tree erop decisions are made. Thus land
which is used in the production of tree
crops is independent of the water in-
ventory policy used by the public
agency.
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IV. ESTIMATION OF THE NET OUTPUT FUNCTION
FOR THE STUDY AREA

. The base period from which produec-
tion costs are determined is 1957-1959.
The year 1980 is used for demand, sup-
ply, and population projections. The
projected relations of that year are used

as an approximation to each year in the
infinite planning horizon of the public
agency. That is, each year is assumed
identical to the projected year, 1980.

THE INTEREST RATE

A public agency should use the time
preference rate which is relevant for
the particular intertemporal measure-
ment with which it is confronted. In the
present case, the opportunity cost of
production now relative to the future
is the marginal rate of return on private
investment. Water inventory manage-
ment involves no investment and, con-
sequently, the opportunity cost of pub-
lic investment funds is not relevant. It
is merely a question of when the stock

of water in storage is going to be used.

The marginal rate of return on pri-
vate investment for land owners in the
study area is the discount rate which
should be used to determine the opti-
mum water inventory policy over time.
Empirical measures of the rate of re-
turn on investment in or out of agricul-
ture are not available. We shall carry
out the analysis using rates of 5 and 6
per cent, and examine the sensitivity
of the solution to the discount rate.

CHOICE OF ACTIVITIES

The activities chosen for this study
were limited by practical considera-
tions and data available on production
costs. Some activities may be aggre-
gated into a single activity forcing its
component parts to be produced in
fixed proportions. Others may be de-
leted, as for example, erops not adapted
to the region. Aggregation is appro-
priate for certain groups of agricul-
tural activities, for example, where for-
age must be provided to a livestock
activity.

The nonagricultural sector is of only
minor importance in the study area.
Fresno is the only city of any signifi-
cance. It is assumed that water and
land requirements for nonagricultural
use will be met under this situation,
without any effect on the economic or-
ganization of the urban sector being in-
duced by the land and water con-
straints. The nonagricultural land and
water requirements are estimated by
projecting urban population and speei-

fying a fixed requirement per capita of
land and water (see Appendix B). No
estimate of net benefits attributable to
the nonagricultural sector is made be-
cause these benefits would be constant
under our assumptions. Nonagricul-
tural production will not change with a
change in the water constraint since it
has been specified that water require-
ments of the projected urban popula-
tion will have first priority and the re-
quirements will always be less than the
constraint. The net effect is a smaller
quantity in each of the constraints on
water and land available to agriculture
for each water consumption level eon-
sidered. The optimum water inventory
policy is not affected by nonagricul-
tural produection. Solution of relation
(2.2) is not affected by substituting
B.*(8;) + ¢ in place of B,*(S;), ¢ being
a scalar independent of k. The sub-
seript #» on B,* may be dropped for our
present problem, i.e., the net benefit
function is invariant over time for a
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TABLE 3
SUMMARY OF ACTIVITIES
Produc- Produc- Labor* and Land Water Gross return Return
Activity tion tion for capital require- require- at base above capital
units market costs ment ment prices and labor
dollars acres acre/ft dollars

Treenuts.............. tons 90 26,209 100 400.0 40,950 14,741
Cotton..... e AN .. 44,955 200 666.7 81,052 36,097

Lint...... .| 5001b bales 450 .. 72,675 ..

Seed...... tons 180 .. .. .. 8,377 .
Oranges............... 771b boxes 11,000 20,070 40 146.8 39,380 19,310
Dry beans............. cwt 2,000 7,766 100 358.3 17,120 9,354
Deciduous.... tons 2,055 112,402 160 640.0 150,138 37,736
Truck crops. . cwt 31,550 120,728 160 573.3 184,568 63,840
Grapes....... tons 1,420 46,315 160 640.0 81,451 35,136
Milo-Barley . . cwt 7,000 8,962 100 350.0 14,840 5,878
Field corn.... cwt 6,000 7,177 100 333.3 15,000 7,823
Beef.......... cwt 1,725 33,712 88 440.0 39,037 5,325
Dairy........ e .. 51,776 220 .. 66,399 14,623

Barley...... cwt 1,260 .. 42 .. 2,684 ..

Alfalfa...... tons 35 72 .. 788

Cattle........ e .. 6 .. 5,597

Milk.......... cwt 13,000 .. 57,330

Pasture.............. .. 84 ..

Cornsilage. ......... 18

* Land development costs are excluded.

given storage level of ground water and
specified alternative with respect to
water consumption.

Three activities, deciduous fruit
(other than grapes), truck erops, and
tree nuts are aggregates of commodities
for which the proportion of each compo-
nent was somewhat arbitrarily de-
termined. The average acreage in the
San Joaquin Valley during the base
period was used to determine the rela-
tive weight given to each commodity
within the aggregate. The form of avail-

able data and cropping practices es-
sentially determined the components of
other aggregates defined as activities.
A summary of the activities, their re-
spective labor and capital costs, land
and water requirements, and produec-
tion is given in table 3. A detailed pre-
sentation of the activities and their as-
sociated labor and capital costs is given
in Appendix A. The size of an activity
at unit level is of no significance under
fixed coefficients of production. Those
used were chosen for convenience.

ACTIVITY DEMAND FUNCTIONS

National market demand

The relevant market for production
coming from the study area is assumed
to be the United States. The first step
in getting the demand function faced
by the study area is to obtain an esti-
mated demand relation at the farm
level for the national market.

Most statistical estimation of demand
relations has focused on measuring elas-
ticities. Therefore, the estimated de-

mand parameters available for most
commodities are elasticities. A constant
elasticity of demand was assumed to fa-
cilitate the use of such estimates. Price
elasticity of demand is defined as
(8Q’/dP) (P/Q’) where P and @’ denote
price and per capita quantity consumed,
respectively. Setting the elasticity equal
to a constant gives the partial differ-
ential equation 0¢’/dP= (Q’/P)E,,
with E, a constant. Likewise, income
elasticity assumed constant gives the
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partial differential equation 0Q’/dY
(Q'/Y)E, where Y denotes per capita
income and E, is the constant income
elasticity. Solution of the differential
equations gives the Cobb-Douglas type
function

(4.1) Q' = cPE» yEv

where ¢ is an unknown constant to be
determined by imposing some addi-
tional relationship. In this study, it is
specified that the variables during the
base period correspond to a point on the
estimated demand function; thus, the
parameter ¢ is determined. Only the
variables price, per capita income, and
population are considered in the de-
mand functions, and all demand fune-
tions are projected for the year 1980.
The statistical estimates of elasticities
and their sources are given in table 4.*
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Only selected activities are con-
sidered; those for which production
within the study area is expected to
have a significant effect on price. Under
our assumptions, activities which do not
change much from their base period
level will have about the same per-unit
value as during the base period. Aec-
tivities for which the level does change
considerably may still have approxi-
mately the same price if production
within the study area, both during the
base period and the estimated condi-
tions for 1980, is a small proportion of
total United States production.

For given national market demand,
price elasticity for study area demand
is determined by the area’s proportion
of quantity sold in the national market.
As the proportion goes to zero the elas-
ticity becomes infinite, and as the pro-

TABLE 4

DEMAND PARAMETERS FOR SELECTED ACTIVITIES
U. S. MARKET

Projected
Price Income Log ¢ of supply from| Unitsof |[P.— Py=C
elasticity | elasticity relation (4.1) | outside the | projected | (base period)
study area supply
[¢)] 2 @®) @ (6] (6)
1,000 units
— .62 .83 7.42851 — 10 239,475 boxes — 0.58
- .97 — .20 0.48257 15,086 cwt — 1.60
—1.49 1.43 ..
—1.47 1.59
—1.47 1.59 .. .. ..
Deciduous fruit activity*... —1.49 1.46 6.14718 — 10 4,940 tons 18.37
Tomatoes —4.65 .40 ..
Melons. ......... — .90 — .40
Sweet potatoes —1.30 — .25 .. .. ..
—3.33 .13 1.15654 87,531 cwt — 2.08
Grapes...........coovivuiinninnn... —1.47 1.59 5.65894 5,925 tons 7.03

* Elasticities are weighted average of components, using value at base period prices as weights.

SOURCE:

Column 1: Oranges, dry beans, deciduous fruit, sweet potatoes, and grapes: Fox, 1953, (The estimate for the aggre-
gate group of commodities to which the individual commodity belongs is used when an individual estimate is not

available).
Tomatoes: Shuffet, 1954.

Melons: Suits, 1955. (Source gives estimate for watermelons only, but used for all melons).
Column 2: Oranges, deciduous fruit, and grapes: Computed from Fox, 1953, p. 65.

Dry beans and truck crops: Daly, 1956, p. 80.

Column 3: Computed, using base period price, quantity, and disposable personal income.

Column 4: Computed as described in the text.
Column 6: Table A-9.

¢ The elasticities were chosen arbitrarily, particularly the income elasticities which are based
partially on judgment of those originally making the estimates of the elasticties. A large num-
ber of the price elasticities were taken from a single source because it was felt that there is an
advantage in using elasticities estimated by the same methods and sample of years. Relative price
elasticities are extremely important in this study, as will become obvious when the solution pro-
cedure is examined.
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portion goes to 1 the elasticity becomes
the national market elasticity. It is on
this basis that demand relations for
several of the activities are not esti-
mated since production within the
study region is an extremely small pro-
portion of total quantity marketed in
the United States. The base period price
is taken as a constant price for these
activities. Essentially, we are estimating
the demand functions of these ac-
tivities to be such that price equals a
constant independently of the quantity
produced within the study area (within
the possible range of quantities to be
considered).

Supply function for United States
outside the study area

‘With the national market demand
specified, we must know the supply
funetion for the United States outside
the study area to find the demand fune-
tion for the study area. In the following
discussion, assume that projected values
for per capita income and population
have been substituted into the demand
equation, and the constant term in-
cludes the income and population
terms. We have a national demand
function, Q = aP?, where b is the price
elasticity of demand and @ is total
quantity consumed. Denote production
in the study area and the remainder of
the United States by @, and Q,, re-
spectively. The demand equation may
be written Q, + Q. = aP? under the as-
sumption that all production is con-
sumed. Define the supply function for
the United States outside the study
area as Q. = S,(P). Then the demand
function for the study area is @, = aP*>—
8.(P). An estimate of 8, is required
to derive a demand relation for the
study area.

Obtaining an estimate of S, is ex-
tremely difficult, and the extensive em-
pirical analysis required for statistical
estimation is beyond the scope of this
study. Instead a simple, though perhaps
not too unrealistie, assumption is made.
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Namely, S, (P) = Q.°, where Q.° is a con-
stant for small fluctuations in price
around the base period price. .° is de-
termined in the following manner: The
total quantity that would be demanded
at the base price is obtained from the
corresponding national demand rela-
tion; denote this quantity by @°. Com-
pute the proportion of the commodity
in question produced outside the study
area during the base period; denote the
proportion by «. Then Q.° equals «Q°.
We are essentially fixing production in
the same proportion geographically as
it was during the base period, provided
price is at the base period level. Price,
however, is determined by produetion
in the study area under our assumed S.,
and is not equal to price during the
base period except by coincidence.

Study area demand functions

‘We have assumed S, to be completely
inelastie, but economic reasoning im-
plies a positive relation between @, and
price. Elasticity of demand for produe-
tion within the study area is

4.2) @bP*™ — S (P)) g.
Our assumption of a completely inelas-
tic supply function, S,, implies S, (P)
=0 while the more realistic situation,
expected from economic reasoning, is
8./ (P) > 0. Under the assumption that
price elasticity in the national market,
b, is negative, the absolute value of
(4.2) is smaller if 8;’(P) =0 than if it
is positive. That is, demand for produec-
tion within the study area is more elas-
tic in reality than under our assumption
that supply outside the study area is
completely inelastic. The comparison
is made for two demand relations at a
single point such that each goes through
the same point, (P, @,), in the plane
generated by all positive values of P
and Q,.

Derivation of the study area demand
funetions from the national market de-
mand funetions is complete with projec-
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tions of supply functions except for a
diserepancy between national market
and study area prices for given quan-
tities. For the base period, this discrep-
ancy is large for several commodities
(see Table A-1). The differences are ex-
plained by transportation costs from
regions of production to consumption,
the interseasonal distribution of sales,
quality differences, and possibly other
factors. It is necessary that demand re-
lations for the study area be expressed
in terms of study area prices.

The national price is a weighted aver-
age price which can be expressed as a
weighted average of prices for the study

(43) Q(1+b)/b

where Q = Q. + Q.°. We can solve (4.3)
explicitly for P, but not for @,, and
when going from price to the corre-
sponding quantity, an iterative method
must be used. Newton’s method for
solving equations is used when neces-
sary in computations and proves very
satisfactory for this type equation.
The demand relation for cotton is
handled in a special way in view of the
government program for this com-
modity. It is assumed that, under the
program, cotton price will be main-
tained at the base period level and per-
mit the same amount of cotton to be
exported annually as during the base
period. Exports and domestic consump-
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area and the remainder of the United
States. Using the same notation as in
the preceding section, consider the de-
mand relation, @ =aP? with price, P,
a weighted average, (P.Q,+P:Q,)/
(@1 + Q). Our projection of supply out-
side the study area results in Q. = Q.°,
a constant. It is assumed that the
relation existing between P, and P,
during the base period is stable for the
changes in @, and . which will be con-
sidered, i.e., P, =P, +d, where d is the
difference between prices during the
base period. This assumption lets us
derive the demand curve from @ =aP?
as

- a'’P.Q — a'’dQ3 = 0

tion during the base period, as well as
projections for 1980, are given in table
5. The projections are based on an in-
come elasticity of .95. (Cromarty, 1959,
p. 573) Maximum production in the
study area is estimated as the same pro-
portion of projected United States pro-
duction (consumption plus exports) as
the study area produced of total United
States production during the base pe-
riod. That proportion is 0.03168 (table
A-8).

Projected United States market de-
mand equations for selected activities
are given in table 6, and demand fune-
tions for all activities under our as-
sumptions are summarized in table 7.

TABLE 5

COTTON: DOMESTIC CONSUMPTION AND EXPORTS
(1,000 bales)

Average Projected
1957 1958 1959 1957-59 1980
1 2 (&) @) (5)
EXPOrts. ..ottt e 5,717 2,759 7,183 5,230 5,230
Consumption. . ........vviiiiiii i 7,973 8,671 9,024 8,556 19,100
Maximum production in study area............... .. .. .. kes!

SOURCES:

Col. 1, 2, 3: International Cotton Advisory Committee, 1960, pp. 104-06.
Col. 5: Computed under assumptions described in the text.
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TABLE 6
PROJECTED UNITED STATES MARKET DEMAND EQUATIONS
IN 1980 FOR SELECTED ACTIVITIES
Activity Units Demand function Production at
base prices
Oranges. .......ouvniinii i boxes log Q = 8.70287 — .62 log P 255,300,000
Drybeans..........ooiiiiiiiiiiiiiii.. cwt log Q = 8.17430 — .97 log P 22,750,000
Deciduous fruit......... ... i tons log Q = 9.61285 — 1.49 log P 5,216,000
Truck Crops. ... o.ovv it cwt log Q = 9.99611 — 3.33 log P 118,300,000
GraPeS. . oottt e tons log Q = 9.57680 — 1.47 log P 8,929,000
TaBLE 7
STUDY AREA—ACTIVITY DEMAND EQUATIONS
Activity* Units Demand equation
OFANEES. ..ot e e et boxes Q81 — (9736)(10)718P1Q + (14,325)"10 =0
Q1 = Q — 253,629,000
Dry beans. .......c.uuiiiiiiii i cwt Q-0 — (3806)(10)12P1Q + .1378 = 0
Q1 = Q — 22,632,000
Deciduous fruit................oooiiii i tons Q-3 — (3626)(10)"10P,Q — 28.1665 = 0
Q1 = Q — 4,228,000
Truek Crops. .....c.ooouii e cwt Q-7 — (1003)(10)~¢P1Q + 245,020 = 0
Q1 = Q — 117,446,000
[ <1 tons Q-32 — (3075)(10)"10P1Q — 10.5081 = 0
Q1 = Q — 4,861,000
Cotton (lint).......oooiii bales P, = $161.50 Q1 £ 771,000
Cotton (8eed). .......ooiviit i tons P =8 44.65 Q1 < 308,000
Fieldcorn. ... cwt Py =$2.50
Barley-sorghum........... ... ... .. ... cwt P =§212
Beef. .. ..o cwt P, = $22.63
Dairy (milk). ... cewt P =$4.41

* Tree nuts are not included because returns per unit of water or land are too low to be significant.

Tree nuts are not included since returns
per unit of water or land are so low
relative to other tree crops at base
prices that zero production of tree nuts
in the study area would lead to a price
still too low to compete with other tree
crop activities. The study area pro-
duced only 2.8 per cent of United States
production during the base period. Sup-
pose price elasticity of tree nuts for
the national market is minus one-tenth,
very small (in absolute value) for an

agricultural commodity. Then zero pro-
duction of tree nuts in the study area
would reduce national quantity mar-
keted by 2.8 per cent and bring about
a 28 per cent increase in price. The base
price of $460 per ton would be increased
to $589, but net returns per acre-foot
of water would be only $67. We shall
see later that this return per acre-foot
of water is not high enough to compete
with other tree crop activities.

LAND CONSTRAINTS

A detailed land classification was not
available for the study area such that
a separate land constraint could be in-
troduced for each homogeneous class of
land. The entire area is therefore classi-
fied into only two units: (1) econjunc-
tive use area and (2) nonconjunctive

use area. The conjunctive use area is
that in which most farms use some sur-
face and ground water, while farms of
the nonconjunctive use area depend
entirely on ground water. Thus, refer-
ence to conjunctive use is at the farm
level under the present situation, and
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is not related to solution of the conjune-
tive use problem for the entire area.

Separate development costs are esti-
mated for each of these two classes. De-
velopment costs are for leveling and
chemical treatment of the soil with gyp-
sum. Large differences in leveling and
gypsum requirements exist within each
area, but we treat each area as a homo-
geneous unit and derive an average cost
of development.

The number of feet cut required for
leveling is estimated from tentative
land classification data provided by the
California Department of Water Re-
sources. The costs of leveling for vari-
ous depth cuts are estimated from costs
for Kern County (Calif. Dept. of
Water Resources, 1958, p. 82).

Gypsum requirements are estimated
on the basis of the amount required to
reduce the sodium percentage to 15
per cent in the top two feet of soil. This
information for the various eclasses of
soil was obtained from the California
Department of Water Resources and
applied to the respective soil classes in
each area to obtain an estimate of total
gypsum needed. The cost of pure gyp-
sum was taken to be $5.85 per ton. Com-
putation of development costs is given
in appendix table A-10. The land avail-
able in each area for irrigated agricul-
tural production, total development
costs, and development costs per acre
are given in table 8.

The land constraint in the linear pro-
gramming problems for various water
constraints is specified to be the sum for
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the two areas, i.e., 1,251,367 acres. De-
velopment costs for the two areas are
taken into consideration in calculating
net output from the optimum combina-
tion of activities obtained with only the
total land constraint considered. In
other words, land development costs
are deducted from net output derived
from a linear programming problem
specifying land as homogeneous for the
entire area with no development costs.
For land requirements less than that
available in the conjunctive use area,
the cost per acre for that area is used.
Larger land requirements are met by
using whatever additional land (above
623,081 acres) is needed from the non-
conjunctive use area. Thus, the pro-
cedure follows that suggested in Chap-
ter I11.

The development costs associated
with a particular quantity of water
used cannot be defined on a periodic
basis (for example annually) without
prior knowledge of the total number of
periods in which that quantity of water
will be used. In other words, develop-
ment costs cannot be defined periodi-
cally independently of the water man-
agement policy. As a first approxima-
tion, the total development cost is re-
duced to a perpetual, annual annuity
when the annual use rate under consid-
eration is less than the mean annual
supply. The development cost is re-
duced to a twenty-year annuity for an-
nual use rates which exceed the mean
annual supply. In the use levels of the
resulting policy where the error is con-

TABLE 8
DEVELOPMENT COSTS

Development costs per
Develop- acre amortized at
Total Irrigable Total ment costs 5 per cent
Area acreage agricultural | development | per irrigable
acreage costs acre
20 years |Perpetually
1,000 dollars dollars dollars
Conjunctiveuse................... 730,779 623,081 17,772 28.52 2.29 1.43
Nonconjunctive use............... 655,415 628,286 59,289 94.37 7.57 4.72

Source: Appendix tables A-10 and B-1.
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sidered significant, adjustments will be
required and a new policy computed
with the adjustments. Development
costs are small enough that two itera-
tions, at most, should be sufficient. For-
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tunately in this study the policy derived
using this first approximation is con-
sistent with the amortization periods
chosen and no further adjustments are
necessary.

WATER CONSTRAINTS

The discussion of estimating net out-
put as a function of water in the last
chapter indicates that one of our most
difficult problems is specifying the long-
run economic organization of the region
under study. In general, estimates of
levels of all unadjustable activities are
necessary. Within the particular region
of study, however, unadjustable activi-
ties are limited to tree crops. So far, it
has been assumed that a public agency
will control the pumping of ground
water over time. Under this assumption
individual firms would form plans on
the basis of whatever policy was set
forth by the public agency. Therefore,
the quantity of water allocated to fizxed
activities is an integral part of the op-
timal policy and is a variable with
which to optimize.

The public agency does not specify
in its water management policy how
much water is to be allocated to unad-
justable activities, but the policy of
temporal water allocation (without re-
quirements as to how the water is used)
does determine the quantity of water
which individual firms would devote
to unadjustable activities. The firms
within the region are seeking to maxi-
mize present value of profits and, in so
doing, must evaluate the risk of an un-
certain water supply in connection with
the large sunk costs of establishing an
orchard, vinevard, or other unadjust-
able activity. The policy of the public
agency controlling temporal water use
determines the probability distribution
of the water supply on which firms are
dependent. We do not know, but must
postulate, the behavior of firms under
different probability distributions of
water supply. Empirical investigation
of firm hehavior would be interesting

but goes beyond the scope of this study.

Estimated quantity of water allo-
cated to unadjustable activities is based
on the assumption that firms’ planning
is such that the effect is equivalent to
introducing long-run mean supply of
water in the linear programming model
as the water constraint. Under present
conditions, a single firm cannot rely on
ground water in the future with any
certainty. A single firm’s pumping (by
itself) has little influence on the quan-
tity in storage. The pumping of other
firms as an aggregate controls future
ground water reserves, and each firm
individually ecannot plan for future use.
However, firms in the immediate vi-
cinity of recharge, ie., in the present
conjunctive use area, can rely on their
proportionate share of annual recharge,
even in the future. Thus the mean an-
nual total supply of water for the area
is the quantity of water firms in the ag-
gregate will take as their annual water
constraint for long-run planning. We
use a slightly larger quantity of water
to allow planned utilization of ground
water reserves in long-run planning for
urban water supplies.

A well-informed farmer in the area
of present conjunective use realizes that
approximately one-half of the surface
water released into the surface distri-
bution system is recharged to ground
water. Therefore, farmers within this
immediate area of recharge can antici-
pate first opportunity of pumping the
limited quantity which will be available
in future years. It is assumed that each
farmer anticipates pumping a quantity
of water annually in the future equal to
his mean annual surface water supply,
delivered at the farm. The surface sup-
ply delivered at the farm is one-half
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total surface supply. This corresponds
to the estimated recharge rate of one-
half for water released into the surface
distribution system. No allowance is
made for urban use, i.e., we assume ur-
ban supplies are always satisfied from
ground water reserves. No difficulty is
anticipated since projected urban use
is relatively small. Also, when pumping
costs instead of physical limitations de-
termine the lower limit for pumping
ground water, urban demands can be
satisfied after agricultural demand is
curtailed by high pumping cost.

The mean annual supply of water
for the study area is from the following
sources (measured in acre-feet):

Kings River ............. 1,730,350°
Local minor streams ...... 24,400°
Central Valley Project
(estimated future
entitlement) ........... 60,000°
Total ............... 1,814,750

A very small amount of the Kings
River source is released for flood con-
trol and only the proportion of it re-
charged in the stream bed is available
for use in the study area. The quantity
not available is considered negligible
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for long-run planning purposes, but
will be considered in detail in the next
chapter where expected quantity re-
leased is estimated in order to obtain
the probability distribution of ground
water recharge.

The study area is not an isolated
ground water basin, but a part of a
larger basin. The study area’s sources
of ground water recharge are within
the study area, thus making annual
supply at least equal to that predicted
when ground water within the area is
being withdrawn more rapidly than in
the surrounding region. Therefore, if
the ground water management policy
resulting requires withdrawal of water
more rapidly than present practice in-
dicates in adjacent areas, the policy
will be on the conservative side with
respect to quantities that should be
pumped to maximize net output of the
study area, independently of other re-
gions. The reverse could be true, but it
is not expected. The policy obtained by
treating the area as a separate basin
will be strictly optimum only if ground
water movements are such that net
losses (or gains) from adjacent areas
are zero.

NUMERICAL SOLUTION

Long-run organization

Under a water constraint of 1,815,-
000 acre-feet, the land constraint of
over one million acres will not be effec-
tive sinee all irrigated ecrops require
more than two acre-feet of water per
year. Therefore, the problem may be
treated as one amenable to the caleulus
provided activities entering at a posi-
tive level can be identified (see Appen-
dix C). The results are equivalent to
equating net returns per unit of water
among activities entering the solution,
with the added constraint that total
water used does not exceed the quantity
available. We require that all water
available be used under the assumption

TaBLE 9

NET RETURNS PER UNIT OF
RESOURCES AT BASE PRICES

Resources
Activity Water Land
dollars per | dollars per
acre-foot acre
131 483

399
236
220
180

8 Computed average 1872-1959 minus estimated flood control releases of 25,000 acre-feet.
¢ Tentative estimates received from California Department of Water Resources.
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that the marginal net value of water is
positive within the limits imposed. If
the assumption should be violated, it
would be apparent from the solution.
The set of activities entering the so-
lution is determined by trial and error
together with an inspection of returns
at base prices. In this study, we were
fortunate in selecting the correct set on
the first trial. Returns at base prices per
unit of land and water are given in
table 9. The first four activities of table
9 were selected under the hypothesis
that more than 1,815,000 acre-feet of
water would be required to equate re-
turns per acre-foot of water in each ac-
tivity to $54, the return in the next ac-
tivity down from the four selected.
The results of Appendix C show that
equating average net returns among
commodities being produced (subject
to the water restriction) gives results
which would tend to prevail in the long-
run under pure competition. The no-
tation of Appendix C is as follows:

Q; = quantity of the " commodity
produced and sold

D;(Q;) =demand equation for the ¢**
commodity

K =fixed quantity of water available

w; = quantity of water used in pro-
duction of Q;

Q; = b;w;, the production function for
commodity Q;

C:(Q;) =d;Q;, the cost function for
commodity Q;

1=1,2,...n, n equals the number of
commodities being produced.

Our problem reduces to solving the sys-
tem of equations

b[DiQ) —d]=X\1=1,2,3,4

4
;@m=K.

The demand equations in table 7 are
seen to be polynomials with noninteger
exponents. Therefore, we have a system
of four nonlinear equations and one
linear equation. The solution procedure
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is to choose an arbitrary value for Q,
and solve for Q,, @,, and Q,. Then de-
fine y=Q./b:1+Q./bs+ Qy/bs+ Qu/bs—
K (K =1,815,000) and evaluate y for
the set of Q; obtained by the arbitrary
choice of @,. If y is positive, choose an-
other value for @, which is small enough
that y is reasonably sure to be negative
(and vice versa). Denote the first and
second values of v by vy, and vy., respec-
tively, and the changes in Q; by AQ;.

The next step in solving the system
is to use linear interpolation to get
a new estimate of the {Q;}. Denote the
{@; | associated with y, and y, by {Q:*}
and {Q;?}, respectively. Then our esti-
mate of Q;, say @,°, is
0 — ly1| 1,

A Rt
the plus or minus being dependent on
whether ¥, is positive, or negative. If
Y, is positive, we know @;! is too large
so the correction factor is subtracted,
and vice versa.

The first estimates by this method
equated average returns per unit of
water to within one cent, and satisfac-
tion of the water constraint was within
300 acre-feet, which was considered
sufficiently acecurate. If more accuracy
is desired the procedure may be re-
peated substituting Q,° for either @,
or ), whichever is appropriate by the
sign of y, obtained from substituting
@.° in the system of equations and solv-
ing for ., @, and Q..

Solving for Q., @;, and Q, for a spe-
cified value of @, was accomplished by
repeated applications of Newton’s
method for solving equations. The
method could wundoubtedly be pro-
grammed for solution on a digital com-
puter if a sufficiently large number of
such problems were to be solved. How-
ever, an alternative which should be
considered is approximation of the
nonlinear demand curves by linear
funetions in the neighborhood at which
solutions are expected.

The method described above was used
to obtain a solution corresponding to a
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water restriction of 1,815,000 acre-feet.
The levels of tree crop activities
(oranges, deciduous fruits, and grapes)
are assumed fixed at the levels resulting
from the solution regardless of the
amount of water made available in fu-
ture years. These are the unadjustable
activities. Tree nuts do not appear in
the solution since returns from tree
nuts per acre-foot of water are only
$37 at base prices while returns are
equal to $83 per acre-foot in the other
tree crop activities at the solution lev-
els. As indicated in preceding discus-
sion, zero production of tree nuts in
the study area reduces total national
quantity by only 2.8 per cent from the
base period level. A price of $660 per
ton for tree nuts would be required to
bring returns of $83 per acre-foot of
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water. Base price is $460, which implies
that a 2.8 per cent decrease in quantity
would have to bring about at least a
43.5 per cent increase in price in order
that tree crops would be produced. It
is assumed that demand for tree nuts
is not that inelastic, i.e., near —.06.

Table 10 summarizes the solution
derived in terms of the activities as
previously defined. The unadjustable
activities and net returns from them
are given in table 11. Total water and
land requirements, including urban,
are also given. These requirements
must be met with first priority for any
given quantity of water made avail-
able. No annual rate of water consump-
tion significantly below the specified
fixed requirement is counsidered as a
feasible alternative.

TaBLE 10

SOLUTION FOR LONG-RUN ECONOMIC ORGANIZATION
(Water constraint of 1,815,000 acre-feet)

. Water Land Study Per Net return
Activity Activity require- require- area pro- Units unit per acre-foot
level ment ment duction price of water
acre-feet acres 1,000 units dollars
Oranges............ooo... 3,488.27 512,078 139,531 38,371 boxes 2.9154 81.74
75.91 48,582 12,146 156 tons 80.1518 81.73
752.90 431,638 120,464 23,754 cwt 5.3119 81.74
1,285.92 822,999 205,747 1,826 tons 69.4559 81.74
0 .. ..
1,815,297 477,888
TaBLE 11
UNADJUSTABLE ACTIVITY LEVELS
(Mean water supply of 1,815,000 acre-feet)
Gross return| Labor and | Net return Total Water Land
Activity Activity | per activity capital per activity net require- require-
level unit costs unit output ment, ment
dollars 1,000 dollars acre-feet acres
Oranges................ 3,488.27 32,069 20,070 11,999 41,856 512,078 139,531
Deciduous fruit......... 75.91 164,712 112,402 52,310 3,971 48,582 12,146
Grapes................. 1,285.92 98, 627 46,315 52,312 67,269 822,999 205,747
Urban and misc......... . 122,484 ..
TOTAL............ 113,096 1,506,143 357,424




TaABLE 12

DERIVATION OF NET OUTPUT AT VARIOUS ANNUAL RATES
OF WATER CONSUMPTION
(Mean water supply of 1,815,000 acre-feet)

Quantity
Water made available | Activity level | produced in Price Acreage Water used Net output*
study area
1,000 acre-feet 1,000 units |dollars per cwt acre-feet 1,000 dollars
1,500 .
Fixed activities....... 355,837 1,500,000 112,594
1,750
Fixed activities....... 357,424 1,506,143 113,096
425.36 13,420 5.5282 68,058 243,857 22,836
425,482 1,750,000 135,932
357,424 1,506,143 113,096
861.43 27,178 5.2424 137,829 493,857 38,479
495,253 2,000,000 151,575
357,424 1,506,143 113,096
1297.50 40,936 5.0001 207,600 ‘743,857 48,040
565,024 2,250,000 161,136
Fixed activities....... 357,424 1,506,143 113,096
Truck crops... 1697.18 53,546 4.8078 271,549 972,993 52,541
Cotton...... . 31.29 6,258 20, 864 1,129
TOTAL.......... 635,231 2,500,000 166,766
2,750
Fixed activities....... 357,424 1,506,143 113,096
Truck crops... . 1697.18 53,546 4.8078 271,549 972,993 52,541
Cotton...... . 406.27 81,254 270,864 14,665
TOTAL.......... 710,227 2,750,000 180,302
3,000
Fixed activities. 357,424 1,506,143 113,096
Truck crops... .. 1697.18 53,546 4.8078 271,549 972,993 52,541
Cotton...... .. 781.25 156,250 520,864 28,201
TOTAL.......... 785,223 3,000,000 193,838
3,250
Fixed activities 357,424 1,506,143 113,096
Truck crops . 1697.18 53,546 4.8078 271,549 972,993 52,541
Cotton .. 1156.23 231,246 770,864 41,736
TOTAL 860,219 3,250,000 207,373
3,500
Fixed activities....... 357,424 1,506,143 113,096
Truck crops... .. 1697.18 53,546 4.8078 271,549 972,993 52,541
Cotton. ... 1531.21 306,242 1,020,864 55,272
TOTA 935,215 3,500,000 220,909
3,750 .
Fixed activities....... 357,424 1,506,143 113,096
Truck crops... .. 1921.46 60, 622 4.7025 307,434 1,101,574 53,101
Cotton...... .. 1713.33 342,666 1,142,283 61,846
TOTAL.......... 1,007,524 3,750,000 228,043
4,000
Fixed activities....... 357,424 1,506,143 113,096
Truck crops.. .. 2357.53 74,380 4.5380 377,205 1,351,574 52,917
Cotton...... .. 1713.33 342,666 1,142,283 61,846
TOTAL.......... 1,077,295 4,000,000 227,859
4,250
Fixed activities....... 357,424 1,506,143 113,096
Truck crops.. .. 2793.61 88,138 4.3856 446,976 1,601,574 49,271
Cotton...... .. 1713.33 342,666 1,142,283 61,846
TOTAL.......... 1,147,066 4,250,000 224,213
4,500
Fixed activities....... 357,424 1,506,143 113,096
Truck crops. . 3103.03 97,901 4.2876 496,485 1,778,950 45,136
Cotton.. ... 1713.33 342,666 1,142,283 61,846
Dry beans. . .. 202.69 405 8.4301 20,269 72,624 1,840
TOTAL.......... 1,216,844 4,500,000 221,918
4,750
Fixed activities. 357,424 1,506,143 113,096
Truck crops.. 3162.79 99,786 4.2695 506,044 1,813,228 44,199
Cotton..... 1713.33 342,666 1,142,283 61,846
Dry beans. . . 452.33 905 8.2469 45,233 162,070 3,048
TOTAL.......... 1,251,367 4,623,724 223,089

* Net output is gross output at projected market value minus basic labor and capital costs (land development and
ground water pumping costs are excluded from costs).
t Maximum irrigable land available for agricultural production.
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Short-run adjustments

Annual net output for various quan-
tities of water made available period-
ically must now be computed, subject
to the fixed requirements. Water is
added by inerements of 250,000 acre-
feet, from 1,750,000 to 4,500,000 acre-
feet. Each separate water constraint
requires repeated application of the
principles introduced in deriving the
long-run economic organization. The
set of activities is different, however,
and the solution more easily obtained.
The presence of fixed prices for some
activities is particularly helpful in ob-
taining the solution. The results are
summarized in table 12. Net output, as
defined there, is net only of labor and
capital costs; development costs are not
considered in determining the optimum
activity levels.

Net output is not inereased by added
consumption of water above 3,750,000
acre-feet. The primary reason for this
is the inelastic demand for net output
from truck ecrops. The truck crop ac-
tivity enters the solution at such a high
level that a large proportion of the na-
tion’s truck erops are being produced
in the study area (45 per cent in the
most extreme situation). We note also
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that labor and ecapital are deducted
from gross output. Elasticity of de-
mand is less with respect to net output
than gross output.

Table 13 shows net output per unit
of land and water classified by activity
and annual use rate of water. The un-
adjustable activities are not subject to
change, and consequently, have the
same net output for all annual use
rates of water. Demand for cotton
produced in the study area is assumed
to be such that price is constant, but a
maximum is imposed on quantity that
may be produced (see table 7). There-
fore, net output per unit of land and
water attributable to cotton production
is invariant with respect to annual
water use rates. The quantity produced
is variable, however. Truck crops and
dry beans are the only two activities
in the solution with continuous demand
funections.

Calculation of net output with land
development costs (as well as other
labor and capital costs) deducted is
given in table 14.

To determine the maximum price the
study area can afford to pay for im-
ported water, we consider a 250,000
acre-foot addition to the mean annual
supply of water in the area. It is as-

TaBLE 13

NET OUTPUT PER UNIT OF WATER AND LAND RESOURCES UNDER A MEAN
ANNUAL SUPPLY OF 1,815,000 ACRE-FEET

Net output per acre-foot of water (dollars) Net output per acre of land (dollars)

Annual rate

of water use

(1,000 acre- Fixed Truck Dry Fixed Truck Dry

feet) activities crops Cotton beans activities crops Cotton beans

1,500........... 82 —* — — 316 —_ — —
1,750........... 82 94 —_ —_ 316 336 —-— —
2,000........... 82 78 — — 316 279 — —
2,250........... 82 65 — — 316 231 — —
2,500........... 82 54 54 — 316 193 180 —
2,750........... 82 54 54 — 316 193 180 —
3,000........... 82 54 54 — 316 193 180 —
3,250........... 82 54 54 — 316 193 180 —
3,500........... 82 54 54 — 316 193 180 —
3,750........... 82 48 54 — 316 173 180 —
4,000........... 82 39 54 — 316 140 180 —
4,250........... 82 31 54 — 316 110 180 —
4,500........... 82 25 54 25 316 91 180 91
4,750........... 82 24 54 24 316 87 180 87

* Dashes signify no production with optimal combination of activities under pure competition.
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TaBLE 14

DEDUCTION OF LAND DEVELOPMENT COSTS FROM NET OUTPUT
(Mean annual water supply of 1,815,000 acre-feet)

Net output .
Annual rate of including land Acreage Weighted cost Development Net output
water use development costs per acre costs
1,000 acre-feet 1,000 dollars dollars 1,000 dollars 1,000 dollars
135,932 425,482 1.4300 608 135,324
151,575 495,253 1.4300 708 150,867
161,136 565,024 1.5362 868 160,268
166,766 635,231 1.7143 1,093 165,673
180,302 710,227 2.3331 1,661 178,641
193,838 785,223 2.8336 2,229 191, 609
207,373 860,219 3.2468 2,797 204,576
220,909 935,215 3.5938 3,365 217,544
228,043 1,007,524 3.8788 3,912 224,131
227,859 1,077,295 4.1214 4,440 223,419
TaBLE 15
SOLUTION FOR LONG-RUN ECONOMIC ORGANIZATION
(Mean water supply of 2,065,000 acre-feet)
Water Land Study X Per Net return
Activity Activity require- require- area pro- Units unit per acre-foot
level ments ment duction price of water
acre-feet acres 1,000 units dollars
Oranges.................. 3,806.45 558,787 152,258 41,871 boxes 2.8636 77.86
Deciduous fruit. . ........ 129.64 82,970 20,742 266.4 tons 78.9430 77.85
Truck erops. ............. 863.84 495,239 138,214 27,254 cwt 5.2414 77.86
Grapes. ..........cooeiun 1,451.41 928,902 232,226 2,061 tons 67.7065 77.86
Other activities........... 0 0 0 0
TOTAL.............. 2,065,898 543,440
TABLE 16
UNADJUSTABLE ACTIVITY LEVELS
(Mean water supply of 2,065,000 acre-feet)
Gross return| Labor and | Net return Total Water Land
Activity Activity | per activity capital per activity net require- require-
level unit costs unit output ment ment
dollars 1,000 dollars acre-feet acres
Oranges................ 3,806.45 31,500 20,070 11,430 43,508 558,787 152,258
Deciduous fruit. ....... 129.64 162,228 112,402 49,826 6,459 82,970 20,742
Grapes. ................ 1,451.41 96,143 46,315 49,828 72,321 928,902 232,226
Urban and misec......... 112,484
TOTAL............ 122,288 1,693,143 405,226
sumed that the imported water will be under an assumed mean supply of

provided with certainty each year. The
same method is used for obtaining the
net output function with the inereased
supply of water. The long-run eco-
nomic organization is first obtained

2,065,000 acre-feet (250,000 + 1,815,-
000). This solution is given in table 15,
and the fixed activities are summarized
in table 16.

Table 17 summarizes derivation of
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TaBLE 17

DERIVATION OF NET OUTPUT AT VARIOUS LEVELS OF WATER CONSUMPTION
(Mean water supply of 2,065,000 acre-feet)

Quantit;
Water made available | Activity level produced);n Price Acreage Water used Net output*
study area
1,000 acre-feet 1,000 units |dollars per cwt acre-feet 1,000 dollars

1,750
Fixed activities....... 405,226 1,693,143 122,288
Truck crops.......... 99.17 3,129 5.7785 15,867 56,857 6,107
TOTAL.......... 421,093 1,750,000 128,395

2,000
Fixed activities....... 405,226 1,693,143 122,288
Truck crops.......... 535.25 16,887 5.4513 85,640 306, 857 27,437
TOTAL.......... 490, 866 2,000,000 149,725

2,250
Fixed activities....... 405,226 1,693,143 122,288
Truck crops.......... 971.32 30,645 5.1776 155,411 556, 857 41,403
TOTAL.......... 560,637 2,250,000 163,691

2,500
Fixed activities 405,226 1,693,143 122,288
Truck crops..... e 1407.39 44,403 4.9447 225,182 806, 857 49,649
TOTAL.......... 630,408 2,500,000 171,937

2,750
Fixed activities....... 405, 226 1,693,143 122,288
Truck crops... 1697.18 53,546 4.8078 271,549 972,993 52,541
Cotton...... . 125.79 25,158 83,864 4,541
TOTAL.......... 701,933 2,750,000 179,370

3,000
Fixed activities. . 405,226 1,693,143 122,288
Truck crops. ... . 1697.18 53,546 4.8078 271,549 972,993 52,541
....... . 500.77 100,154 333, 864 18,076
776,929 3,000,000 192,905
405, 226 1,693,143 122,288
1697.18 53,546 4.8078 271,549 972,993 52, 541
875.75 175,150 583, 864 31,612
851,925 3,250,000 206,441
405,226 1,693,143 122,288
1697.18 53,546 4.8078 271,549 972,993 52,541
1250.73 250,146 833, 864 45,148
926,921 3,500,000 219,977
Fixed activities....... 405,226 1,693,143 122,288
Truck crops.. .. 1697.18 53,546 4.8078 271,549 972,993 52,541
Cotton....... 1625.71 325,142 1,083, 864 58,684
TOTAL.. 1,001,917 3,750,000 233,513

4,000
Fixed activities....... 405,226 1,693,143 122,288
Truck crops .. 2031.35 64,089 4.6647 325,016 1,164,574 53,716
Cotton............... 1713.33 342,666 1,142,283 61,846
TOTAL.......... 1,072,908 4,000,000 237,850

4,250
Fixed activities....... 405,226 1,693,143 122,288
Truck crops .. 2467 .42 77,847 4.4979 394,787 1,414,574 52,262
Cotton............... 1713.33 342,666 1,142,283 61,846
1,142,679 4,250,000 236,396
405, 226 1,693,143 122,288
2903 .49 91,605 4.3500 464,558 1,664,574 47,950
1713.33 342,666 1,142,283 61,846
1,212,450 4,500,000 232,084
Fixed activities....... 405,226 1,693,143 122,288
Truck crops.......... 3078.98 97,142 4.2950 492,635 1,765,179 45,505
Cotton............... 1713.33 342,666 1,142,283 61,846
Dry beans........... 108.40 217 8.5012 10, 840 38,840 1,001
TOTAL.......... 1,251,367+ 4,639,445 230,640

* Net output is gross output at projected market value minus basic labor and capital costs (land development and
ground water pumping costs are excluded from costs).
Maximum irrigable land available for agricultural production.
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the net output function for water by
250,000 acre-feet intervals starting
from 1,750,000 acre-feet under the as-
sumption that the mean water supply
is 2,065,000 acre-feet. Net output is
not increased by additional quantities
of water above 4,000,000 acre-feet.

Net output per unit of land and

Burt : Economics of Conjunctive Water Use

water classified by activity and annual
use rate of water (with an annual
mean supply of 2,065,000 acre-feet) is
given in table 18. Net output after sub-
traction of land development costs for
various annual water use rates under
a mean annual supply of 2,065,000
acre-feet is given in table 19.

TABLE 18

NET OUTPUT PER UNIT OF WATER AND LAND RESOURCES UNDER A MEAN
ANNUAL SUPPLY OF 2,065,000 ACRE-FEET

Net output per acre-foot of water (dollars) Net output per acre of land (dollars)
Annual rate
of water use
(1,000 acre- Fixed Truck Dry Fixed Truck Dry
feet) activities crops Cotton beans activities crops Cotton beans
78 107 —* 302 385 — —_
78 89 — 302 320 - —
78 74 — 302 266 — —
78 62 — 302 220 —_ -
78 54 54 302 193 180 —
78 54 54 — 302 193 180 —
78 54 54 302 193 180 —
78 54 54 302 193 180 -
78 54 54 302 193 180 —
78 46 54 302 165 180 —_
78 37 54 302 132 180 —
78 29 54 302 103 180 -
78 26 54 302 92 180 92

* Dashes signify no production with optimal combination of activities under pure competition.

TaBLE 19

DEDUCTION OF LAND DEVELOPMENT COSTS FROM NET OUTPUT
(Mean annual water supply of 2,065,000 acre-feet)

Net output
Annual rate of including land Acreage Weighted cost Development Net output
water use development costs per acre costs

1,000 acre-feet 1,000 dollars dollars 1,000 dollars 1,000 dollars

149,725 490, 866 1.4300 702 149,023

163,691 560,637 1.5375 862 162,829

171,937 630,408 1.6815 1,060 170,877

179,370 701,933 2.2808 1,601 177,769

192,905 776,929 2.7918 2,169 190,736

206,441 851,925 3.2127 2,737 203,704

219,977 926,921 3.5656 3,305 216,672

233,513 1,001,917 3.8656 3,873 229,640

237,850 1,072,908 4.1103 4,410 233,440

GROUND WATER PUMPING COSTS

Net output for a specified quantity
of water made available annually has
been estimated, but without consider-
ing ground water pumping costs. The
cost per acre-foot of water pumped
actually has an influence on the relative

activity levels. However, this is ignored
along with land development costs in
order to restrict the numerical problem
to a manageable size. Pumping costs
must be deducted from the output de-
rived under our approximate proce-
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dures. This cost is a function of depth
to ground water. Therefore, pumping
costs are defined only when the ground
water storage level is specified.
Twenty-one discrete ground water
storage quantities are defined between
depths of 50 and 407 feet. The depths
to ground water with corresponding
quantities of water in storage and
pumping costs per acre-foot are given
in table 20. Fifty feet was chosen as an
upper limit sinee this is approximately
the present level of ground water, and
with a limited number of discrete
values, the upper limit was made as low
as possible. An optimal policy is not
likely to permit aeccumulation of
ground water above its current level.
A separate net output function must
be defined for each ground water stor-
age possibility. However, net output
for a given storage level is a random
variable. The amount of surface water
used during any year is dependent on

TaBLE 20
GROUND WATER PUMPING COSTS
Water in storage Depth to Pumping
above 407 feet ground water* cost,
1,000 acre-feet Jeet dollars per
acre-foot

0o 407.4 ..
2,739, ... 389.5 14.00
5,478................. 371.6 13.40
827 ... 353.7 13.00
10,956................. 335.8 12.30
13,695................. 317.9 11.90
16,434................. 300.0 11.20
19,173 282.1 10.60
20,912, 264.2 10.10
24,650, .,.............. 246.3 9.60
27,390................. 228.4 9.20
30,129................. 210.5 8.80
32,868................. 192.6 8.10
35,607................. 174.7 7.60
38,346................. 156.8 7.10
41,085................. 138.9 6.50
43,824................. 121.0 5.90
46,563................. 103.1 5.20
49,302................. 85.4 4.60
52,041................. 67.7 4.10
54,780................. 50.0 3.30

* Specific yield below 200 feet estimated to equal that
from 100-200 feet.
Sources: Water storage capacity in relation to depth:
Davis et al., (1959).
Pumping costs: Calif. Dept. of Water Resources,
unpublished graph of estimated pumping costs in
Kern County, 1958.
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the quantity of water captured from
the Kings River. Thus, surface water
used annually is a random variable.
Under a specific choice of total water
to be consumed, the amount pumped is
a random variable, being the residual
not provided by surface water.
Suppose we are at a particular
ground water storage level. Denote net
output before deducting pumping costs
under the k' alternative use rate by Oy
and the cost per acre-foot of water
pumped by C (O and C are in dollars).
Let wy be the total water consumed
under the k'" alternative use rate and
denote surface water provided (a ran-
dom variable) by xz. Then yx, net out-
put after pumping costs, is defined as

(4.4)

and the mathematical expectation of yx
is

(45)  E(yx) =0x— (wx—-E(z))C

where E(xz) is the expectation of =z.
That is, we can obtain the expectation
of yx by substituting the expectation of
z for x in equation (4.4). This avoids
computing the probability distribution
of net output; only the expected value
is needed for solving the water inven-
tory model. Under our assumptions
about incidental recharge, the expecta-
tion of z is 907,500 and 1,032,500 acre-
feet with mean surface water supplies
of 1,815,000 and 2,065,000 acre-feet,
respectively.

Expected net output (with pumping
costs deducted) is easily computed from
tables 14 and 19 utilizing equation
(4.5) and pumping costs from table 20.
This expected annual net output is con-
verted to a five-year basis. Five years
is considered more practical than one
year as a time interval upon which to
formulate water policy. Farmers need
a period longer than a year to plan
their operations efficiently even when
fixed investment enterprises have al-
ready been specified. The period chosen
is arbitrary, but a stable water supply
must be weighted against flexibility in

Y= 0 — (wy—x)C



74

inventory control under an uncertain
water supply.

A completely exhausted ground wa-
ter supply is a situation requiring
special consideration. Investment in
trees is endangered by inadequate
water supply and net output associated
with an empty ground water reservoir
should reflect the expected loss of this
investment. However, surface water is
available to the present conjunctive use
area when the ground water supply is
exhausted, and the probability distri-
bution for ground water recharge (to
be explained in the next chapter) im-
plies that surface water is consumed in
the same manner regardless of ground
water storage. We assume that the sur-
face water available when in a state of
no ground water in storage is sufficient
to preserve investment in trees but in-
adequate to yield any current net out-
put. Therefore, net output for no
ground water in storage is set equal to
Zero.

Ground water storage capacity was
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estimated from a study by Davis et al.
(1959). Several compromises had to be
made. The units into which the valley
was divided for that ground water
study do not coincide with boundaries
of the study area being considered
here. However, units in the ground
water study were subdivided into town-
ships, and a good approximation to the
study area was obtained by townships.
For a large part of the study area not
included in the ground water study,
the average specific yields of the entire
San Joaquin Valley for specified
depths were used. The result for the
entire study area was an estimate of
7,740,000 acre-feet of storage between
50 and 100 feet and an estimate of
15,300,000 acre-feet between 100 and
200 foot depth. (See appendix table
D-1.) The capacity below 200 feet is
estimated to be the same per foot as
between 100 and 200 feet. The adoption
of these estimates gives the storage-
depth relations of table 20 listed on
page 73.

V. SURFACE WATER POLICY AND PROBABILITY
DISTRIBUTION FOR GROUND WATER STORAGE

POLICY FOR THE SURFACE RESERVOIR

The study area contains Pine Flat
Reservoir on the Kings River, having a
total capacity of one million acre-feet.
The dam and reservoir are for flood
control and irrigation only. The posi-
tion taken here is that the surface res-
ervoir is better utilized for meeting
seasonal storage requirements and al-
lowing underground storage to provide
cyelical storage from year to year.

Using the surface reservoir for cyeli-
cal storage requires maintaining more
water in the reservoir, on the average,
and thereby foregoing the opportunity
of capturing as much water from an
uncertain supply. In many ecases, cyeli-
cal storage on the surface might bring
a gain because less water needs to be
pumped over a long period of time,
thus cutting down pumping cost. How-
ever, the region under study has an

“over-built” canal system which makes
it possible to use all water flowing in
the river during every year except
those of extremely high run-off.
Cyelical storage on the surface would
be economical only at very low annual
use rates of water. With such a rate,
normal flow from the XKings River
could not all be utilized, but the escape
of a large part of the water from the
area would be of no consequence (if,
for the moment, we ignore problems
of flood control). The surface storage
capacity would be larger relative to
annual use, making long-term storage
more feasible. Therefore, cyeclical stor-
age on the surface is not a practical
alternative unless capacity is large
enough, relative to annual use, to make
it unlikely that large quantities of
water having potential use in the area
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are lost when the reservoir is utilized
for cyclical storage.

The situation in the study area is
unique because the large network of
canals was built before the reservoir.
The size of the surface distribution sys-
tem is probably larger than would have
been economical, had it been built after
completion of the reservoir. If the irri-
gation demands are met as nearly as
possible from surface water, hardly
any water escapes the study area. The
policy of using as much surface water
as possible to meet irrigation demands
is very favorable for flood control pur-
poses. It is assumed, on the basis of the
above argument, that this is the best
surface water policy. We also assume
that water released for flood control
purposes using snow-melt projections
results in the same amount of water
lost as if the water were allowed to run
over the dam uncontrolled.

The surface water distribution sys-
tem is large enough so that it is not an
effective constraint on the quantity of
water utilized for irrigation. With a
small ceanal system, the amount of
water consumed each month is deter-
mined jointly by canal capacity and
irrigation demand. The effective con-
straint is the minimum of these two
factors. For Pine Flat Reservoir the
minimum always is irrigation demand
because of the over-built canal system.

Although present size of the canal
system may have been justified at the
time it was constructed, we may say
now that it is over-built. We cannot
say this unequivocally without an anal-
vsis of the question in detail. A super-
ficial analysis of the question is given
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in the next paragraph which substan-
tiates the hypothesis.

The capacity of the canal system has
been estimated at 16,000-20,000 second-
feet. (U. S. Congress, 1940, p. 4.)
There are 2,592,000 seconds per month;
using the lower capacity, 16,000 second-
feet, we get a capacity of 41,472 (10)¢
cubic feet per month. Converting to
acre-feet (one acre-foot=43,560 cubic
feet), this represents a capacity of 952,-
000 acre-feet per month. The above
method for estimating the lower bound
of canal eapacity in acre-feet per month
assumes that flow is completely uniform
second by second throughout the
month. Of course, this condition will
not be met, but a sizeable margin exists
between our estimate of capacity and
the largest monthly irrigation demand
estimated. Table 21 indicates a maxi-
mum monthly irrigation demand of
679,000 acre-feet in July, leaving a
margin for error of 273,000 acre-feet.
This™ strongly supports the conclusion
that canal capacity will always exceed
irrigation demands as estimated in the
table. Details of the estimating proce-
dure used in table 21 are given later.

The validity of our assumption for a
surface water policy can be checked
against an alternative policy by ecom-
paring the present value of expected
returns from each policy under an
optimal ground water policy. The
iterative method suggested in chapter
IT could also be used to verify our
assumption. Neither of these analyses
is carried out in this study because
there can be little doubt as to the
validity of the assumed poliey.

PROBABILITY DISTRIBUTION FOR GROUND
WATER RECHARGE

Water demand by months

Seasonal water demands, by months,
are given for the activities in appendix
table A-11. Demand for surface water
is dependent on total quantity of water

used in the econjunctive use area
serviced by the surface distribution
system. Thus demand is determined by
the particular rate of use specified for
the study area during any year and
will not be the same over time, being
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dependent on the water inventory pol-
icy and the stochastic supply. Water
will be used in the conjunctive use area
to the extent possible with available
land since development costs are lower
there than elsewhere. If 1,750,000 acre-
feet of water represents the annual use
rate, all will be used in the conjunctive
use area since that quantity of water
will not utilize all the land of the con-
junctive use area. This is the lowest
annual use rate permitted in the dis-
crete set of possibilities chosen. Of the
total, 122,500 acre-feet will be pumped
from ground water for urban use, and
84,000 acre-feet will be supplied with
certainty from sources other than the
Kings River. Therefore, the lowest
quantity determining water demand
relevant to the flows of the Kings River
is 1,543,500 acre-feet. We specify an
arbitrary value of 2,000,000 acre-feet
as the use rate determining surface
water demand for flows of the Kings
River. This specification only serves to
estimate the mean quantity of flow not
captured for irrigation.

Allocation of the 2,000,000 acre-feet
among activities is given in table 21
together with irrigation demand by
months. Water demand at the canal
headgates is twice the irrigation de-
mand under the assumption that one-
half the water entering the surface
distribution system is recharged to
ground water.”

W ater supply by months

The probability distributions of
stream flows by months are not apt to
reflect independence among month-to-
month flows. We would expect the flow
to be dependent on the immediately
preceding period’s flow and possibly
on earlier ones. An assumed Markov
dependence among monthly stream
flows would permit statistical estima-
tion of the probability distribution
from the available time series data,
within the limits of a discrete approxi-

Burt: Economics of Conjunctive Water Use
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mation. The estimation and subsequent
calculations of expected values of ran-
dom variables which are functions of
the stream flows by months, go beyond
our present purpose—which is to esti-
mate expected water losses over the
dam.

For present purposes time series data
are used to estimate the average pro-
portion of annual flow oceurring in
each month for various diserete inter-
vals of annual flow. This average
proportion is taken as fixed for each
respective annual flow interval. The
probability associated with each annual
flow interval is estimated as the rela-
tive frequency of flows occurring in
that interval during the 88 years for
which records are available.

The 13 intervals, their midpoints,
associated probabilities, and monthly
proportion of the midpoint values are
given in table 22. The expected annual
stream flow computed from this dis-
crete approximation is 1,754,000 acre-
feet compared to an actual mean flow
of 1,755,000 acre-feet. The annual
stream flows during 1872-1959 are
summarized in appendix table D-2.
(The water year is October 1 to Sep-
tember 30.) ‘

Storage levels in the surface reser-
voir are divided into four discrete
intervals, the midpoint of each interval
being taken as the level of storage for
that interval. The expected overflow,
given that we started the season at each
discrete magnitude of surface storage,
is computed with the use of tables 21
and 22. A total reservoir capacity of
900,000 acre-feet instead of 1,000,000
is used to allow for errors in projected
snow melt. It is assumed that distribu-
tion of flow within the month corres-
ponds to irrigation demands within the
month.

The probability distribution of stor-
age conditions at the end of the year,
given the storage condition at the
beginning of the year, is computed

7 A tentative estimate given by the California Department of Water Resources.
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78 Burt: Economics of Conjunctive Water Use
TaBLE 23
CONDITIONAL PROBABILITIES OF FLOWS OVER THE DAM
AND SURFACE STORAGE
Oct. 1 storage = 100 | Oct. 1 storage = 300 | Oct. 1 storage = 500 | Oct. 1 storage = 750
(0-200) (200-400) (400-600) (600-900)
Stream
flow Probability
Storage |Flowsover| Storage |Flowsover| Storage |Flowsover| Storage |Flowsover
Sept. 30 | thedam | Sept.30 | the dam | Sept.30 | the dam | Sept.30 | the dam
1,000 acre-feet
375........ 0 0 0 0 0 0 0 0 .0341
675........ (1] 0 0 0 0 0 0 0. .0227
2,875........ 0 0 0 0 0 0 0 0 .0454
3,250........ 0 . 0 0 0 0 0 0 98 .0341
4,500........ 444 434 444 434 444 552 444 806 .0454

Source: Computed from tables 21 and 22.

simultaneously with the probability
distribution of flows over the dam. We
thus obtain a four-dimensional matrix
of conditional probabilities for a dis-
crete Markov chain. The well-known
theorem of convergence of a Markov
chain after many repetitions, such that
the probability of being in any parti-
cular state is independent of the initial

".9546 0 .0454 0
9546 0 .0454 0
pii] =
9546 0 0454 0
9546 0 0454 0

where ¢ and j have the following defini-
tions:

1,j  Storage interval (1,000 acre-feet)
1 0-200
2 200 — 400
3 400 - 600
4 600 - 900

The unusual form of the above matrix
is due to the discrete categories chosen
for stream flows. A state other than
zero storage can be reached only with
the highest stream flow of 4.5 million
acre-feet. If additional categories had
been defined between 4.5 and 3.25 mil-
lion acre-feet, additional elements of

state, is applied to the resulting matrix.

Table 23 summarizes the basic data
needed to construct the matrix of tran-
sition probabilities. Only the two states
covering intervals (0,200) and (400,
600) are accessible with a positive
probability. The matrix of transition
probabilities is

the matrix could be positive and the
rows would not necessarily be iden-
tical. This additional precision did not
seem warranted for present purposes.
It was obvious that the smoothing
effect of fitting a curve to the stream
flow data would not have altered the
conclusions reached by using observed
relative frequencies (see next section).

It turns out in this case that the
matrix [pi;] exemplifies the equilib-
rium condition of the Markov chain,
ie., the probability of being in a given
state is independent of the initial state,
and the vector of probabilities may be
taken as a row of the matrix [p;;].
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Accordingly, the probability of being
in the storage interval (0,200) or (400,-
600) is .9546 and .0454, respectively;
there is no chanece of being in either of
the other two states.

The expected flows over the dam are
readily computed to be (.9546) (.0454)
(434) + (.0454)2(552) =20. Note that
the numbers are in thousands of acre-
feet so the mean flow over the dam is
20,000 acre-feet. The probability, .0454,
is that associated with 4,500,000 acre-
feet of stream flow which is the only
flow at which water escapes over the
dam.

If 20,000 acre-feet is expected over-
flow, then 1,755,000 - 20,000=1,735,-
000 acre-feet is expected diversion into
the surface distribution system. Conse-
quently, expected recharge from the
captured water is 867,500 acre-feet,
one-half expected diversion. We assume
one-quarter of the water overflowing
the dam is recharged to ground water
from the Kings River within the study
area. This adds 5,000 acre-feet to ex-
pected recharge, giving a total of
872,500 acre-feet. This is 49.7 per cent
of the mean flow in the Kings River.

Sinece it has seemed desirable to avoid
policies in which farmers are uncertain
about their water supply from year to
vear, it has been assumed that the pub-
lic agency controlling annually pumped
ground water will specify the rate of
use for five vears in advance. A policy
based on five-year periods together
with dissemination of information
within the period on the likelihood that
the poliecy would be in effect during the
subsequent period should give a water
supply sufficiently stable that efficient
production can take place.
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The longer period has an advantage
also from a computational standpoint.
The quantity of ground water in stor-
age is a continuous variable which must
be made discrete for computation. The
number of discrete intervals is severely
limited by computer capacity, thus,
requiring a relatively large interval for
each discrete storage level. When the
quantity of water in storage is in a
particular interval, storage is measured
by the midpoint of that interval. Ob-
viously, a change from one interval to
an adjacent interval can take place only
if the addition to or withdrawal from
storage is at least as large as one-half
of the interval. Defining the intervals
too large when dealing with annual net
recharge makes movement from the
present storage interval impossible ex-
cept when recharge is extremely high
or low. This biases the probability dis-
tribution of movement among storage
states such that the probability of re-
maining in the same state is always
unreasonably high.

Adopting a period of five years in-
stead of one year greatly increases the
net recharge associated with a given
probability and permits using larger
storage intervals without unduly bias-
ing the probability distribution for
movement among storage states. An-
other source of bias is the discrete
probability distribution for mnet re-
charge to ground water. We have
discrete storage levels and diserete net
recharge both contributing errors to
the approximation to the actual con-
tinuous model. The discrete probability
distribution of net recharges can be
made continuous by fitting a continuous
funection to the time series data.

FITTING THE FREQUENCY CURVE

The incomplete gamma function is
fitted to the time series data on annual
stream flows of the Kings River. This
funetion has given good results when
fitted to precipitation data and is one
of the most common choices of mete-

orologists for such purposes. Since
water in the Kings River is primarily
the result of each year’s snowfall, we
may expect to get a good fit with the
gamma distribution. .

The gamma distribution has an ad-



80

ditional advantage for our purpose.
The sum of n independent, identically
distributed gamma variates also fol-
lows the gamma distribution with pa-

6D BT0)

Let 4 = Zl x; Where the cumulative

probability_distribution of x; is defined
by (5.1). Then the distribution of ¥ is

Yy
_ 1 =1 —t/B
60) = [ s £t

Denoting the parameters in the dis-
tribution of ¥ by B’ and ¢/, we have
B’ = B and y’ = ny. This property of the
gamma distribution is easily established
from its moment generating function
and the general theorem that the mo-
ment generating function of the sum
of n independently distributed random
variables is the product of the m sepa-
rate moment generating functions.

The parameters of the gamma dis-
tribution for annual stream flows are
estimated from 88 annual time series
observations. It has been shown that
maximum-likelihood estimates of the
parameters of the gamma distribution
are jointly sufficient. (Thom, 1958, pp.
119-20). Maximum-likelihood estimates
have been chosen sinece an approxi-
mating procedure to solution of the
likelihood equations has been derived
which gives very good results (Thom,
1958, p. 119).

F(z) = f Ly,
0

Burt: Economics of Conjunctive Water Use

rameters which are simple functions of
the original parameters. The incom-
plete gamma funetion is defined

x>0
B>0
¥y>0

The maximum-likelihood estimates
derived from the data of appendix table

D-2 are 8 = 434.64 and v = 4.038. A chi-
square “goodness of fit” test was per-
formed using the 13 intervals specified
in table 22 and tables of the incomplete
gamma function (Pearson, 1922). The
results indicated that at least this poor
a fit could be expected with probability
.52 under the hypothesis that the Kings
River annual flows follow the gamma
distribution.

From the numerical analysis of this
test, it was clear that the results of the
last section would be essentially the
same using either the fitted relation-
ship or observed relative frequencies.

For a five-year period, maximum-
likelihood estimators of the parameters
are 8 = 434.64 and v = 20.19. This is by
virtue of the invariance property of
maximum-l{kelihood estimators. If § is
the maximum-likelihood estimator of 6
and f(6) is a single valued function of
6, then the maximum-likelihood esti-
mator of f(6) is f(8). (Mood, 1950, p.
159). In this case, the parameter is de-
signated y and the function f(y) is 5y.

TRANSITION PROBABILITIES FOR GROUND
WATER STORAGE

A separate set of transition prob-
abilities must be estimated for each
alternative annual use rate. We will
speak in terms of annual use rates, but
it must be kept in mind that the period
of time relevant to movement from one
storage level to another is five years.
We define p;;* to be the probability of
being in the j'* state after five years,
given that we were in the 7'" state at the

current time and chose the k" annual
use rate. The annual use rate specifies
all water used, both ground and sur-
face, from all sources. The annual use
rates in terms of k are defined to be
1,750,000 + (k —1) (250,000) and 2,000,-
000+(k—1) (250,000) acre-feet for mean
annual supplies of 1,815,000 and 2,065,-
000 acre-feet, respectively, k=1, 2, ...
9. The quantity of water in storage as



HILGARDIA - Vol. 36, No.2 + December, 1964

a funetion of 7 (or j) is (¢ - 1) (2,739,-
000) acre-feet,2=1,2,...21.

If the continuous model being ap-
proximated is examined, we see that
our probabilities, p;;*, correspond to
P[A, < Si.5 — St < Ay] under the k2
alternative, where Ay and A, are ap-
propriately defined upper and lower
bounds of a discrete interval and S;
denotes storage at the beginning of
vear t. We shall examine the continu-
ous analogue on an annual basis in
order to see what is implied for a five-
year basis. Some difficulties are en-
countered in expressing the probability
distribution for a five-year period.

‘We note the following conditions im-
plied by our assumptions:

(1) Ground water pumped annually
for urban and miscellaneous use
is 122,500 acre-feet.

Surface water used from the
Central Valley Project and local
minor streams is 42,000 acre-
feet annually.

Annual recharge of 42,000 acre-
feet takes place from the sources
mentioned in (2).

‘We define z equal to the Kings
River annual flow. For sim-
plicity,® we let .4972x be the ran-
dom recharge to ground water
and .4943x be the random quan-
tity of surface water consumed
directly. The probability dis-
tribution of x has been esti-
mated.

(5) A fixed quantity of water, wy, is

consumed annually.
Some reflection on the above lets us
write

(2)

(5.3) Sees

using the approximation of substituting
wr — 42 — .4943x; for Max(122.5, wy —
42 — 4943x;). In order to obtain esti-
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(6.2) Si1=8:+ (42 + 4972x)
— Max (122.5, wy — 42 — .4943x),
where 42 + 4972z is addition to storage
and Max(122.5, wy — 42 — .4943z) is
withdrawal from storage. The latter ex-
pression for withdrawal from storage
is not convenient for the algebraic
manipulation involved in going from
an annual to five-year basis. We con-
sider the possibility of approximating
the expression by wy — 42 — .4943x.
Our approximation is in error only
if wy — 42 — 4943z < 122.5 or equiva-

lently 4 > We — 164.5  ywhat is the

4943

probability that our approximation will
be in error on any particular year? Let
us take the case where the error is most
likely to oceur, wy at its lowest magni-
tude, 1,750,000 acre-feet. The prob-
ability is computed to be less than .07.
Going to progressively larger wy gives
smaller and smaller chances of error
and for wy = 2,500,000 the probability
of error is less than .0058. It is there-
fore concluded that the approximation
to Max(122.5, wy — 42 — .4943x) with
wy — 42 — 4943z will not bias the prob-
ability distribution for changes in stor-
age by an unwarranted amount. Fur-
thermore the direction of the bias is
known and can be partially corrected
in computing the diserete {p¥; |-

The change in storage must be put on
a five-year basis. Again let

5
Yy = ;xz

where z; is annual stream flow. We may
write

S + [(5)(42) + .4972y] — [bwe — (5)(42) — .4943y]
S; + 420 + .9915y — 5wy

mates of p;;¥, we must look at
P[St+5—St§7n],
recalling that the probability distribu-

® We are using the same proportion of stream flow as the proportion of the mean flow going to
recharge and direct surface use to represent the random variables of recharge and direct surface
use, respectively. Rounding to the proper number of significant digits is more convenient at a
later stage of the analysis.
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&

tion of y has been estimated by a con- tinuous frequency eurve. We have the
relation

PlSus — 8, £ m] = P[420 + 9915y — 5wy < m] = P[y < Mj—@ggﬁ] |
These probabilities can be read from with parameters g = 434.64 and y =
tables of the incomplete gamma func- 20.19. The values of m as given in table
tion (Pearson, 1922, p. 56) since the 24 are based on a discrete storage in-
probability distribution of y has been terval of 2,739,000 acre-feet. The prob-
estimated by the gamma distribution ability distribution was estimated for

TaBLE 24

PROBABILITIES ASSOCIATED WITH VARIOUS UPPER LIMITS
OF STREAM FLOWS PER FIVE-YEAR PERIOD*
(Mean annual supply of 1,815,000 acre-feet)

Annual water m
consumption (1,000 acre-feet)
(1,000 acre-feet)
w)
. —17,804 | —15,065 | —12,326 | —9,587 | —6,848 | —4,109 | —1,370 1,370 4,109 6,848
1,750, . ...t 0 0 0 0 0 .0024 (1877 7158 19627 .9976
2,000................. 0 0 0 0 0 .0321 . 4267 .8748 .9885 9995
2,250, ...l 0 0 0 0 .0013 .1497 .6765 9536 .9969 .9999
2,500. ... 0 0 0 0 .0210 .3781 .8502 .9855 19993 1
2,750, ... 0 0 0 .0006 1187 .6308 .9433 .9960 .9998 1
3,000.................. 0 0 0 .0138 .3265 .8245 .9814 .9990 1 1
3,250, . ...l 0 0 .0003 .0898 .5861 .9301 .9948 .9999 1 1
3,500.................. 0 0 .0087 .2809 .7955 .9769 .9987 1 1 1
3,750, . ... 0 .0001 .0674 .5396 .9158 .9934 .9997 1 1 1
4,000.................. 0 .0050 2377 .7605 L9713 .9983 .9999 1 1 1
4,250, . ...l 0 .0495 4877 .8993 .9914 .9996 1 1 1 1
4,500.................. .0017 .1942 7250 19639 .9978 .9999 1 1 1 1

. *The table values, I(x, p) = Ply < (m + 5uwr — 420)/.9943], were obtained by linear interpolation. The parameters
in the Pearson tables have the following relation to our parameters: p = v — 1 and v = y/Bv/v. We used p = 19.2 and
u = (m + 5wr — 420)/1936 to obtain the above probabilities.

Source: Pearson, 1922, pp. 54-56.

TABLE 25
PROBABILITIES OF MOVING FROM THE ¢t TO THE jt» STORAGE STATE*
(Mean annual supply of 1,815,000 acre-feet)

Alternative annual

use rate
k i—7|1—6|+t—5|1—4 | 7—3|21—2|i—1 T i+1 | 74+2 |243
1,000 acre-feet
1,750, ... 1 0 0 0 0 .0024 .1853 .5281 .2469 .0373 0
2,000................ 2 0 0 0 0 .0321 .3946 .4481 1137 .0115 0
2,250, ... 3 0 0 0 .0013 .1484 .5268 2771 .0433 .0031 0
2,500................ 4 0 0 0 .0210 3571 .4721 1353 .0138 0007 0
2,750, ... 5 0 0 .0006 1181 5121 3125 .0527 .0038 .0002 0
3,000................ 6 0 0 .0138 3127 .4980 .1569 .0176 .0010 0 0
3,250. ... 7 0 .0003 .0895 4963 .3440 .0647 .0051 .0001 0 0
3,500................ 8 0 .0087 12722 .5146 .1814 .0218 .0013 0 0 0
3,750, ... 9 .0001 .0673 4722 3762 L0776 .0063 .0003 0 0 0
4,000................ 10 .0050 .2327 .5228 .2108 .0270 .0016 .0001 0 0 0
4,250................ 11 .0495 .4382 4116 0921 .0082 .0004 0 0 0 0
4,500................ 12 .0017 1925 .5308 .2389 .0339 .0021 .0001 0 0 0 0

* Defined as pi;* in the text.
Source: Computed from table 24.
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thousands of acre-feet so we drop the
last three zeros from the numbers. To
stay in the same interval of storage we
must have -1370 < S;.s — 8; < 1370
giving rise to m = + 1370. To move to
the next higher interval 1370 < S;.5 —
S: < 4109; thus m = 4109 is required.
The same procedure is followed in ob-
taining other required values of m. The
{pii*} are then easily computed from
the cumulative probabilities found for
m by considering j=7+0,1,2,3,....
The {p;;*} in this notation are given in
table 25.

A table corresponding to table 25 for
a mean annual supply of 2,065,000 acre-
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feet instead of 1,815,000 acre-feet would
be identical to table 25 except that the
first column would have each value in-
creased by 250,000 acre-feet. That is,
the probability of moving to the j*®
storage state from the i'® with the ad-
ditional 250,000 acre-feet mean annual
supply is the same as without the in-
crement in mean supply if the annual
use rate is also inecreased by 250,000
acre-feet. It is specified that the mean
annual supply is increased with an in-
crement of water provided with cer-
tainty, i.e., a mere translation of the
probability distribution results from
the increased supply.

NUMERICAL SOLUTION

The problem now confronted is de-
seribed in Chapter II with reference to
ground water storage only, and the
method for finding the optimal policy
is given there. Finding the present
value of expected net output under an
optimal policy requires solving 21 equa-
tions in the present empirical problem.
This is also our means of verifying
that recursive relation (2.2) has con-
verged, following the procedure ex-
plained in Chapter IL. If r is the annual
interest rate in (2.2), the discount fae-
tor (1 + r)-® is substituted for (1 + 7).

The solution, lim f,(8;), for the first

situation considered is used as the first
approximation in subsequent problems.
For example, suppose 5 per cent is the

discount rate used first and it is de-
sired to solve the same problem with a
discount rate of 6 per cent. We use the
optimal policy for a 5 per cent rate as a
first approximation to the optimal pol-
icy for a 6 per cent rate and solve the
21 equations to obtain the vector of
present values of net output under that
policy. This veetor of present values is
substituted for f,(S;) in the ecomputa-
tional algorithm. The advantage lies in
convergence to the optimal policy in a
very few iterations. The same principle
applies when the second problem differs
from the first by a changed net output
function; in our case, the output func-
tion associated with the mean supply
inereased by 250,000 acre-feet.

VI. EMPIRICAL RESULTS

The steps in obtaining a dollar meas-
ure of value per acre-foot of an addi-
tional 250,000 acre-feet of water an-
nually for the study area are summar-
ized below.

(1) Derive an optimal ground water
management policy and the dis-
counted expected net output as-
sociated with it under
(a) present conditions and
(b) conditions which would exist

with an additional 250,000

acre-feet of water per year.

(2) Reduce the difference in present
value between (a) and (b) to an
annuity.

(3) The ratio of the annuity to 250,-
000 is a measure of the value per
acre-foot of the added water
supply.

‘We shall begin with the optimal water
inventory policy under two different
discount rates.
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MANAGEMENT POLICIES

As previously specified, a manage-
ment policy is a functional relationship
between quantity of water in storage
and quantity of water used at each
stage of the multistage decision process.
Our stage is a five-year time period and
by virtue of the assumed constant net
output function over time, the decision
rule is invariant over stages. A constant
decision rule does mot mean the same
quantity of water will be used during
each period over time; but that for a
gwen storage condition at the beginning
of a five-year period defining a stage,
the same quantity of water will be used.

Within the discrete model containing
21 storage possibilities, a policy is com-
pletely specified by 21 pairs of numbers.
Each pair denotes the quantity of water
to be used with the corresponding water
storage level. A water storage level also
defines a depth to ground water. There-
fore, a policy can be defined by 21

depths to ground water and the associ-
ated quantity of water used. Table 26
gives optimal decision rules for the
study area with its present mean supply
of water and an additional 250,000 acre-
feet of mean annual supply, under two
interest rates.

The optimal policy is not sensitive
to the interest rate. A change from 5 to
6 per cent leads to only a slight change
in the rule under the existing supply of
water, and changes the rule for only
one storage level under the augmented
supply. The optimal policy is quite
stable within the discrete limitations
of the model, always giving the same
general pattern.

The results obtained conform quite
closely to those expected from superfi-
cial examination of the data. The pres-
ent mean supply will be used for dis-
cussion purposes. From table 12, we see
that annual net output does not have a

TABLE 26
OPTIMAL WATER MANAGEMENT RULES
Annual use rate in units of 1,000 acre-feet
Pr
Water in storage Depth to esent mean supply Augmented mean supply
ground water .
.5 per cent .6 per cent .5 per cent . 6 per cent
interest rate interest rate interest rate interest rate
1,000 acre-feet feet
407 .4 1,750 1,750 2,000 2,000
389.5 1,750 1,750 2,000 2,000
371.6 1,750 1,750 2,000 2,000
353.7 2,000 2,000 2,250 2,250
335.8 2,000 2,000 2,250 2,250
317.9 2,000 3,000 2,250 3,250
300.0 3,500 3,500 3,750 3,750
282.1 3,500 3.500 3,750 3,750
264.2 3,500 3,500 3,750 3,750
246.3 3,500 3,500 3,750 3,750
228.4 3,500 3,500 3,750 3,750
210.5 3,500 3,500 3,750 3,750
192.6 3,500 3,500 3,750 3,750
174.7 3,500 3,500 3,750 3,750
156.8 3,500 3,750 3,750 3,750
138.9 3,500 3.750 3,750 3,750
121.0 3,750 3,750 3,750 3,750
103.1 3,750 3,750 3,750 3,750
85.4 3,750 3,750 3,750 3,750
67.7 3,750 3,750 3,750 3,750
50.0 3,750 3,750 3,750 3,750
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positive marginal value for magnitudes
greater than 3,750,000 acre-feet. There-
fore, no greater quantity than this
amount would ever be used, but we
would expect this largest amount yield-
ing a positive marginal output to be
used when an extremely large quantity
of water is in storage. We would also
expect that the optimal quantity should
decrease as the amount of water in
storage diminishes, and this is the re-
sult indicated by table 26.

Two economie factors are working to
reduce the optimal quantity of water
used at a given level of storage: (1)
increased expected pumping costs for
the remainder of the planning horizon
and (2) diminishing marginal returns
from additional quantities of water
used per period when quantity used
becomes large. Two factors tending to
increase the quantity used per period
are: (1) time preference reflected by
the discount factor and (2) increasing
marginal returns at low levels of water
use per period. The final decision rule
is the end result of weighing these posi-
tive and negative factors against one
another quantitatively within a stochas-
tic model.

A rather severe penalty was assigned
to a condition of zero water in storage,
ie., a zero net output for five years.
This penalty leads to a decision rule
which specifies a low annual use rate
when storage is low. The returns asso-
ciated with reaching a zero storage con-
dition are arbitrary and chosen pri-
marily for convenience. Any magnitude
assigned is artificial since the reservoir
is not actually empty at the point in-
dicated (407 feet below the surface).
We can be certain that relaxing the re-
striction of 407 feet would lead to
higher consumption rates at greater
pumping depths, but quantification is
possible only with a more complete
model. '

The results indicate that mining
ground water is not only optimal for
an individual producer, but also for an
area as a whole under some ecircum-
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stances. Without restraints, an indi-
vidual producer will tend to use water
to the point where marginal returns
are equal to marginal pumping costs
because he is pumping from a common
aquifer and considers his contribution
to overdraft negligible relative to other
producers as a group. This situation
may lead to uneconomic mining of
ground water for the group as an ag-
gregate. In this study, a policy evolves
which specifies consumption consider-
ably in excess of the mean supply, but
for a different reason. Roughly speak-
ing, the interest rate outweighs pump-
ing costs and the need for storage as a
contingency against future shortages
in supply. A reserve of 50,000,000 acre-
feet would not be expected optimal for
an area with a mean supply of about
2,000,000 acre-feet.

The effect of pumping costs on pres-
ent value of net output should not be
underestimated. A policy which per-
manently reduces the expected quan-
tity of water in storage increases the cost
of all pumping in the future. For ex-
ample, if water in storage is expected
to be reduced permanently to the point
where the cost is increased by 50 cents
per acre-foot and the interest rate is 6
per cent, 1 acre-foot of water pumped
each year perpetually would have an in-
creased cost at present value equal to
$8.33. For an area the size of the one
under study, which might pump an
average of 1,500,000 acre-feet, this is a
decrease in present value of net output
of $12,500,000.

The estimated net output functions
in this study were obtained under the
assumption of complete mobility of
labor and ecapital. In chapter II, we
stated that the validity of this assump-
tion was largely dependent on the opti-
mal decision rule resulting. That is, a
decision rule requiring frequent large
changes in output, with a high proba-
bility, would not be consistent with
reality. However, we put no restriction
on mobility of labor and capital and
proceeded to solve the empirical prob-
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lem. Fortunately, the decision rules re- ity of frequent, large changes in oﬁtput.

sulting do not indicate a high probabil-

PRESENT VALUE OF NET OUTPUT AND PER UNIT
VALUE OF ADDITIONAL WATER

Each policy of table 26 implies a dis-
counted expected net output for an in-
finite planning horizon. Each policy has
a 21-dimensional matrix of transition
probabilities associated with it and a 21-
component vector of expected immedi-
ate net output. Denote the matrix by
P and the vector by b. The veetor of
discounted net output, X, is the solu-
tion of the system of linear equations
(6.1) (I-BP)X=b
where B is the disecount factor deter-
mined by the interest rate, and I is
the identity matrix. Table 27 gives the
solution of (6.1) for the situations con-
sidered in table 26. The *® component

of X 1is present value of expected net
output over an infinite planning hori-
zon, given that initial ground water
storage is at the " level.

The difference in discounted expected
value of net output, with and without
the 250,000 acre-feet of water per year,
is given in columns 1 and 2 of table
28. These measures of present value
are reduced to an annuity by multiply-
ing by the appropriate interest rate.
Division of the annuity by 250,000
gives the average, expected value per
acre-foot of the additional water. These
dollar values are given in columns 3
and 4.

TABLE 27

PRESENT VALUE OF NET OUTPUT
(Million dollars)

Present mean supply Augmented mean supply
Water in storage Depth to
ground water 5 per cent 6 per cent 5 per cent 6 per cent
[6)) 2 3) @ (5)
1,000 acre-feet Seet
407.4 1,089 821 1,190 897
389.5 2,108 1,765 2,303 1,929
371.6 2,412 2,023 2,629 2,206
353.7 2,540 2,137 2,754 2,315
335.8 2,630 2,212 2,841 2,389
317.9 2,696 2,280 2,906 2,457
300.0 2,792 2,377 3,006 2,557
282.1 2,875 2,449 3,088 2,628
264.2 2,942 2,511 2,636 2,690
246.3 3,014 2,580 3,229 2,759
228.4 3,084 2,641 3,298 2,820
210.5 3,147 2,695 3,360 2,875
192.6 3,209 2,752 3,425 2,932
174.7 3,268 2,803 3,484 2,984
156.8 3,324 2,853 3,542 3,033
138.9 3,379 2,901 3,597 3,081
121.0 3,434 2,948 3,651 3,126
103.1 3,489 2,994 3,705 3,172
85.4 3,539 3,038 3,755 3,215
67.7 3,588 3,079 3,804 3,254
50.0 3,641 3,124 3,855 3,297
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TABLE 28

MARGINAL VALUE OF WATER
(Million dollars)

Expected contribu- | Average expected
tion of added water | value per acre-foot
to net output of added water
(million dollars) (dollars)
Water in
storage
5 per cent| 6 per cent| 5 per cent| 6 per cent
(1) 2) 3) 4)
1,000 acre-feet
0......... 100 76 20 18
2,739......... 194 164 39 40
5478......... 218 183 43 45
8,217......... 213 178 42 43
10,956......... 211 177 42 - 42
13,695......... 210 178 42 43
16,434......... 214 179 42 43
19,173......... 213 179 42 43
21,912, ........ 213 179 42 43
24,651......... 215 179 43 43
27,390......... 214 179 42 43
30,129......... 214 180 42 43
32,868......... 216 180 43 43
35,607......... 216 181 43 44
38,346......... 217 180 43 43
41,085......... 218 180 43 43
43,824......... 217 179 43 43
46,563......... 216 178 43 43
49,302......... 216 177 43 42
52,041......... 216 175 43 42
54,780......... 214 174 42 41

MARGINAL VALUE OF WATER WITH RESPECT

TO TIME OF RECEIPT

Depth to ground water in the study
area averages around 50 feet currently
although there is considerable variation
within the area. This depth corresponds
to the largest ground water storage con-
dition in the model. The results for this
storage condition when the additional
water is imported at some future period
are summarized in table 29. An optimal
policy at all times has been imposed to
obtain the stated results.

The method used to evaluate addi-
tional water in future years was to set
f(0) equal to the values listed in col-
umns 4 and 5 of table 27 and proceed
to carry out iterations f(1), f(2),...
using the probabilities associated with
the present mean supply and the return
funetion associated with the aug-

TABLE 29

EXPECTED MARGINAL VALUE OF
WATER OVER TIME, GIVEN

PRESENT STORAGE*
(Dollars per acre-foot)
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Year
(0 = present)

Interest rate

5 per cent 6 per cent

0. 19 16

2 22 19
10 26 24
15, 31 29
20, 37 37
25, 46 46
B0, e 51 53
B 55 58
40, 58 60
45, 60 61
50, .. i 61 61

* The return function estimated for a mean annual
supply of 2,065,000 acre-feet is assumed before and after
the increment of water is received, and ground water
storage is assumed at 54,780,000 acre-feet at year zero.
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mented supply after adjustments for
pumping costs. Recall that f(n) is a

(6.2)

where f,(S;) is the 4'® component of
f(n), and r is the interest rate. The
method just explained assumes pro-
ducers anticipate the future water sup-
ply and plan production of unadjust-
able activities (tree erops) at the same
level as if they were to receive the aug-
mented supply immediately.

Consider the case where r=.05 and
fo(8;) is an element of column 4 of
table 27. The relation of 7 to quantity

f(8S) = ng [B(S) + (1.05)7°

Solution of (6.2) for f(1) gives the
optimal policy and discounted expected
value of net output for importation of
250,000 acre-feet of water annually
starting five years hence; f(2) gives the
same results for importing the water
ten years hence; ete.

The expected marginal value per
acre-foot of water with respect to a
point in time, £, is computed as follows
(assuming a specified storage level at
t=0):

(1) Obtain the difference in dis-
counted expected net output be-
tween situations where the inere-
ment of water is received during
the year in question and when it
is received five years later. The
value of net output is in current
dollars regardless of the year, ¢,
being considered.

(2) Compound the difference calcu-
lated in (1) to equivalent value
for year t.

(3) Reduce the value obtained in (2)
to an annuity for five years.

(4) Divide the annuity from (3) by
250,000 which yields the value
per acre-foot being sought.

The data given in table 29 are for a
storage level of 54,780,000 acre-feet
during the current period, ¢=0. This

Burt: Economics of Conjunctive Water Use

21-component vector and use is made

of the recursive relation

21

Fa(83) = Max [B5S) + (1 +»7° z_:lp':jfn_l(sj)] ,i=1,2,---21

=

in storage is:

Storage
1 (1,000 acre-feet)
1 0
2 2,739
3 5,478
21 54,780

Relation (6.2) for n =1 gives

21
;1 Piifo(S)],4=1,2, -+~ 21.

level corresponds to the estimated aver-
age pumping lift of 50 feet for the
entire study area.

The results given in table 29 show a
steadily increasing value of additional
water as the time at which it is re-
ceived is extended into the future. The
difference in value for delivery 50 years
in the future instead of now is approxi-
mately $40 per acre-foot. We note that
the difference is greater with a 6 per
cent interest rate than with a 5 per
cent rate.

The optimal decision rules with re-
spect to annual use rates are given in
table 30 for the situation where the
water supply is increased at some fu-
ture date. These decision rules are ap-
proximately equal for various delivery
dates and the two interest rates con-
sidered. The general pattern of the
rules indicates use of 3,750,000 acre-
feet annually when in the upper 14
storage levels and 1,750,000 acre-feet
annually when in the bottom three
storage levels. The four storage levels
between have various intermediate
quantities as optimal annual rates. The
decision rules for the upper 14 storage
levels are identical to the optimal rule
for the situation where the additional
water is received during the current
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TaBLE 30

OPTIMAL DECISION RULES FOR FUTURE DELIVERY OF ADDED WATER
(Annual use rate in 1,000 acre-feet)

Delivery date of added water
Water in storage
t=25 t=10 t=15 t=25 t=10
1,000 acre-feet Interest rate
5 per cent 6 per cent
1,750 1,750 1,750 1,750 1,750
1,750 1,750 1,750 1,750 1,750
1,750 1,750 1,750 1,750 1,750
2,000 2,000 2,000 2,000 2,000
2,250 2,250 2,250 2,250 2,250
2,250 2,250 2,250 2,250 2,250
3,500 3,250 2,250 3,750 3,500
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750
3,750 3,750 3,750 3,750 3,750

year (see table 26, last two columns),
Therefore, the result of postponing
delivery of the added water supply is
primarily reflected in higher pumping
costs in the future, with output in the
immediate future being the same ex-
cept for pumping costs.

With an interest rate of 5 or 6 per
cent, the first 20 or 30 years dominate
the present value of future net output.
The marginal values of table 29 are for
a specified initial storage level of 54,-
780,000 acre-feet. Thus, for the case
where we consider the value of water
imported currently instead of five years
in the future, the present value of in-
creased future pumping costs is the
chief factor determining the value of
the added water. This is true because
approximately the same physical pro-
duction will take place within the next
30 years whether the water is added to
the supply in the current period or
five years later. This observation is

based on optimal decision rules under
the two situations. The present value
of increased pumping costs is less with
a 6 than with a 5 per cent interest rate.
Consequently, value of the water added
during the next five years is less with a
6 per cent interest rate than with a 5
per cent rate.

The same argument can be used for
receipt of water five years in the future
instead of 10, and 10 years in the fu-
ture instead of 15. However, the point
is soon reached where the expected
quantity of water in storage at the
future date is low enough that changed
pumping costs in the future from de-
laying delivery of additional water
comes to be dominated by another fac-
tor. This other factor is reduction of
expected quantity of water used within
the immediately following periods. At
low levels of storage the decision rules
are such that more water is used with
the additional supply of water than
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without it. This was not true at high
levels of storage.

The dominant factor at some point in
the future (20 years in table 29) is in-
creased production from receipt of the
water five years early. The greatest por-
tion of this expected increase occurs
during the first five years. Therefore,
a 6 per cent interest rate instead of
5 per cent gives this immediate return
a higher relative value and therefore, a
higher value for the additional water
received five years early.

Expected values of water per acre-
foot for an additional 250,000 acre-feet
annually during the next five years,
under the specification that the added
water will be received five years hence
perpetually, are given in table 31 for
the 21 storage levels. The increasing
magnitudes of these values as quantity
of water in storage declines are con-
sistent with table 29, which gives the
increasing values over time of the addi-
tional water. The values of table 29 are
(loosely speaking) weighted averages
of the values in table 31, the averaging
taking place through the probability
distribution for storage states over
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time. The first row of table 29 is iden-
tical to the last row of table 31.

TasLE 31
EXPECTED VALUE OF WATER
DELIVERED NOW VERSUS
FIVE YEARS HENCE
(Dollars per acre-foot)

Interest rate
Water in storage
5 per cent 6 per cent
1,000 acre-feet

0 0

78 78

78 78

48 49

36 33

32 40

47 45

34 30

30 29

34 33

31 28

28 26

28 25

27 24

25 22

23 21

22 20

46,563...........0iiiinnnn 22 18
49,302.........c0iiiniinnnn, 21 18
52,0410 19 17
54,780........ciiiiia 19 16

FUTURE DEPTHS TO GROUND WATER

A matrix of transition probabilities
for the Markov chain describing
ground water storage is given by each
decision rule of tables 26 and 30. To il-
lustrate certain measures that can be
derived, one of these decision rules is
analyzed in detail. The rule chosen cor-
responds to present mean supply of
water and a 6 per cent interest rate.

Let the matrix of probabilities be P.
The probability of being in any storage
state in the future can be computed
from this matrix when the initial stor-
age state is given. Our time interval is
five years, which restricts the analysis
to discrete points in time of five-year
periods. If the initial storage state is 4,
the 4'* row of the n'* power of the ma-
trix P gives the probabilities for stor-
age conditions 5n years in the future.

These probabilities are given in table
32 for n=1, 2, . .. 10, which corres-
ponds to t=5, 10, 15, . . . 50; where ¢
measures time from the current year
t=0. Initial depth to ground water
was specified at 50 feet, the largest
storage condition in the total of 21
states. The limiting vector of probabil-
ities, which is independent of initial
conditions of storage, is given in the
last column of table 32. This set of
probabilities for storage is appropriate
when considering points of time very
far into the future.

Expected depths to ground water are
given in the first row of table 33 for
points of time in the future. These ex-
pected values inerease quite rapidly,
from 50 feet initially to 337 feet in 25
years.
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TaBLE 32
PROBABILITIES FOR FUTURE STORAGE*
Points in time (¢)
Depth to Num-
ground water ber
(feet) of lim
state 0 5 10 15 20 25 30 35 40 45 50 |t—o o
1 0 0 0 0 0 0| .0011 | .0084 | .0225 | .0397 | .0570 | .1488
2 0 0 0 0 0| .0045 { .0371 | .0835 | .1211 | .1475 | .1657 | .2211
3 .0007 | .1192 | .2681 | .3380 | .3610 | .3658 | .3636 | .3255
4 .0079 | .2974 | .4119 | .3692 | .3348 | .3097 | .2910 | .2219
5 .0443 | .2812 | .2242 | .1667 | .1347 | .1160 | .1042 | .0711
6 0| .1369 | .1756 | .0502 | .0314 | .0238 | .0196 | .0171 | .0108
7 .0018 | .2534 | .0827 | .0065 | .0027 | .0020 | .0016 | .0014 | .0008
8 .0221 | .2793 | .0295 | .0007 0 0 0 (1] 0
9 .1113 | .1786 | .0080 | .0001 0 0 0 0 0
10 0| .2665 | .0727 | .0016 0
1 .0046 | .3454 | .0212 | .0003 0
12 .0636 | .1847 | .0043 0
13 0 | .2736 | .0546 | .0006 0
14 0 | .3657 | .0116 | .0001
15 .0001 | .2157 | .0018 0
16 .0673 | .0644 | .0002 0
17 .4722 | .0111 0
18 .3762 | .0012 0
19 .0776 | .0001 0
20 0 .0063 0 0
21 1 .0003 0 0 0 0 0 0 0 0 0 0

* Mean annual supply of 1,815,000 acre-feet and a decision rule for 6 per cent interest.

TABLE 33
EXPECTED PUMPING DEPTHS AND PROBABILITIES OF EMPTY RESERVOIR

Points in time (¢)

lim
0 5 10 15 20 25 30 35 40 45 50 |t—
Expected depth to water
(feet).......ccvvevneenn... 50 112 175 232 287 337 354 359 362 365 367 374
Probability of empty state
in at least t years......... 0 0 0 0 0 0 .0013 | .0087 | .0252 | .0484 | .0757 1

Another interesting measure related
to future water storage is the probabil-
ity of not reaching the state of zero
water in storage within a given time
interval. An empty ground water res-
ervoir would cause an interruption of
agricultural production, and the prob-
ability of its occurrence in the near
future should be helpful in evaluating
a given policy more fully. In the pres-
ent case, zero net output associated
with reaching an empty state is some-
what arbitrary and the policy gener-
ated by this assumption should be given
critical appraisal at the lower storage

levels. The water poliey at high storage
levels is very unlikely to be affected by
this assumption sinece there is no chance
of reaching the empty state for at least
30 years (see table 32), and diseounting
makes effects beyond 30 years relatively
unimportant.

A convenient method for obtaining
the probability of reaching the empty
state within at least n stages of the
Markov chain is to substitute the vector
(0...010...0) into the row of the
matrix P corresponding to the empty
state, where the one is placed to appear
in the ¢*® column if the substitution is
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in the *® row. In our case the empty
state is the first (¢=1), which implies
substitution of (1 0 0 ... 0) for the
first row of P. The new matrix is raised
to the nt? power. The probability sought
is the element in the i** column and j®
row of the n'® power of the matrix,
where the initial state was j and the
substitution was in the *® row. In the
present problem, 1=1 and j=21 since
state 1 is the empty state and state 21
(50 feet depth to ground water) is the
initial state. Application of this tech-
nique for n = 1, 2, . . . 10 yielded the
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results summarized in the second row
of table 33.

There is less than one chance in 100
of reaching the empty state within 35
years and only one chance in 20 of
reaching it in 45 years. This risk is
sufficiently low that one can feel quite
confident of the decision rule for the
immediate future. This is not surpris-
ing since present value of output 45 or
50 years in the future is trivial com-
pared to current output. Consequently,
the optimal decision rule for large
storage levels is not altered by risk of
entering the empty state.

CONTINUOUS VARIABLE REFINEMENT

The refinements for periodic use and
storage treated as continuous variables,
which were discussed in chapter II, are
applied to the empirical study. Since
the net output funection is constant over
time in the empirical model, f,(8) =
fa1(8) = f(8) as n—>o in equation
(2.7). Table 27 tabulates f(S) for dis-
crete values of S. The magnitudes of
f(8) are plotted in figure 2 in relation
to water in storage for present mean

3,000 t—

2,200 |

1,800 |—

Present value (million dollars)

K S ! . !

supply and 6 per cent interest (column
3 of table 27).

A quadratic function fitted to the
data of figure 2 with the two lowest
storage levels deleted gave (variables
in million units) :

(6.3)  f(S)=1865.62+33.57788
-0.198482,

Marginal value of stored ground water
is given by:

(64)  f(8) =33.58 — 0.39688.

#(S) = 1865.62 + 33.5778S - 0.19845’

n 22

33 44 55

Ground water storage (million acre-feet)

Fig. 2. Present value net output of the study area (in million dollars).,
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Ground water under a condition of
maximum storage (54.78 million acre-
feet) has a marginal value equal to
$11.84.

The fact that the optimal annual use
rate is 3.75 million acre-feet in the dis-
crete model when storage is 54.78
million acre-feet suggests that in a con-
tinuous variable formulation the op-
timal rate is between 3.5 and 4.0
million acre-feet. A quadratic function
was fitted to net output (last column,
table 14) at the three levels of use
3.50, 3.75, and 4.0 million acre-feet,
giving relation
(6.5) R(X) =—641.0690 + 449.6900X

—58.3920X2

3.50 < X <4.00

1
1.06
with solution X =3.72 million acre-feet.

Ground water pumping costs esti-
mated by fitting a line to the discrete
data of table 20 yield a marginal net
output function which is linear in X
and continuous in the parameter S. The
fitted pumping cost function is

(6.7) ¢(8) =14.58 — 0.20045.

Substitution of the empirical functions
into (2.12) gives the decision rule

X = 424.6218 + 0.20048S.
B 117.1584
However, caution must be exercised in

the use of (6.8) because it is appro-
priate only for relatively large levels

446.3900 — 116.7840X =

(6.8)
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To get expected output net of pumping
costs, expected pumping costs must be
subtracted from (6.5).

Pumping cost per acre-foot with
storage at 54.78 million acre-feet is
$3.30 (table 20). Therefore, marginal
net output is

oB

. = ’ —

i X) — 3.30

449.6900 — 116.7840X — 3.30
446.3900 — 116.7840X .

Solution is obtained by substituting
the empirically estimated relations into
(2.12). Thus,

[11.84 4 (1.815 — X)(—.3968)]

of storage. Relation (6.3) is a good
approximation to f(S) except for small
magnitudes of S. When storage is at a
high level, discounting makes the in-
fluence of the poor fit at low storage
negligible.

A more adequate fit to the discrete
values of f(S) can be obtained by a
higher degree polynomial and inclusion
of all the data of figure 2. Difficulty is
encountered by doing so because the
equation for the decision rule becomes
nonlinear. Sinece only large levels of
storage are of interest for present con-
ditions, there is little purpose in com-
plicating the problem by a more re-
fined fit for f(8S).

IMPLICATIONS FOR THE STUDY AREA

Any conclusions drawn are neces-
sarily preliminary and subject to the
limitations diseussed in the next see-
tion. However, some general relation-
ships can be inferred from the analysis.

Ground water decision rules evolving
from the analysis suggest that there is
no reason to be alarmed about a declin-
ing level of ground water in this region.
Indeed, maximization of net output at
present value implies overdrafts in the

immediate future. Ground water re-
serves are so large relative to mean
annual supply that it is more econom-
ical to consume some of the stored
water rather than retain it as a contin-
gency against an uncertain future
supply. Under present water supply
conditions and the decision rule de-
rived, the expected ground water level
in the future is considerably lower than
that presently existing (see table 33).
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The analysis further suggests that if
the region has an opportunity to pur-
chase additional water at a price of less
than $40 per acre-foot, it should exer-
cise the opportunity unless an option
to purchase the added water at some
future date can be obtained. However,
the figure of $40 should probably be
reduced somewhat to account for the
fact that our model made no adjust-

ment for time lags in development and

the associated delay in production. A
reasonable but conservative figure
might be $30. Furthermore, the area
should not necessarily purchase addi-
tional water immediately if rights to
purchase water in the future will give
adequate stability for long-run plan-
ning.

Burt: Economics of Conjunctive Water Use

Consider a specific situation where
the region can contraet for future de-
livery of water. Suppose the area can
contract for 250,000 acre-feet of water
to be supplied at any future date of its
choice, but once delivery is made it
must continue indefinitely. What is the
maximum price that can be paid for the
water at various dates at which delivery
could be started (delivery at farm)?
The answer to this question is given in
table 29 for five-year intervals starting
from the present time and extending
the delivery date to 50 years from the
present. At a 6 per cent discount rate,
the price is lowest for the first five-year
period and equal to $16. The price in-
creases rapidly, reaching $60 within
40 years.

LIMITATIONS OF RESULTS

A note of caution: since adopting
the underlying decision model to the
problem at hand has been the major
objective of this study, the empirical
implementation attempted must be re-
garded as tentative. Possible sources of
error in variables employed and em-
pirical measures derived may lie in the
two major categories of variables, (1)
hydrological and (2) economic.

Hydrological

The probability distribution of
stream flows in the Kings River was
estimated from a sample of observa-
tions and subject to sampling error.
‘We do not expect this error to be large
from a sample of 88 observations. The
quantity of water recharged for a given
stream flow has been estimated at ap-
proximately one-half the stream flow.
This estimate could easily be wrong by
a significant amount. The estimate im-
plies pereolation rates from the surface
distribution system, surface water man-
agement through flood control releases,
evaporation losses, and many other
factors.

The study area is not a true basin
and ground water can flow in and out

of the area. These flows are not likely
to be large under present conditions,
but could be significant if large differ-
entials in ground water levels existed
between the study area and adjacent
areas. One compensating factor is the
large size of the study area and its par-
tial isolation, making ground water
movements small relative to the quan-
tity in storage.

Economic

Net output per time period as a fune-
tion of water consumption rate is
subject to error from a number of
sources and is the most equivocal datum
entering the model. The most important
sources of error in this function are:

(1) Statistical demand functions for
agricultural activities.

(2) Labor and ecapital costs for vari-
ous activities.

(3) Land development costs.

(4) Assumptions pertaining to pro-
duecer behavior.

(5) Selection of agricultural com-
modities entered as activities in
the linear programming part of
the analysis.

The statistical demand functions for
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agricultural activities are extremely
important in determining the level and
shape of the net output function for
the study area. The demand functions
employed are relatively crude esti-
mates and possibly subject to signifi-
cant error. The demand funections are
treated as independent among them-
selves as well as independent of com-
modities not included in the set of
potential commodities for production
within the study area. This simplifica-
tion can be serious. For example, the
truck erop activity contains only four
crops. There exist close substitutes not
included in our aggregate and effects
of these substitutes are not incorpor-
ated in projected demand. The truck-
crop demand function is probably
somewhat more elastic than the esti-
mated funetion used in the analysis.

Carrying this example with truck
crops further, inclusion of more crops
in the composite activity would help
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the situation but we are faced with
number (2); labor and capital costs
for other truck crops were not available
in many cases. Also, some of the other
truck crops are not adapted to the area.
More complete econometric models tak-
ing account of the interrelationships
are possible, but this was not praec-
ticable in the present study.

The restriction of net output to a
constant function over time is an ap-
proximation which should be avoided
when feasible. Also, certain constraints
on immediate development of an area
exist and should be taken into account.
Tree crops require a waiting period for
maturity and chemical treatment of al-
kaline soils requires considerable time
for leaching.

Another factor which limits present
results, a factor not directly classifiable
as either economic or hydrological, is
the artificial bottom placed in the un-
derground storage reservoir.

POTENTIAL USE OF THE MODEL FOR INVESTMENT
AND INVENTORY DECISIONS IN THE FIELD
OF WATER RESOURCES

Derivation of an optimal inventory
policy for ground water is of limited
usefulness in most basins since the in-
stitutional structure does not exist to
administer the policy. However, the
optimal policy may serve as an indica-
tion of how far actual rate of use de-
viates from the ideal. Expected net
output under the optimal policy, com-
pared with that under current practice,
gives a measure of the cost associated
with maintaining present institutional
arrangements. The pressure for con-
trolling ground water may be expected
to gain strength in the future, and thus
inerease the usefulness of ground water
inventory analysis.

The inventory model should help
clarify the implications of a given pol-
icy, whether optimal or nonoptimal.
Formulation of water storage as a finite
Markov chain permits application of
the theory of finite Markov chains to

the situation, which holds promise of
generating useful results. Measures of
mean passage times to various water
storage conditions, the probability of
reaching a certain critical water stor-
age condition in n years or fewer, and
other relations are amenable to precise
and meaningful interpretation within
a range of water resource development
situations.

The inventory model should prove
useful for deriving optimal policies for
surface reservoir management. Unlike
ground water storage, surface water
storage is usually placed under control
of a public agency. Therefore, an op-
timal policy for surface water manage-
ment has immediate applieation within
the existing institutional structure.

A water inventory policy, either op-
timal or nonoptimal, must be assumed
in order to estimate a point on the
investment opportunities surface. Eval-
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uation of prospective investments in a
basin requires estimation of the prob-
ability distribution of water utilization
over time. Present expected value of
net benefits under a given investment
situation can be estimated only when
an estimate of water utilization over
time is available.

Theory of storage (inventory con-
trol) is a vital part of the theory of
investment in water resources. Invest-
ment in water resources may be thought
of as falling into one of two general
classes. (1) Transportation of water
from areas of surplus to areas of
deficiency. In economic terms, trans-

Burt : Economics of Conjunctive Water Use

portation of water geographically to
produce the largest economic value,
net of transportation costs. (2) Crea-
tion of storage facilities, or making
possible more efficient utilization of
existing storage facilities, to alter the
time at which water is available at a
given geographic site. The theory of
inventory control plays a vital role in
investment decisions of the latter type
and is of some consequence in the first
category. Fluctuations in demand for
and supply of water make inventory
control a consideration in development
of facilities for conveyance of water.
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APPENDIX A

TABLE A-1

PRODUCTION, PRICES, AND YIELDS OF SELECTED COMMODITIES
(1957-1959 averages)

Unit Price Production Yield
Commodity
U. 8. Calif. U. S. Calif. Calif.
(6] 2) 3) @ 5) (6)
dollars 1,000 units

tons 61.19 57.36 2,926 2,659 6.60
tons 519.91 519.91 47 47 0.52
tons 421.33 423.06 73 67 0.55
Oranges..........covvvueenenne. boxes 3.00 3.58 121,408 31,097 221.00
Cantaloupes.................... cewt 4.46 4.38 12,047 6,458 143.00
Watermelons. .................. cwt 1.45 2.67 29,825 2,937 149.00
Tomatoes. ....o.ovvvveneennnn.. cwt 7.09 7.92 19,426 6,520 168.00
Sweet potatoes. ................ ewt 3.60 7.44 17,892 1,003 79.00
Apricots......o.oiiiiiiiiiinn tons 121.06 120.45 173 156 4.20
tons 82.08 65.00 1,608 806 10.30
tons 166.01 166.01 43 43 1.50
cwt 6.96 8.56 17,885 3,802 13.71
bales 157.15 161.50 12,345 1,690 2.09
tons 44.04 46.54 5,133 666 0.86

cwt 2.50

cwt 2.13

ewt 2.11

cwt 22.63

cwt 4.41

Sources:

Columns 2 and 3 except cantaloupes, watermelons, tomatoes, beef, and milk; columns 4 and 5 except sweet potatoes,
dry beans, cotton, cantaloupes, watermelons, and tomatoes: U. 8. Agricultural Marketing Service, Annual B.

Columns 2, 3, 4, 5, and 6 including only cantaloupes, watermelons, and tomatoes: U. S. Agricultural Marketing
Service, Annual C. .

C(ﬂumnsl{‘vi 5, and 6 including only sweet potatoes, dry beans, and cotton: U. S. Agricultural Marketing Service,

nnual A.

Column 6 including only grapes, almonds, walnuts, oranges, apricots, peaches, and olives: California Crop and

Livestock Reporting Service, Annual.

[971]
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TABLE A-2

BASE PERIOD LABOR AND CAPITAL COSTS AND PRODUCTION BY ACTIVITIES*

Tree nuts
Oranges Dry beans Almonds Walnuts @)+ @ Cotton
($)) 2 3) @) %) 6
Acres........ooiviiiiiiiiiiiiin 40 100 40 60 100 200
Production..................... 11,000 | 2,000 30 60 90 4508
(77 # boxes) (cwt) (tons) (tons) (tons) (bales)
Costs (dollars).................. 15,053
Fixed
Bldgs., power and equip-
ment............ooiuann 3,233 611 1,113 883 1,996
Trees............coooounne. 1,772 .. 992 2,910 3,902
Variable...................... 29,902
Pre-harvest................ 8,687 2,923 4,511 5,341 9,852
Harvesting................. 5,422 3,862 3,626 5,585 9,211
Managementt.................. 956 370 512 736 1,248 ..t
TOTAL.......coovivninn.. 20,070 7,766 10,754 15,455 26,209 44,955

* Costs are adjusted to 1957-1959 average by index of prices paid by farmers.
t 5 per cent of all other costs.
§ Additional production as seed equal to 180 tons.
1 Included in fixed costs.
SOURCES:
Column 1: University of California, 1959D.
Column 2: Computed average from University of California, 1958B, C.
Column 3: University of California, 1959C.
Column 4: University of California, 1959F.
Column 5: Computed from columns 3 and 4.
Column 6: Douglas D. Caton et al., 1958.

TaBLE A-3
BASE PERIOD LABOR AND CAPITAL COSTS AND PRODUCTION BY ACTIVITIES*
Clingstone Freestone Deciduous
peaches peaches Apricots Olives fruit
1) (3) 4) 6]
ACTEB. ..ot e 65 55 10 30 160
Production (tons)...............cociiiiiii... 975 880 80 120 2,055
Costs (dollars)
Fixed
Bldgs., power, and equipment............ 2,833 1,595 213 438 5,079
0 T 3,047 1,983 349 823 6,202
Variable
Pre-harvest..........coooviiiiiiiiin. 25,041 19,604 1,781 5,060 51,486
Harvesting. . . 11,366 20,141 2,158 10,617 44,282
Managementt...........oooiiiiiiiii e, 2,114 2,167 225 847 5,353
TOTAL. ...t 44,401 45,490 4,726 17,785 112,402

* Costs are adjusted to 1957-1959 average by index of prices paid by farmers.
1 5 per cent of all other costs.
SOURCES:

Column 1: University of California, 1960.

Column 2: University of California, 1959A.

Column 3: University of California, 1958F.

Column 4: University of California, 1959E.

Column 5: Sum of columns 1, 2, 3, and 4.
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TABLE A-4
BASE PERIOD LABOR AND CAPITAL COSTS AND PRODUCTION BY ACTIVITIES*
Standard Thompson Emperor Thompson Aggregate
vine seedless for for table seedless for grape
varieties raisins} use§ table use]| activityy
n 2) [&)] [¢)] (5)
ACTeS. i 55 55 25 25 160
Production (tons).........cooiiiiiiiii i 605 440 175 200 1,420
Costs (dollars)
Fixed
Bldgs., power, and equipment............ 857 922 419 434 2,632
Vines. .....ooviiiiii i 2,222 2,212 1,310 1,176 6,920
Variable
Pre-harvest...............oooiiiiiin 5,184 5,690 3,141 4,611 18,626
Harvesting. ..........cooooiiieiiiinnt 5,928 5,201 2,058 2,744 15,931
Managementt............ooviiiiiiiiiaiins 709 702 347 448 2,206
TOTAL. ... 14,900 14,727 7,275 9,413 46,315

* Costs are adjusted to 1957-1959 average by the index of prices paid by farmers.
t 5 per cent of all other costs.
t Eight fresh tons per acre (2 tons of raisins).
? Fresh market sales of 5.25 tons per acre and 1.75 tons per acre to winery.
4 Fresh market sales of 5.6 tons per acre and 2.4 tons per acre to winery.
Composition of the aggregate activity was determined so that the proportions of winery, raisin, and fresh grapes
are tqhe same as the California average; thus, California average price is appropriate for the aggregate grape activity.
Sources:
Column 1: University of California, 1959H.
Column 2: University of California, 19591.
Column 3: University of California, 1959G.
Column 4: University of California, 1959J.
Column 5: Sum of columns 1, 2, 3, and 4.

TABLE A-5
BASE PERIOD LABOR AND CAPITAL COSTS AND PRODUCTION BY ACTIVITIES*
Aggregate
Cantaloupes | Tomatoes | Watermelons Sweet truck crop
(fresh mkt.) potatoes activity
1 2) @3) (€] )
ACTe8. ..o 70 30 30 30 160
Production (ewt)............oooiiiiiiiiiiin 9,800 12,150 7,200 2,400 31,550
Cost (dollars)
Fixed
Bldgs., power, and equipment............ 285 863 395 332 1,875
Variable
Pre-harvest . 6,386 24,210 4,898 6,315 41,809
Harvesting. .................... 23,112 43,557 3,229 3,196 73,094
Managementt 1,489 3,432 427 492 5,840
Credit for value of sweet potato seed and
hulls. . .oveiie e .. .. .. —1,890 —1,890
TOTAL. ...t 31,272 72,062 8,949 8,445 120,728

* Costs are adjusted to 1957-1959 average by the index of prices paid by farmers.
t 5 per cent of all other costs.
SOURCES:

Column 1: Stewart, 1954.

Column 2: University of California, 1953.

Column 3: University of California, 1958D.

Column 4: University of California, 1956.

Column 5: Sum of columns 1, 2, 3, and 4.



100 Burt: Economics of Conjunctive Water Use

TaBLE A-6
BASE PERIOD LABOR AND CAPITAL COSTS AND PRODUCTION BY ACTIVITIES*
Grain
Grain sorghum- | Field corn | Field corn | Field corn | Field corn
sorghum Barley barley (Tulare Co.) | (Fresno Co.)| (Kings Co.) activity
activity
1) 2) @) “ 5) (8 W)
Acres......ooviiiiii 100 100 100 100 100 100 100
(double crop)
Production (cwt)....... 4,000 3,000 7,000 6,000 6,000 6,000 6,000
Costs (dollars)
Fixed
Depreciation. . ..... 396 307 703 437 901 389 576
Interest on invest-
ment............. 165 178 343 145 299 163 202
Variable
Pre-harvest......... 3,459 .1 3,459 4,719 4,393 4,048 4,386
Harvesting......... 1,246 ..t 1,246 2,205 1,046 1,764 1,671
Materials........... .8 809 809 ..§ ..§ ..§ ..§
Labor and field
POWer........ou.. .8 1,463 1,463 ..§ ..§ ..§ .8
Cash overhead...... .8 512 512 ..§ .8 ..§ .8
Managementt....... 263 164 427 375 332 318 342
TOTAL........ 5,529 3,433 8,962 7,881 6,971 6,682 7,177

* Costs are adjusted to 1957-1959 average by the index of prices paid by farmers.
1 5 per cent of all other costs.
} Included with pre-harvest and harvesting costs.
Included with materials, labor and field power, and cash overhead.
OURCES:
Column 1: University of California, 1958E.
Column 2: University of California, 1955.
Column 3: Sum of columns 1 and 2.
Column 4: University of California, 1959K.
Column 5: University of California, 1958A.
Column 6: University of California, 1959B.
Column 7: Average of columns 4, 5, and 6.

TABLE A-7

BASE PERIOD LABOR AND CAPITAL
COSTS AND PRODUCTION BY

ACTIVITIES*
Beef on irri-
gated pasture Dairy
ACTeS. . .evvi e, . 88 220
Production
Beef (ewt).......oooennt 1,7251§ ..
Barley (ewt).............. .. 1,260
Alfalfa hay (tons)......... .. 35
Dairy stock (dollars)...... .. 5,597
Milk (ewt). ....oevennennn. .. 13,000
Costs
Fixed......oovovvvvnvnenn. 3,196 10,631
Variable.................. 28,737 37,641
Managementt............. 1,779 3,504
TOTAL.............. 33,712 51,776

* Costs are adjusted to 1957-1959 average by the index
of prices paid by farmers. )
5 ?er. cent of all other costs (treating enterprises
separately in dairy—>5 per cent of $68,646).
1196 head at 880 lbs (2 per cent death loss).
§ Yield on pasture of 14 animal unit months per acre.
SOURCES:
Column 1: University of California, 1954.
Column 2: University of California, 1957.
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TABLE A-8

BASE PERIOD LAND UTILIZATION BY SELECTED AGRICULTURAL ACTIVITIES
WITHIN STUDY AREA

Proportion of

Activity Acreage Estimated Units of United States
production production production

[ T 201,959 1,332,929 tons .455600
Almonds...........oeunn .. 2,457
Walnuts...........oouene e 3,868

Tree nut activity ... 6,325 3,416 tons .028470

(0] 03 Y. 3,477 768,417 boxes 006329
Watermelons and cantaloupes............ 2,106
Tomatoes............ooevnes .. 77
Sweet potatoes........... .. 989

Truck crop activity e 3,812 571,800 cwt .007220
Apricots.......oouvunnn.. . 1,385
Peaches.. 33,867
897

36,149 345,223 tons .189300

6,762 92,707 cwt .005184

186,994 391,087 bales .031680

SoURcES:
Column 1: California Department of Water Resources, Land Use Classification (unpublished).
Column 2: Computed, using average California yields during the base period.
Column 4: Computed, using United States production during the base period.

TABLE A-9
BASE PERIOD PRICES AND PRODUCTION BY SELECTED ACTIVITIES
Prices
Price difference
. United States Study area | between U. S. | United States | United States
Activity Unit except study (Calif.) and study area price production
area
1) 2) ® 4 %) (6)
dollars 1,000 units
Treenuts............ tons 460.00 455.00 — 5.00 460.00 120
Oranges.............. boxes 3.00 3.58 0.58 3.00 121,408
Dry beans. .......... cwt 6.96 8.56 1.60 6.96 17,885
Deciduous fruit. ..... tons 91.43 73.06 —18.37 87.76 1,824
Truck crops.......... cwt 3.77 5.85 2.08 3.78 79,190
Grapes............... tons 64.39 57.36 — 7.03 61.19 2,926
SourcEs:

C?lum.n 2: Computed using estimated study area production and a price for study area production equal to Cali-
ornia price.

Columns 3, 5, and 6: Table A-1.

Column 4: Column 2 minus column 3
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APPENDIX B

Urban population projections to 1980 are used as a basis for estimating urban
water requirements. Urban water use cannot be regarded as a fixed requirement
for a given situation but is the quantity determined by an equilibrium between
supply and demand, as in the case of any other commodity having economic
value. When we speak of a fixed requirement, we are assuming a completely
inelastic demand function.

Urban water consumption in the study region is small relative to agricultural
use and, therefore, the error resulting from assuming a completely inelastic
urban demand for water is not likely to be large relative to the over-all water
management policy. Also, data available are primarily in the form of fixed
requirements, presumably estimated under prevailing prices of water, which
are not subject to wide fluctuations. '

Water requirements per acre of land in urban use are taken as fixed as are
land requirements per capita of urban population, thus making urban water
requirements dependent only upon urban population. An estimate of urban
water requirements in 1980 is obtained by projecting urban population to that
date.

The Fresno metropolitan area is considered separately from other urban units
in the region. The growth rate for 1950-60, 1.44, is used to project growth from
1960-70. The rate of growth for 1970-80 is estimated at 1.32. Other urban areas
are estimated to grow at rates of 1.36 and 1.30 for 1960-70 and 1970-80,
respectively (U. S. Senate, 1960, pp. 10, 17).

Instead of projecting population and from the population projection, pro-
jecting land devoted to urban use, we can project urban land directly using
the above rates and present acreages of land in urban use. This is the procedure
followed by subareas in the region of study to derive projected acreages of
urban land for both the conjunctive use and nonconjunctive use areas. Present
acreages of urban land were obtained from unpublished material of the California
Department of Water Resources, Sacramento. Projected urban acreage together
with other land restricted from agricultural production is given in table B-1.
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TasLE B-2
NONAGRICULTURAL WATER REQUIREMENTS ANNUALLY, 1980 PROJECTIONS
(Acre-feet)
Per acre
Urban demand of Urban Farmsteads, Fixed annual
demand farmsteads, acres lawn area, ete. requirements
per acre lawn area, etc. (acres)
Conjunctive use area............. 1.3 .75 81,315 5,770 110,037
Nonconjunctive use area......... 1.4 .75 7,664 2,289 12,447
TOTAL.......covvvvvnnen.n, 122,484

SouUrces:
Columns 1, 2, 3, and 4: California Department of Water Resources (unpublished).
Column 5: Computed from columns 1, 2, 3, and 4

TaBLE B-3

PROJECTED POPULATION AND DISPOSABLE PERSONAL INCOME,
UNITED STATES, 1980

Observed Projected
1957 1958 1959 1957-59 1980
average
1 2 (3) 4 (5)
Disposable personal income (billion dollars)........ 308.8 317.9 337.3 321.3 746*
Gross national product (billion dollars)............. 442.8 444 .2 482.1 456.4 1,060*
Population (millions).......coovviiiiiiiiinenenn.. 171.2 174.1 176.9 174.1 244

* 1959 constant dollars.
SoURCES:
Columns 1, 2, 3, and 4: Joint Economic Committee Staff and the Office of Statistical Standards, 1960, pp. 3 and 14

Column 5: Gross na’clo.nal product and population: U. S. Senate, 1960, p.
Disposable personal income: Computed by multiplying projected gross natl((imal product by the ratio of average

disposable personal income to gross national product during the base perio



APPENDIX C

Case I (monopoly)

We consider the problem of maximizing net returns subject to a limited supply
of water (the resource could be some other resource such as land). Tt is assumed
that the set of commodities being produced at a positive level can be delineated
independently of the maximization problem. The following definitions are made:

P; =price of the i*? commodity

Q; = quantity sold of the 7** commodity

w; = water used in producing the ¢** commodity

K =fixed water supply

C;(Q;) = cost function for the 7t commodity

1=1,2, ...n
(1) P;=D;(@:)

(2) Qi=1i(w:)

Our problem is to maximize R = > (PQ: — CiQ.) subject to), w; = K.
=1 =1

Using Lagrange’s method we define the function
3) G = ; PQ:— CiQ) — X(_Zl wi — K)

setting % =0:

3Q; P ; ’ N
awi(Pi‘i' Qzan - Ct(Ql)) =\N1=1, 2; R (A
Substituting from (1) gives:
9Q: oP; _ -\ i=
@ e (DLQ) + Q55— @) =\ i=1,2 - n.

Solution of 2n + 1 equations yields the desired answer, i.e., equations (2), (4),
and the constraint

n

Ewi=K.

=1

Case 11 (pure competition)

Our problem is to maximize returns in the above problem, but with the
additional requirement that competitive conditions be imposed. Price is treated
as a constant in the maximization of returns and we restrict the cost function
to C;(Q;) = diQ;, d; a constant. We also restriect the production function,
Q; = fi(w;), to Q; = bjw;, b; a constant. These are restrictions necessary for
linear programming analysis.

Under these conditions setting 0G/dw; =0 in (3) gives:

(5) bi(P,'—di)=)\’1:=1’2’...n.

[ 106 ]
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Substitution gives the n+ 1 equations,

bt(Dt(Qz) - dl) =X\ T = L2 -n
(6)

in n+1 unknowns.
Setting average returns per unit of water equal among the n commodities
gives (5). We may write average returns per units of water for the 7t commodity,

PQ:— CiQ) _ Pbaw: — dibawy)
w; - w;
the left side of (5).

We note that defining C;(Q:) = d:Q; and f;(w;) = b;w; permits simulation
of pure competition from our aggregative model. These conditions could be
relaxed somewhat by distinguishing between internal and external economies
of scale with respect to production of a single commodity. An assumption of
independence among commodities has been made with respect to costs and prices.

= b(P: — dy),



APPENDIX D

TaBLE D-1
ESTIMATION OF GROUND WATER STORAGE CAPACITY

Storage capacity (1,000 acre-feet)

Storage unit Estimated acres Specific yield
(ground water study of study area between 100
classification) included 100-200 200-407.4 | and 200 feet

10-50 50-100 .
feet depth | feet depth | feet depth | feet depth

San Joaquin Rivert............. 192,000 910 1,110 2,470 5,137 .129
Fresno Interstreami.. 49,000 160 180 260 535 .053
Kings River}.................... 576,000 3,250 3,520 7,160 14,813 124
Dinuba Interstreamt............ 68,000 170 270 350 776 .055
San Joaquin Valley average. . ... 501,000§ 2,120 2,660 5,060 10,495 .101
TOTAL............... Cevee 1,386,000 6,610 7,740 15,300 31,756

* Estimated by using specific yield between 100 and 200 feet. K

1 Selected townships within the total unit were used to estimate specific yield.

1 Entire unit used to estimate specific yield. .

gTots.l study area acreage minus the preceding for which account has been taken (1,386,000 - 885,000).
OURCE: Davis, 1959.

[108]
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TaBLE D-2
ANNUAL* SUMMARY OF DISCHARGE
OF KINGS RIVER AT PIEDRA
(1,000 acre-feet)

Year Year Year

1908.... 977 | 1944....| 1,168

1909....) 2,799 1945....| 2,062

1910....| 1,779 1946....| 1,612

1911....) 2,827 | 1947....| 1,107

1912.... 968 1948.... 996

1913.... 942 | 1949.... 961

1914....| 2,548 1950....1 1,281

1915....| 1,817 1951....| 1,601

1916....| 3,042 | 1952.... 2,856

1917....] 1,893 1953....| 1,155

1918....| 1,364 | 1954....( 1,339

1919....] 1,203 1955....| 1,143

1920....] 1,405 1956....| 2,695

1921....] 1,532 1957....] 1,259

1922....] 2,198 1958....| 2,615

1923....] 1,556 | 1959.... 824

1924. ... 392 | Average| 1,755
1925....1 1,290
1926....| 1,087
1927....1 1,984
1,852 1928.... 971
1,825 | 1929.... 850
1,265 1930.... 863
1895..... 2,484 1931.... 465
1,871 | 1932....| 2,084
1,949 1933....1 1,181
881 | 1934.... 657
1,278 | 1935....| 1,621
1,307 1936....| 1,877
1901..... 2,956 1937....| 2,341
1902..... 1,505 1938....| 3,283
1903..... 1,640 | 1939.... 974
1904. . ... 1,687 1940....1 1,791
1905. .... 1,448 | 1941....( 2,543
1906. .. .. 3,900 | 1942....| 1,999
1907. . ... 2,733 | 1943....| 2,027

* Oct. 1 to Sept. 30, except 1872-1896 which are on a
calendar year basis.
SoURCES:
1872-1896: U. S. Congress 1940, p. 7.
1897-1959: U. S. Geological Survey records.
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