


The procedure for using the computer to solve steady-state 
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George S. Taylor and J. N . Luthin 

The Use of Electronic Computers to Solve 
Subsurface Drainage Problems1 

SUBSURFACE DRAINAGE systems are eval­
uated by field experimentation, labora­
tory studies involving tank models, ana­
log systems such as electrical resistance 
networks, and analytical and numerical 
analyses. In this report our primary con­
cern is with numerical analysis. In such 
studies, boundary and internal soil con­
ditions are specified with respect to 
hydraulic-head potential φ and soil 
hydraulic conductivity K. The appli­
cable flow equation relating φ and K in 
the soil is then solved by an iterative 
procedure. From the resulting data one 
obtains usable information concerning 
water flow into drains. 

The application of numerical analysis 
to certain problems in subsurface drain­
age was reported about a decade ago by 
Luthin and Gaskell (1950) and by Kirk-
ham and Gaskell (1950). Because of the 
extensive calculations required, numer­

ical analysis has been used to only a 
limited extent since that time. The 
availability of high-speed computers re­
moves this obstacle and permits exten­
sive use of numerical analysis in all types 
of soil-moisture flow problems. 

The primary objective of this report 
is to illustrate the use of high-speed 
computers for studying moisture-flow 
problems encountered in drainage. The 
drainage case selected for these analyses 
is that of ponded flow into drains which 
are embedded in stratified soil. While 
the ponded flow case has limited prac­
tical application, it is treated here be­
cause analytic solutions are available for 
comparison with the computer results. 
Also the effect of soil stratification on 
ponded flow into drains can be explored 
for some cases which do not lend them­
selves easily to solution by analytical 
analysis. 

PROCEDURES 
The drainage case analyzed in this study 
is shown in figure 1. Drain tubes of 
radius r are buried at a depth d in 
saturated soil and are running full with 
no back pressure. The drains are essen­
tially horizontal and their walls are in­
finitely permeable. The drains are con­
sidered to be of infinite length so that 
flow into the drains is of two-dimensional 
character. The soil is layered but iso-

1 Submitted for publication November 1,1962. 

tropic with respect to its hydraulic con­
ductivity K. The ground surface is 
covered with a continuously maintained 
thin film of water. The drain depth d, 
the interfaces at L\ and L2, and the dis­
tance to the impermeable layer h are 
variables. Likewise the hydraulic con­
ductivities Ki, Kz, and Kz may assume 
different values. 

For steady-state laminar flow of fluid 

[543] 
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Fig. 1. Schematic representation of the drainage case studied in this paper. Drains of radius r 
are embedded at a depth d in a 3-layered soil which is underlain by an impermeable layer at a 
depth h. The hydraulic conductivities of the top, middle, and bottom layers are Ki, K2 and Kz, 
respectively. A water table is maintained at the soil surface and the drains are running full with 
no back pressure. 

in a saturated porous medium, the ap­
propriate flow equation for two-dimen­
sional analysis is given by equation [1]. 

dx (*2)+á(*2)- « 
In this expression K is the hydraulic 
conductivity of the porous medium and 
φ is the hydraulic head. The hydraulic 
conductivity K is defined by equation 
[2], where v is the macroscopic flow 
velocity per unit cross-sectional area, 
and gradient φ is evaluated in the direc­
tion of greatest change in φ 

= —K grad. φ [2] 

For the flow problem shown in figure 1, 
K = K(x, y) must be used at points 
along an interface between layers of dif­
ferent hydraulic conductivity. At other 
points in the flow region, K is not a space 
function and equation [1] reduces to the 
familiar Laplace equation in two dimen­
sions as shown by equation [3]. 

dx2 dy2 [3] 

As used in this study the potential φ 
is that given by equation [4], where y is 
the elevation above the drain center of 
a point P(x, y), and H is the gauge or 
hydrostatic pressure expressed in terms 
of a water-column height. 

Φ = y + H [4] 

Of particular interest* in this study are 
the potentials at the soil surface and at 
the drain. By definition the gauge pres­
sure H is zero along the water table, and 
φ is numerically equal to the drain depth 
d Sit the ground surface. Since the drains 
are running full with no back pressure, 
the sum of y and H along the drain cir­
cumference is always equal to zero since 
the gauge pressure is zero at the center 
of the drain, + r at the bottom, and — r 
at the top. 

Earlier reports have shown methods 
by which numerical analysis can be ap-
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Fig. 2. Representation of the network of rectangular meshes superimposed over the area ABCD 

shown in figure 1. Square meshes of dimension ho are used between the planes AD and EF, while 
meshes of dimension h0 by 4Λ0 are used in the remaining area. The vertical plane EF may occur 
atji = 5, 6, · · ·, or j m — 2. The columns,; = 1 and j = j m + 1 and the row i — û + 1 serve as 
reflexive boundaries to fulfill the condition that AD, BC and CD, respectively, are streamlines. 

plied to steady-state flow problems such 
as the one illustrated in figure 1. The 
procedure utilized herein is essentially 
that reported by Luthin and Gaskell 
(1950) and by Kirkham and Gaskell 
(1950). The major difference is that nu­
merical calculations are done by a high­
speed electronic computer rather than 
with a desk calculator. The problem is 
solved by first drawing a rectangular 
grid over the region ABCD as shown in 
figure 2. Only half of the region on one 
side of the drain is needed because of 
symmetry. The left-hand portion of the 
region ABCD is represented by square 
meshes and the remaining portion by 
rectangular meshes which have a hori­
zontal dimension four times that of the 
vertical. This particular arrangement is 
followed as a time-saving and economy 
feature, since previous studies have 

shown that potential changes in the 
horizontal direction are quite small ex­
cept near the drain. For computer pro­
gramming, each node (or grid point) is 
identified by the subscripts ¿, ,·. 

The known value of φ = d is assigned 
to nodes along the soil surface. The fixed 
potential at the drain circumference 
(that is, φ = r) is assigned to the node 
at the drain center. All other nodes are 
initially assigned a value of φ = 0. These 
latter values are then repeatedly altered 
by an iterative procedure until equation 
[1] is approximately satisfied on a finite 
(but small) scale. This is done by tra­
versing the nodes repeatedly and system­
atically, the value at each node (other 
than ones of fixed value) being replaced 
by a calculated one. The calculated 
value is based on the magnitude of those 
at its four neighboring nodes, the dis-
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tances to the four nodes, and the hydrau­
lic conductivity in the intervening inter­
vals. (Special formulas for making these 
calculations are given in the following 
section.) When the iterative process is 
continued until successive traverses 
bring about only small changes in φ, the 
calculations are discontinued and the 
problem is considered to be "solved." 
The resulting values of φ can then be 
used to determine such quantities as 
equipotentials, streamlines, flow veloci­
ties, and drain flow rates. From these 
latter quantities, the effectiveness of 
drainage-system design for various hy­
draulic-conductivity depth profiles can 
be evaluated. 

Formulas for Rectangular Meshes 
in Stratified Soil 

For the grid shown in figure 2 there 
are four cases for which approximation 
formulas must be derived in order to 
solve equation [1] by numerical analysis. 
These cases are illustrated in figure 3. 
The formulas are given by equations [5], 
[6], [7], and [8], respectively, for the cases 
shown in figure 3a, by c, and d. These 
equations are given in terms of the center 
(zero) node. They apply for a node lo­
cated either in the interior of a homo­
geneous layer or on an interface which 
separates an upper layer of hydraulic 

conductivity Ku from a lower one of 
conductivity KL. For nodes in the row 
i = ii (see figure 2), R is designated as 
Ri and is equal to Ki/K2; while in row 
¿2, R is given by K2/Kz. In equation [6] 
the parameter C is a function of the 
ratio ho/r, where h0 is the dimension of 
the square mesh at the drain and r is the 
drain radius. A table of C values is given 
in the Appendix for some values of h0/r 
which are commonly encountered in the 
numerical analysis of drainage problems. 
If the node is not located on an interface, 
R is unity and then equations [5] through 
[8] become finite difference approxima­
tions of equation [3]. 

The finite difference equations for the 
three cases shown in figure 3a, c, and d 
are based on a linear rate of change in 
the potential φ between the node at 0 
and 1, 0 and 2, and so forth. These equa­
tions are taken directly from Vimoke 
and Taylor (1962; Eq. [30]). In using 
the formula of Vimoke and Taylor to 
obtain equation [7], we set b = d = a, 
c/a equal to M, m equal to R, and V 
equal to φ. By making M equal to unity, 
equation [5] then results from equation 
[7]. In using the formula of Vimoke and 
Taylor to obtain equation [8], we set 
b = a7, a/d and c/d equal to M, m equal 
to Ä, and V equal to φ. When R and M 
are both unity, [5], [7], and [8] yield the 

Case 1. Node on interface, square mesh (see figure 3a): 

φο = [2Αφι + (B + 1)(φ2 + ΦΑ) + 2φζ]/4(Κ + 1) [5] 

where R = KU/KL 

Case 2. Same as Case 1, except adjacent to drain (see figure 3b) : 

φο = [2Ä0! + (ß + 1)(φ2 + ΦΑ/C) + 2φ3]/(3 + l/C)(R + 1) [6] 

where C = f(h0/r) (See Appendix table A-l) 

Case 3. Node on interface, change in mesh size (see figure 3c) : 

φο = [M (1 + M)(Ä0! + φ3) + (1 + R)&2 + Μφ4)]/(1 + M)2(1 + R) [7] 

Case 4. Node on interface, rectangular mesh (see figure 3d) : 

φο = [2ΑΜ2φ! + (1 + β)(φ2 + φ4) + 2Μ2φ3]/2(1 + « ) ( ! + M*) [8] 
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(c) Node on interface, 
change in mesh size. 
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(d) Node on interface, 
rectangular mesh. 

Fig. 3. Sketches of the four cases for which formulas are needed to solve equations [1] and [2] 
by numerical analysis. In all cases a horizontal interface separates an upper layer of hydraulic 
conductivity Ku from a lower one of conductivity KL. 

same results, namely the appropriate 
equation for a square mesh in a homog­
eneous soil. 

Equation [6] is based on a logarithmic 
change in φ between 0 and 4 and a linear 
change in φ between 0 and the remain­
ing three nodes. This equation is ob­
tained directly from Vimoke and Taylor 
(1962; Eq. [53]). In using the formula 
of Vimoke and Taylor to obtain equation 
[6], we set m equal to R, V equal to φ, 
and Cd equal to C. 

Equations [5], [7], and [8] are essen­
tially the same as those utilized by other 
investigators who assume a linear rate of 
change in φ between adjacent nodes. 
Equation [5] is the same expression as 
one derived for this case by Luthin and 

Gaskell (1950; Eq. [6]). When R is unity, 
equation [5] is identical to Luthin and 
Gaskeirs equation [2], both being for a 
square mesh in a homogeneous and iso-
tropic soil. When R is equal to unity, 
equation [8] is the same expression as 
one given by Kirkham and Gaskell 
(1950; Eq. [8]) for the case shown in 
figure 3d. Equation [6] is similar in form 
to one given by Luthin and Gaskell 
(1950; Eq. [4]) for the case shown in 
figure 36 and for R equal to unity. How­
ever, equation [6] differs significantly 
from Luthin and GaskelPs and from one 
used by Isherwood (1959), in that equa­
tion [6] is based on a logarithmic change 
in potential between the nodes 0 and 4. 
The other two investigators assume a 
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linear relationship. Vimoke, et al. (1962), 
show that a logarithmic rather than a 
linear interpolation is necessary to bring 
satisfactory agreement between results 
of numerical analyses (or network ana­
logs) and exact mathematical solutions. 
The reader is referred to the work of 
Vimoke, et al., for a detailed discussion 
of the case shown in figure 3b and an 
evaluation of the parameter C. 

Computer Programming 
Before discussing the computer pro­

gram used to solve the problem shown in 
figure 2 by numerical analysis, one might 
first consider the manner in which calcu­
lations are made. As indicated previ­
ously, known values of φ are assigned to 
boundary nodes and a φ value of zero is 
initially assigned to all others. For each 
node other than boundary ones, a new 
potential φ is calculated by one of the 
following equations, [5], [6], [7], or [8]. 
The particular equation utilized de­
pends on the location of the nodes as 
shown in figure 3. The calculations are 
made first for the column,/ = 2, starting 
with i = 2 and proceeding through 
i = ih. This process is then repeated for 
columns j = 3, 4, · · ·, j m . 

To identify and store the values of φ 
in the computer, it is convenient to 
designate φ as φη (¿, j). (The superscript 
does not appear in the computer pro­
gram.) The latter term represents the 
value of φ0 after the nth iteration for a 
node whose location is specified by the 
subscripts », y. Following the calculation 
of each φη (i, j), a quantity Yf is calcu­
lated by utilizing equation [9]. 

r = w(<t,na,j) - ψ(Ι·. y;-1) = WY [9] 

In this expression, Y is the residual 
term. It represents the difference be­
tween the most recent value of φ (that 
is, the nth iteration) and the one which 
was obtained in the previous (n — 1) 

iteration. The parameter W is an over-
relaxation constant, reported by Young 
(1954; 1956) and by Young and Lerch 
(1953), which reduces the number of 
iterations for a prescribed level of pre­
cision. Its magnitude is determined by 
the number of nodes and ranges between 
1.0 and 2.0. The quantity Y' is referred 
to as "RESIDUAL" by us but differs 
from Y by the factor W. The magnitude 
of Y indicates the rapidity with which 
the potential at the node i, j is changing 
from the (n — 1) to the nth iteration. 
Small values of Y indicate, for example, 
that subsequent iterations will bring 
about only small improvements in pre­
cision. During the nth iteration, the 
absolute value of Y' is summed for all 
the i, fs. If the summed values of Y' are 
less than a prescribed value, say DELTA, 
the iterative process is discontinued. If 
not, the (n + 1), (n + 2), and so forth, 
iterations are performed until the 
summed values of Y' are reduced to the 
magnitude of DELTA. 

A flow chart is shown in figure 4 for 
programming the problem illustrated in 
figure 2. In analyzing the chart, the 
reader is reminded that this particular 
chart is not unique for the problem at 
hand. Some modification may even be 
necessary if one uses a different com­
puter. The flow chart is given here so 
that the interested reader may compre­
hend the overall scheme by which such 
problems are handled. 

Prior to the first step shown in the 
flow chart, the following parameters 
must be specified and "read" into the 
computer: ¿i, i2, id, ih, ji, jm, Ri, R2, C, 
DELTA, and D. The values of i and j 
specify the physical dimensions of the 
problem as shown in figure 2, while the 
values for R and C apply to equations 
[5] through [8]. The parameter DELTA 
specifies the precision to which the itera­
tion process is to be carried. The quan­
tity D is the potential assigned to the 



HILGAEDIA · rol. 34, No. 12 · August, 1963 549 

SI±£I-»JSET ALL 0 (||) TO ZEWOf—»[sET ALL » ( I | ) T0~D~| H SET ld TO ( i d t I ) | -

HZLEDTGJ] 
KL) © 

SET ERROR * O sYES STOP 

G 
1 

SET eoh+ i,j) «Φ («h-'.TT|—I [ 

1 ^ U / ■ V 3 

| < " - ' ■ > > 

(sH 
Ih T a 

U - i») 

HI >-0 

< " - ' ■ > y 

.»o _ m : 
( i - 3 ) ) ) - ) ¡SET 0 ( i , l ) « 0 ( i , 3 ) | 

W -< i »Im S 
JSET » l l . im«0 « * > t H m - ' > | 

-[¿I-

1 (i + l ) - i d ) -

1 
i — < U - id) 

x >0 

Ep L*] L̂ l E«] L ]̂ H°j ψ 
(RESIDUALS [ Υ Ί SET BY JOPERATIONS 4 0 - 6 2 ) 

*Wi ■ »ir»11* ^ 

I ERROR « ERROR + IY'I · - t 

- \ YES 

if] 
i — ^ ERROR > DELTA ^ - * { c ) 

"NT | (S) 

Fig. 4. Flow chart for programming the numerical analysis problem illustrated in figure 2 on 
an IBM 704 electronic computer. 

"step" in the program.) The drain 
depth is then increased a distance equal 
to h0 (see figure 2) by replacing id with 
(id + 1). For example, if one wishes to 
have the first drain depth2 at the node, 
for example, i = 3, one sets the initial 
value of id = 2. (Ignore the encircled 
letters A through D for the moment.) 

2 A more flexible arrangement which has been used in subsequent studies is to replace id by 
by (id + in) y where in is an integer which denotes the interval between drain locations and which 
must also be initially "read" into the computer. 

ground surface, where D = A(d — r) 
and A is a constant. 

In the first step given in figure 4, φ is 
initially set to zero in each case. Sec­
ondly, φ along the soil surface is then 
changed to D in each case. (The magni­
tude of D should not be confused with 
the encircled letter D which denotes a 
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In the fourth step, id is compared with 
ih. If id is larger than ih, the program is 
stopped. Otherwise, the summed values 
of Yf (that is, ERROR) are set to zero 
and the iteration begun. This is done by 
initially setting,; = 2 and i = 2. As will 
become clear later on in the program, 
steps E and F increase i and j in steps 
by units of one, respectively, until all 
¿'s and j's are utilized in the iteration. 

The current value of ¿ is then com­
pared to ih. If equal, the potential at the 
node (ih + I, j) is replaced by that at 
(in — 1, i ) . This operation fulfills the 
condition of zero flux across the plane 
DC since the potentials directly above 
and below this plane are equal. At the 
next step, the value of i is compared first 
with %\ and then with i2. These compari­
sons result in the appropriate value of 
R being assigned to equations [5] through 
[8]. The value of j is then compared to 
ii. If equal to j h a RESIDUAL Γ' is 
calculated (operation number 50) by 
using equation [9]. In this particular 
case, <t>n(i, j) is given by equation [7], 
which is the appropriate equation for 
nodes in the column j = jlm The value 
of φ is then obtained from the sum of 
(Φο;;)*1"1 + Yf) a n d then stored in the 
computer. The magnitude of ERROR 
is computed by adding the absolute 
value of Y' to the previous value of 
ERROR. At this step, the value of i is 
increased by 1, and so forth; however, 
let us return for the moment to the com­
parison of i with ii. 

If i is greater than j h a comparison is 
first made with j m . If j = jm, the poten­
tial at the node (¿, j m + 1) is replaced 
by the potential at (i, j m — 1). This 
operation fulfills the condition of zero 
flux across the plane BC. Operation 62 
then directs the calculation of Y', in 
which φ(ι·, jf is given by equation [8]. If 
i is less than j h then j is compared with 

i = 4. If i is equal to or greater than 4, 
operation 40 directs the calculation of 
Y by using equation [5] to yield φ(ί, ¿f. 
If i = 4, the potential at (¿, 1) is first 
replaced by that at (1, 3) before pro­
ceeding with operation 40. This proced­
ure fulfills the condition for zero flux 
across the plane AD. 

For i less than 4, a comparison is first 
made between it and j = 3. If j = 3, a 
second comparison is then made be­
tween i and id. For i = id, operation 42 
directs the use of equation [6] in calcu­
lating Γ'. For other values of ¿, opeia-
tion 40 is carried out. If j is less than 3 
(that is, i = 2), then three additional 
steps are included to determine the loca­
tion of the node (¿, 2) with respect to 
the node (id, 2). If i = id, the magnitude 
of Y' is arbitrarily set to zero by opera­
tion 46. Since the potential at the drain 
was initially set to zero, this operation 
insures that the potential always re­
mains zero. Operations 44 and 48 utilize 
a modified form of equation [6] in calcu­
lating Y' for the case where (i, 2) is 
either directly above or below (¿¿,2). 

After ERROR has been accumulated 
for the current value of ¿, then i is re­
placed by (i + 1). If the new value of i 
is less than or equal to ih, step E directs 
the iteration to continue. When i exceeds 
ih, j is replaced by (j + 1). If i does not 
exceed j m , the iteration then continues 
for all ¿'s and subsequently on to the 
next j . When j exceeds j m , a comparison 
is then made between ERROR and 
DELTA. If ERROR exceeds DELTA, 
step C directs that ERROR again be 
set to zero and the entire iteration for 
¿, i be repeated in each case. If ERROR 
does not exceed DELTA, the value of 
all the potentials is printed, id is set to 
(id + 1 ) and all steps repeated until id 
is again increased. When id exceeds ¿A, 
the entire program is stopped. 
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RESULTS AND 
Mesh Size and Residuals 

To evaluate the effect of mesh size 
and residual (F) on the computer re­
sults, drain flow rates Q are determined 
for the following drainage situation and 
compared with those calculated by the 
exact solution of Kirkham (1949; Eq. 
[11]). Water flows under saturated con­
ditions through a homogeneous and iso-
tropic soil and into a buried drain (see 
figure 1). The drain diameter, depth, and 
spacing are 6 inches, 15 feet, and 48 feet, 
respectively. An impervious layer is at 
21 feet, and the water table is main­
tained at the soil surface. The drain is 
running full without back pressure. In 
the computer analysis, a square grid is 
used on the flow region3, and different 
mesh sizes are employed. The limiting 
magnitude of the summed RESIDUALS 
Y' (that is, DELTA) is also varied for 
each analysis. For each case studied, the 
drain flow rate Q is determined by sum­
ming the increments of flux which enter 
the soil surface. This evaluation is made 
by first dividing the horizontal distance 
between x = 0 and x = S/2 (see figure 
1) into N equal increments of width Ax. 
The expression in equation [101 is then 
utilized to obtain Q. 

N 

Q = 2K Σ iM>m/dy)Axm · · · [10] 

In this expression K is the conductivity 
at the ground surface (equal to K\ in 
layered soils), and d<S>m/dy is the poten­
tial gradient at the soil surface and in the 
interval Axm. 

The effect of mesh size and average 
residual Ϋ on the ratio Q/K is shown in 
figure 5. For purposes of discussion it is 

3 These particular analyses are made with a 
figures 2 and 4. In the modified program, jy is n 
in the entire region. 

DISCUSSION 
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Fig. 5. The effect of residuals and mesh size 
on the ratio Q/K for ponded flow in a homo­
geneous and isotropic soil. The drain diameter, 
depths, and spacing are 6 inches, 15 feet, and 
48 feet, respectively. An impervious layer is at 
21 feet. The quantity Q/K is evaluated by 
equation [10] from data obtained with an 
IBM 704 computer. 

assumed that K is equal to unity, and 
Q is thus numerically equal to the ratio 
Q/K. The "average residual" Ϋ is ob­
tained by summing the absolute values 
of all F's and dividing by the number of 
nodes. Although the residual Y varies 
from one node to another, an average 
value of Y is sufficient for the present 
discussion. As can be seen from figure 5, 
a linear relationship exists between Q 
and Ϋ. Q was not determined for an 
extremely large range of Ϋ; however, a 
linear relationship is found over a wider 
range of F-values than shown in the 
graph. As the mesh size is reduced, Q is 
greater for a comparable value of Y. 
There is a relatively large increase when 
the mesh size is reduced from 3.0 to 1.5 
feet, while a small increase is obtained 
when the mesh size is further reduced 
to 1.0 foot. 

The data resulting from numerical 
analyses such as used here are obtained 
with greater precision when the resid-

slightly modified program of that illustrated in 
Lade larger than j m so that a square mesh is used 
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Size of Square Mesh - Ft. 

Fig. 6. The effect of mesh size on the ratio 
Q/K when the latter is evaluated at zero re­
sidual. The quantity Q/K is the intercept value 
of the curves in figure 5. 

uals are small. Thus for a particular 
mesh size, Q can be obtained with high 
precision when the curves in figure 5 are 
extrapolated to zero residuals. Accord­
ingly, Q-values of 16.2 and 16.4 are ob­
tained, respectively, for square mesh 
sizes of 3.0 and 1.0 feet. 

If one obtains Q as described above 
and plots these values against mesh size 
(see figure 6), the accuracy of Q can be 
evaluated by first extrapolating the 
curve to zero mesh size and then com­
paring the intercept value to that ob­
tained by an exact analytical solution. 

- 1.0' by 1.0' MESH 
550 NODES 

Average Residual - Y (Ft.) 

Fig. 7. The effect of mesh size and the aver­
age residual Y on computer running time. The 
drainage case evaluated is identical to that 
used to obtain the results shown in figure 5. 

This is done in figure 6 by utilizing the 
data presented in figure 5. A nearly 
straight line is obtained. The intercept 
value is 16.42 as compared with Kirk-
ham's analytic value of 16.65, and the 
deviation from the latter is —1.5%. 

The error in the potential is greatest 
at the nodes near the drains. An un­
known error is contributed by ''rounding 
off." Eight significant figures are used 
in the computer calculations. 

Residuals, Mesh Size, and 
Computer Running 

Time 
The effect of residuals and mesh size 

on computer running time is illustrated 
in figure 7. As used here, "running time" 
is the time required to yield the poten­
tials at all nodes after the boundary con­
ditions are specified. I t includes the time 
to read punched cards, carry out the 
required computations, and print the 
results. As one might predict, a decrease 
in mesh size or a reduction in the resid­
ual Y increases the running time. The 
running time increases quite rapidly as 
the average residual approaches zero. 
The horizontal portion of the curves re­
sults because a high percentage of the 
computer running time is taken in read­
ing and printing, this being a "fixed" 
quantity as compared to computation 
time. If the rental charge of available 
computers is known, the information 
given in figure 7 for an IBM 704 can be 
used to estimate the cost of utilizing a 
computer in numerical analysis. Run­
ning time is primarily dependent on the 
number of nodes and the level of pre­
cision sought. For a given level of pre­
cision, running time is roughly propor­
tional to n3, the number of nodes. The 
number of nodes to be used depends 
also on the rapid-access-memory size of 
the available computer. 
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TABLE 1 

EFFECT OF THE OVERRELAXATION 
CONSTANT W ON COMPUTER 

RUNNING TIME* 

0 0.0005 0.001 
AVERAGE RESIDUAL -Y(FT) 

Fig. 8. The effect of the overrelaxation con­
stant TV on the ratio Q/K for different values 
of the average residual T. The drainage case 
evaluated is that reported in figure 5. A square 
mesh of dimensions 1.0 by 1.0 feet is utilized 
in the numerical analysis program, resulting 
in 21 nodes in the vertical direction and 25 in 
the horizontal. 

Overrelaxation 
constant 

W 

1.36 
1.67 
1.81 
1.90 

1.36 
1.67 
1.81 
1.90 

Average 
residual 

Ϋ 

feet 

.00563 

.00563 

.00563 

.00113 

.00113 

.00113 

.00113 

Computer 
running 

time 

minutes 

8.0 
4.5 
3.0 

12.0 
7.0 
3.5 
3.0 

* The drainage case evaluated is that which yields the 
information reported in figure 5. 

Overre laxat ion Constant 

Expanding the Mesh Size 
The effect of expanding the mesh size 

A · J 11 J ,· j. in ponded flow analyses is illustrated in 
A considerable reduction m computer , , , Λ . ~_ 

.. , , , . , , ,, table 2. As shown therein, only small 
running time can be obtained by the use , . ,. . , , , . ' J ,. 
Λ4? „ i x · j. x / deviations are introduced by expanding 
oí an overrelaxation constant (see equa- Λ. , T , , . , . t. , : . , 
tion [9]). The effect of different values t h ! m e s h

f i
I n a f x t l ° n ' ^ β Ρ ° * β η * 1 & ΐ 8 / Γ β 

for the constant W on the rate of con- ™* *®f™^y altered by expanding 
vergence of Q/K and on running time is t h e m e s h j d a t a n f <*<mn). The use of 
i Λ . n o Λ 4. ui i An ¿i. an expanded mesh reduces the number 

shown in figure 8 and table 1. All the „ ; 
Λ„_ . n 0 , . , , v i of nodes and thus the running time for 
curves in figure 8 are straight lines and .. , . , , Tr mi 
yield similar values for Q/K when the 8 . J P « « ? l b e d . r e s i d u a l Y' T h u s a c o n " 
curves are extrapolated to zero residual. ^ d e r a b l e

 u
s a v i n ^ s "J u

c o m P u t e r r u n n i n § 
The running time is about four times t u n e c a n b e r e a h z e d b y u t l l l z m g ^ e x " 
greater, however, for the lowest value of 
W than for the highest. 

v / 1 Λ Ε Μ i X J A. EFFECT OF EXPANDING FROM A 
Young (1956) has reported optimum SQUARE MESH OF 1.0 BY 1.0 FEET 

values of W for the case where a square T O A RECTANGULAR MESH OF 4.0 
mesh is used and the region of interest FEET (HORIZONTAL) BY 1.0 FOOT 
is also square. Some of these values are 0 N T H E RATIO QIK* 
tabulated in the Appendix, table A-2. 
If one does not wish to use refined tech­
niques for deciding on the optimum 
value of W, an evaluation of the type 
illustrated in figure 8 and table 1 will 
often suffice. In such an evaluation the 
value of W will be decided on the basis 
of computer running time and rapidity 
Of C o n v e r g e n c e Of p o t e n t i a l φ. I n figure * The drainage case evaluated is that used to obtain 

8, for example, rapid convergence is Ε Α ^ Λ 1 ! ^ 
indicated by the nearly horizontal curve t » J d 0 Ä 5 5.y extrapolating to zero residual M illus" 
f n r W = 1 QO t Compared to Q/K obtained by a computer analysis 
iul VV l.vKJ. using a square mesh of 1.0 by 1.0 feet. 

Mesh expanded at 

feet 

4 
8 

12 
16 
20 

Q/*t 

square feet/ 
foot of drain 

16.36 
16.32 
16.30 
16.28 
16.28 
16.28 

Deviation t 

per cent 

0.5 
0.2 
0.1 
0 
0 
0 
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U Half Drain Spacing« 48 Ft. »| 
Oi ; 1 

Hydraulic Conductivity - K| 
£ 2 
¿ In ter face-^ 

2" 4L K2 
o 

w 6 Γ CASE I 

β Impervious--,. 

Fig. 9. Drainage situation analyzed 
by computer. 

panded mesh in much of the flow region 
(see figure 7). No attempt has been made 
in this study to evaluate the case for a 
rectangular mesh in the entire region of 
flow. An approximation formula for a 
drain in a square mesh has been tested 
(Vimoke, et al, 1962) and found to be 
of suitable accuracy. (See figure 36 and 
equation [6].) A similar formula must also 
be evaluated for a drain in a rectangular 
mesh before such analyses can be made. 

Solutions Obtained for a 
Stratified Soil 

The drainage situation studied is 
shown in figure 9. The soil represented 
here consists of two layers, a shallow top 
layer overlying one of much greater 
thickness. The hydraulic conductivities 
in the two layers are assigned different 
values ; however, the conductivity of the 
top layer either exceeds or is equal to 
that in the bottom one. Each layer is 
isotropic with respect to its conduc­
tivity. The particular dimensions used 
are somewhat arbitrary: A depth of 2 
feet to the layer interface was chosen so 
that the boundary conditions correspond 
roughly to shallow soils which are under­
lain by a less permeable layer. The depth 
to the impervious barrier was selected 
so that its location would not materially 
influence flow into drains which were in­
stalled at practical depths between 2 and 
5 feet. The spacing chosen was large 
enough so that flow rates for drains at 
different depths would not be signifi­
cantly affected by this parameter. A 

drain diameter of 4 inches was used in 
all analyses since this size of drain is 
commonly used in field installations. 

Some experimental results are shown 
in figure 10. Drain flow rates were deter­
mined for drain depths of 1, 2, · · ·, 8 
feet and for different ratios of Ki/K2. 
The drain flow rates Q are not given 
directly but for purposes of generality 
are expressed in terms of the quantity 
Q/Ki. Thus the values reported on the 
abscissa apply to any two-layered soil 
whose conductivity ratio is given by 
K1/K2, regardless of the absolute values 
of Ki and K2. The flow rate Q is given by 
simply multiplying Q/Ki by K\. If K\ 
is 1 foot per day, for example, Q is 
numerically equal to Q/Ki and has units 
of cubic feet of flow daily per foot-length 
of drain. In the discussion which follows, 
the quantity Q/K\ will be referred to as 
simply "flow rate." 

The effect of drain depth on flow rates 
in an unlayered soil (ΧΊ = K2) is shown 
by the curve at the right of figure 10. 
The solid line represents flow rates as 
calculated by Kirkham's equation [11] 
(1949), while the circled points give 
those evaluated by numerical analysis. 
The deviation in flow rates as evaluated 
by these two methods was less than 5%, 
Kirkham's analytic equation usually 
yielding the higher values. As shown by 
Kirkham, flow rates increase with drain 

Q/K , - (Ft.*/Ft. Drain 1 

Fig. 10. Drain flow rates as a function of depth 
of tile line for different ratios KJKV 
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depth until the drain approaches the im­
pervious layer. For the 8-foot drain 
depth, the lower half of the drain is em­
bedded in the impervious layer. How­
ever, the sharp decrease in flow rate at 
the 8-foot drain depth is only partially 
due to the "half drain" effect since flow 
rates are also reduced at the 7-foot drain 
location. The major reason for reduced 
flow appears to be the restricted flow 
region adjacent to the drain. 

For layered soils, greater flow rates are 
obtained as the drain location is changed 
from the center of the top layer to its 
lower boundary. For ratios of Ki/K2 
equal to or greater than 2, the flow rates 
are reduced as the drain is first lowered 
into the bottom layer. There is some in­
crease in flow rates at lower drain loca­
tions since flow increases with drain 
depth. If the ratio Ki/K2 exceeds 3, the 
flow rates are less than those obtained 
when the drain is in the top layer. Ap­
parently greater drain depth does not 
compensate for the lower conductivity 
in the bottom layer. As with the un-
layered soil, placing the lower half of 
the drain in the impervious layers re­
duces the flow rate. However, this 
reduction is not very marked for ratios 
greater than 5. 

Computer Use in Other 
Flow Problems 

The computer program described here 
applies only for steady-state flow in 
saturated soils which are homogeneous 
with respect to the hydraulic conduc­
tivity K. Modified programs can be 
written, however, for soils which are 
anisotropic with respect to K. The major 
difference between programs for iso-
tropic and anisotropic soils involves the 
approximation formulas. Thus for aniso­
tropic soils, equations [5] through [8] 
would contain terms which relate the 
horizontal (Kh) and vertical (Kv) com­
ponents of the hydraulic conductivity. 

Likewise, programs can be written for 
steady-state flow in unsaturated soil. In 
such problems the hydraulic conduc­
tivity K varies with the moisture con­
tent, and the approximation formulas 
must be altered accordingly. One pro­
cedure used by the authors is to assume 
a unique relationship between water con­
tent and the hydrostatic pressure H, and 
then to relate K to H (for example, 
Vimoke and Taylor, Eq. [33] and [34]). 
The approximation formulas would then 
contain terms whose magnitude is de­
pendent on the pressure H at a par­
ticular node and at its four neighboring 
ones. In such programs, the hydrostatic 
pressure H at each node is calculated 
after each iteration by equation [4]. It is 
then stored in the computer in the same 
manner as the potential φ. Other than 
the above alteration, the overall pro­
cedure would be unchanged from that 
reported earlier in the text. 

The flow problems of general interest 
in subsurface drainage are time-depend­
ent and involve non-steady-state analy­
sis. Kirkham and Gaskell (1950) have 
reported a numerical procedure for util­
izing a succession of steady-state analy­
ses to determine water-table drawdown 
in tile and ditch drainage. Their proced­
ure could be easily adapted to computer 
use, particularly in the more recent 
models that have larger storage capacity 
and greater computing speed. The pro­
gram could be approximately as follows : 
In the first step, a steady-state analysis 
is obtained for a water table maintained 
at the ground surface. This step can be 
carried out by the program given in the 
text. In the second step, a small incre­
mental change in moisture content is 
brought about. This is done first in the 
top row of nodes (see figure 2) and sub­
sequently at all other nodes where the 
hydrostatic pressure H indicates un­
saturated soil. The change in moisture 
content is determined by the formula 
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obtained by setting the left side of equa­
tion [1] equal to the time-rate change of 
moisture content dc/dt. In this expres­
sion, c is the soil moisture content and 
t is time. The resulting formula is ex­
pressed in finite-difference form, a short 
time interval is chosen, and Ac is then 
calculated by assuming that K and φ 
remain unaltered during the chosen time 
interval. 

In the third step, the original mois­
ture content is altered an amount Ac, 
and the hydrostatic pressure H and 
potential φ are recalculated at each 
node. The magnitude of H is determined 
from an experimental or assumed rela­
tionship between c and i / , while φ is 
calculated by equation [4]. In the fourth 
step, a second steady-state analysis is 
obtained by solving equation [1] for the 
new boundary condition which results 
from changes in moisture content. In 
this step, equation [1] applies only to 
nodes in saturated soil. Steps 1 through 
4 are then successively repeated until 
some arbitrarily chosen time is reached 
or until the water table has receded to 
some previously designated depth. At 
prescribed time intervals, the quantities 
Φ, H, and c are printed for each node 
along with the elapsed drainage time t. 

The principal advantage of computer 
use in such problems is precision and 

operating speed. Calculations can usually 
be carried out to 6 or 8 significant fig­
ures, while operating speed is exceed­
ingly rapid compared to hand calcula­
tion. Availability of the larger and faster 
computers is steadily increasing from 
year to year. During the last five years, 
for example, many institutions have 
realized a ten- to forty-fold increase in 
computer operating speed and in stor­
age capacity by replacing existing models 
with improved ones. 

The Researcher's Role in 
Computer Use 

The researcher can and may wish to 
do his own computer programming. It 
is not essential tha t j i e do so, and in 
many situations his time will be ineffi­
ciently used. In general, the researcher 
should be able to prepare a flow chart 
such as illustrated in figure 4. In addi­
tion to his familiarity with the problem 
at hand, the researcher would be greatly 
assisted in this endeavor by attending a 
programming seminar which is spon­
sored by a computer laboratory. Persons 
adept at programming can usually be 
employed to convert the flow chart into 
a suitable language for the machine and 
to obtain the desired results. Computer 
laboratories often maintain a directory 
of personnel who do programming. 
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SUMMARY 
The numerical solution of Laplace's equa­
tion by electronic-computer analysis is 
illustrated for ponded flow in stratified 
soil. A computer program to solve for 
the hydraulic-head potential φ is pre­
sented in detail with the aid of a flow 
chart. The procedure followed in the pro­
gram is essentially that reported by 
Luthin and Gaskell (1950). The primary 
difference is that a high-speed electronic 
computer is used instead of a desk cal­
culator. The computer analysis is stopped 
when the residuals are reduced to a speci­
fied value. Finite-difference formulas are 
given for solving the Laplace equation 
for the following four cases: square 
meshes, rectangular meshes, change from 
square to rectangular meshes, and 
square meshes containing a curvilinear 
surface (that is, a circular drain section). 
The formulas apply to both homogene­
ous and stratified soils. 

Precision is evaluated for a particular 
mesh size by comparing the potentials 
at zero residual to those at some finite 
value of residual. Precision increases 
nearly linearly with a reduction in the 
residual. However, computer running 
time, and thus the cost of these analyses, 
increases nearly logarithmically with a 
reduction in residuals. For analyses 
which require large computer running 
times, some cost savings can be made by 
obtaining the potentials for relatively 

large residuals and then graphically 
evaluating the potentials at zero resid­
ual by extrapolation. 

The accuracy of the computer data is 
evaluated by comparing experimental 
drain flow rates with those calculated 
from the exact analytic solutions of 
Kirkham. Accuracy increases nearly 
linearly with a reduction in mesh size, 
and the deviation of computer results 
from calculated ones ranges between 1 
and 2 per cent. Computer running time 
also increases with a reduction in mesh 
size, and some compromise is usually 
made between accuracy and cost. 

For a prescribed precision, the use of 
an overrelaxation constant W materially 
reduces the computer running time. A 
technique is presented for deciding on 
the magnitude of W, and a table of W 
values is given for a square region. The 
feasibility of expanding the mesh size in 
regions where small changes in potential 
occur is also shown. 

Usefulness of the computer program 
is illustrated by solutions obtained for 
ponded flow into drains in a stratified 
soil. The potential use of computers in 
other subsurface drainage problems is 
discussed, and a proposal is made for 
obtaining computer solutions of the 
falling-water-table case in tile drainage. 
The role of the researcher in computer 
usage is also discussed. 
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APPENDIX 
T A B L E A-l T A B L E A-2 

SOME VALUES OF T H E CONSTANT C* 
W H I C H ARE USED IN EQUATION [6]f 

ho/r 

1.0000 
1.0435 
1.0909 
1.1429 
1.2000 
1.2632 
1.3333 
1.4118 
1.5000 
1.6000 
1.7143 
1.8462 
2.0000 

C 

.00160 

.03745 

.07299 

.10650 

.14114 

.17660 

.21318 

.25130 

.29124 

.33339 

.37814 

.42598 

.47741 

ho/r 

2.1818 
2.4000 
2.6667 
3.0000 
3.4286 
4.0000 
4.8000 
6.0000 
8.0000 
9.0000 

12.0000 
24.0000 

C 

0.53316 
0.59412 
0.66139 
0.73649 
0.82158 
0.91975 
1.03581 
1.17784 
1.36094 
1.44226 
1.61897 
2.06009 

* The values of C reported in this table are equal to 
one half those reported as Cd by Vimoke and Taylor (1962) 
in their table 7. 

t The C-values are given as a function of the ratio 
ho/r, where Λο is the square-mesh size at the drain and r is 
the drain radius. 

SOME O P T I M U M VALUES OF T H E 
OVERRELAXATION CONSTANT W FOR 

D I F F E R E N T M A T R I X SIZES AS 
R E P O R T E D BY YOUNG (1954)* 

Number of nodes 

6 by 6 =36 
10 by 10 = 100 
14 by 14 = 196 
18 by 18 = 324 
22 by 22 = 484 
26 by 26 = 675 
30 by 30 = 900 
34 by 34 = 1,156 
38 by 38 = 1,444 
42 by 42 = 1,764 

00 

Overrelaxation 
constant W 

1.33 
1.53 
1.64 
1.70 
1.75 
1.78 
1.81 
1.83 
1.85 
1.S6 
2.00 

* The values of W are for the case where a square mesh 
is used and the region of interest is also a square. 

4w-8,'63(D7046)A.M. <^g§^> i« 
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