


i 
The theories of model soil colloids are developed in the 
present work. The principal point of departure is thermo­
dynamics, and in the first section, an effort is made to 
present a consistent system of chemical thermodynamics 
and pertinent related physical chemistry. The second sec­
tion deals with the Donnan theory and some consequences 
of it which may have relevance for soil systems. Electro­
chemical measurements are also discussed. In the third sec­
tion, the Gouy theory of the electrical double layer is re­
viewed and the theory is used to calculate ionic activities. 
In the fourth section, ion-exchange equations based on vari­
ous models are developed. The significance of different 
models for soil systems is analyzed in relation to the avail­
able data. In the fifth section, a discussion is presented of 
the thermodynamics of soil moisture. The emphasis 
throughout is on the development of theory, and no effort 
has been made to make historical or literature surveys. 
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K. L. Babcock 

Theory of Chemical Properties 
of Soil Colloidal Systems 

at Equilibrium1 

INTRODUCTION 
No SINGLE approach to the physical 
chemistry of soil colloids has gained 
acceptance in the literature. The ap­
proaches have varied from the assump­
tion that a suspension of clay particles 
can be treated by the methods appli­
cable to homogeneous solutions, at one 
extreme, to the concept of a soil-water 
mixture as a two-phase system of in­
soluble solid particles in an aqueous 
medium, at the other. In consequence, 
the theoretical aspects of soil chemistry 
are at present in a confused state. 

The general basis for developing a 
physical chemistry for soil colloids is 
thermodynamics. It is a rather surpris­
ing fact that the logical structure of 
thermodynamics itself has not been well 
established. This lack is most strongly 
felt when efforts are made to apply 
thermodynamics to systems involving 
variables other than temperature, pres­
sure and composition. It has therefore 
seemed necessary to attempt a treat­
ment of chemical thermodynamics which 
has a logical form suitable for applica­
tion to soil systems, and this attempt 
forms Section I of the present work. The 
method of treatment relies heavily on 
E. A. Guggenheim's book Thermodyna­
mics, an Advanced Treatment for Chem­
ists and Physicists (1949). However, 
Guggenheim's methods and viewpoints 
have been modified in many ways. 
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Throughout this monograph, the dog­
matic position has been taken that 
purely thermodynamic formulas must 
involve only macroscopic variables of 
state. This classical dogma has often 
been contested, but the present writer 
feels that it must be retained if we are 
to preserve the great certainty which is 
attributed to the laws of thermody­
namics. The method of attack, then, is 
to construct extrathermodynamic model 
systems and from them deduce the 
thermodynamic behavior of the model. 
Since the thermodynamics involves only 
observable properties, the theoretical 
predictions can be directly compared 
with experimental results. 

One of the central problems in soil 
chemistry results from the fact that an 
extract must be made in order to deter­
mine the chemical characteristics of the 
liquid phase in a soil system or in a sus­
pension of colloidal particles. That is, 
one must filter, centrifuge or dialyze the 
system in order to obtain an extract for 
chemical analysis. This means that one 
can only infer the state of the liquid 
phase in the original system on the basis 
of assumptions. Consequently, a large 
part of this monograph will be concerned 
with the theory of extracts. It is curious 
that relatively little attention, theoreti­
cal or experimental, has been given to 
this basic problem in soil chemistry. 
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The sections in which the theory of 
various model systems are developed 
are closed with a brief dicussion of their 
applicability to soil systems. These dis­
cussions have been intentionally kept 
brief, and no effort to present a litera­
ture survey has been made. Rather, in 
the interest of brevity, only typical 
papers are cited. The emphasis through­
out is on the development of the theory 
of model systems. 

Finally, the continuity of the theo­

retical development of this monograph 
must be stressed. For example, the ma­
terial on "other variables" in Section I 
is essential to the treatment of Donnan 
systems in Section II. Similarly, the 
Donnan theory presented in Section I I 
is a prerequisite for the use of the double-
layer theory in Section III . The reader 
is accordingly urged to read the mono­
graph as a whole, since individual sec­
tions, for the most part, will not be un­
derstood in isolation. 



Section I 

PERTINENT PHYSICAL CHEMISTRY 

A SYSTEM OF CHEMICAL THERMODYNAMICS 
Basic concepts 

In treatments of thermodynamics, one might expect to encounter first a system 
of well-defined concepts and then clear statements of the laws in terms of these 
concepts. This is not the case in most presentations. The attempt here will be to 
establish a system of logically consistent definitions and then to state the First and 
Second Laws of Thermodynamics as inductively proven generalizations in terms 
of these definitions. 

A difficulty arises at the very start. This difficulty has been clearly stated by 
Kline and Koenig (1957) : 

The usual procedure in giving a statement of a principle is to define certain key terms which 
are then used in stating the principle. Usually, these key terms cannot be defined with a satis­
factory degree of rigor. The whole process is then one which starts from vague qualitative notions 
based on physical perceptions and proceeds by a stepwise process to a condition of relative exacti­
tude embodied in certain quantitative relations between well-defined symbols. One of the real 
problems in the present case is that the two key terms employed, namely, 'state' and 'property/ 
have been defined only very loosely, even more loosely than is usually the case. An attempt is 
therefore now made to improve these definitions. 

The concepts of property and state are inextricably connected. Either can be defined quite 
easily if the other is known. There are, therefore, five possible courses of action open: (1) define 
either property or state and use the definition in turn to define the other; (2) assume that either 
one is known intuitively and use it to define the other; (3) define both together by successive 
stages; (4) define both at once; (5) define each in terms of the other. Of these alternatives, (4) and 
(5) are logically fallacious, and (3) is undesirable. In addition, there appears to be no adequate 
definition for either state or property alone. The only remaining course of action open, and it is 
not an altogether satisfactory one, is to assume that either state or property is known and then 
to define the other in terms of it. In this case we shall assume that we understand the term prop­
erty in its general significance. 

In line with this suggestion of Kline and Koenig we shall take the concept of a 
property of a system as a point of departure and define a subclass called primary 
properties as follows: A primary property is a property that has a numerical mag­
nitude directly determinable by experimental observations carried out at some 
particular time. We may note, then, that the value of a primary property is inde­
pendent of the history of the system, and that primary properties may be extensive 
(depending on the extent of the system), such as volume or mass, or intensive 
(independent of the extent of the system), such as pressure or density. Now, the 
state of a system is said to be defined when all of its primary properties have fixed 
values. I t follows that the magnitude of the increment of a property depends only 
on the initial and final states of the system and not on the path of the change in 
state. 

We may now state an important experimental generalization : I t is not necessary 
to specify values of all primary properties in order to specify the state of a system. 
For example, if we fix the temperature and pressure of one mole of gaseous oxygen, 
all other properties of the system have determinable values and the state of the 
system is fixed. This leads to a generalization called the State Principle, which is 
stated by Kline and Koenig as follows: "For any system, there exists a positive 
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integer n such that if n intensive primary properties are fixed, all other intensive 
primary properties are fixed.'' 

Concerning the State Principle, we again quote from Kline and Koenig: 
The State Principle is a fundamental postulate of thermodynamics in the same sense as are 

the First and Second Laws. I t is not new; thermodynamicists have understood these facts for 
many years. However, it has been employed tacitly rather than explicitly in the vast majority of 
cases. No exposition of it appears to have been published previously in any form. Like the First 
and Second Laws of Thermodynamics, the State Principle cannot be deduced from any other 
fundamental macroscopic postulate, nor can it be proved by any other deductive means. Its sole 
proof lies in the fact that the principle and all of its deductive consequences are in accord with 
laboratory observations. 

The existence of the State Principle means that if p is any intensive primary 
property we can find relationships of the type 

Pn+l = /(Pi, P2, ' " Pn) 

Any such equation is called an equation of state, and the pi · · - pn are called state 
variables. In addition, if one extensive property is specified, the size of the system 
is determined. 

An additional subgroup of properties may now be defined : A macroscopic property 
is any primary property or other properties defined in terms of primary properties. 

The concept of an isolated system is fundamental to thermodynamics. By an 
isolated system we mean a system which is in such a condition that no change in 
its state can be produced by interaction with surroundings. (Such a system is con­
tained in rigid, insulating walls in the absence of long-range forces.) 

We are now in a position to deal with equilibria. Equilibrium has been defined 
in many ways. This is perhaps the simplest definition: Any system which is in a 
state of rest, that is, whose properties do not change with time, is said to be in a 
state of equilibrium. Equilibria may be classified as follows: 

I. Isolated systems 
A. Complete equilibrium 

Every homogeneous isolated system in a state of rest is in complete equili­
brium. A heterogeneous isolated system is in complete equilibrium if no 
processes occur in its component parts when they are brought into isolation. 

B. Incomplete equilibrium 
A heterogeneous isolated system in a state of rest is in incomplete equilibrium 
if processes occur in its component parts when they are brought into 
isolation. 

II . Systems in contact with surroundings 
A. Complete equilibrium 

A system in contact with surroundings (including external force fields) is 
in complete equilibrium if it is in a state of rest and no processes occur when 
it is isolated. This is also called internal equilibrium. 

B. Incomplete equilibrium 
A system in contact with surroundings (including external force fields) is 
in incomplete equilibrium if it is in a state of rest but processes occur when 
it is brought into isolation. 
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This classification of equilibria is essential for the form of the Second Law state­
ment we shall adopt. 

The reversible process may now be defined: Any process which occurs in a system 
which is only infinitesimally removed from any state of equilibrium is called a 
reversible process. All other processes are called spontaneous processes. 

Zeroth Principle 
The Zeroth Principle of Thermodynamics is so called because like the State 

Principle, it must logically precede the First and Second Laws. We begin by notic­
ing that, in general, when two separate systems which are in complete equilibrium 
are brought into physical contact, changes occur until each attains a state of rest. 
In such states of rest, the two bodies are said to be in thermal equilibrium. We now 
follow Guggenheim's statement (1949) of the Zeroth Principle: "If two systems 
are in thermal equilibrium with a third system, then they are in thermal equilibrium 
with each other.'' All systems in thermal equilibrium must have a property which 
has the same value, namely, the temperature. 

The Zeroth Principle may now be used to establish a temperature scale. Let us 
arbitrarily select a standard system which we will call a thermometer. We bring a 
thermometer into thermal equilibrium with a large reference system and find the 
relationship between the pressure and volume of the thermometer. The resulting 
pressure-volume curve must be at constant temperature and it may be called an 
isotherm. A temperature scale can now be defined by selecting a function of the type 

t = KP, V) 
The only restriction on the function / is that it must be consistent with the 

empirically found relationship between P and V. If, for instance, the thermometer 
is a gas obeying Boyle's Law, we find 

P · V = constant (temperature constant) 

We may then invent a temperature scale by means of any function : 

t = f(PV) 

The greatest convenience results if we use 

t = K(PV) 

where K is a constant. The size of the degree is arbitrarily fixed by assigning 
K = 1/nR, where R is the gas constant and n is the number of moles. If, now, we 
wish to measure the temperature of another system, we bring it to thermal equilib­
rium with our thermometer, measure P and V of the thermometer and use the above 
equation to calculate T. We will find later that this scale has more than arbitrary 
significance. For the moment we note only that on this scale water freezes at 
273.16°. 

First Law 
In order to state the First Law the adiabatic process must first be defined. We 

again follow Guggenheim and state that a process is adiabatic if the system is con­
fined by insulating walls. Insulating walls prevent any change from occurring in a 
system except by movement of the wall or as the result of long-range forces such as 
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external fields. We next define a function called the internal energy by means of the 
equation 

AE = — w (adiabatic process) (1-1) 

where E is the internal energy and w is the work done by the system on the sur­
roundings. The First Law is now stated: E is a property of the system. Thus, for 
any change in state, AE is independent of process path. 

Finally, for any process, we define a quantity g, called the heat absorbed by 
system, as 

q = AE + w (1-2) 
Thus, 

AE = q - w (1-3) 

is true by definition. While AE is independent of process path, q and w in general 
are not. Therefore, q and w are not properties of a system. 

I t is very important to note that, for the adiabatic process in which the insulating 
wall moves infinitesimally, 

dE = —PexdV (adiabatic process) (1-4) 

where Pex is the external pressure of the surroundings on the system, since w = 
PexdV. If, but only if, the system and surroundings are infinitesimally removed 
from pressure equilibrium, then P = Pex and the reversible work is 

dE = —PdV (adiabatic process) (1-5) 

where P is the internal pressure of the system. 

Enthalpy and heat capacity 

A convenient function called the enthalpy or heat content is now defined as 

H = E + PV (1-6) 

Then, if the only work term is a reversible pressure-volume effect, 
dE = q - PdV (1-7) 

and 
dE = q (V constant) (1-8) 

Since 
dH = dE + PdV + VdP (1-9) 

we find that 
dH = q+ VdP (1-10) 

and 
dH = q (P constant) (1-11) 

Thus, dH is the measure of the heat effect at constant pressure. 
We next define two quantities called heat capacities as 

(-) = 
\dTJv 

Cv (1-12) 
and 

(«0 = 
\dT/p 

Cp (1-13) 

file:///dTJv
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It follows that dE = q = CJT 

dH = q = CpdT 

423 

(V constant) 

(P constant) 

(1-14) 

(1-15) 

Second Law 
In commenting on his method of treatment, Guggenheim (1949, p. 3) states, 
We have deliberately chosen to regard absolute temperature and entropy, just as we regard 

pressure and volume, as two quantities both fundamental. We therefore do not a t tempt to de­
fine them in terms of other quantities regarded as simpler, for we do not admit the existence of 
simpler thermodynamic quantities. 

This point of view is adopted here. I t is furthermore felt desirable to find a 
statement of the Second Law which is as abstract as possible, since it is then most 
useful. The Second Law, then, may be stated as follows: 

For any system there exists a function called the entropy (S) which has the 
following characteristics : 

(a) I t is an extensive property. 

(b) dS = diS + deS, in which d{S is the internal entropy change and deS is the 
entropy change due to interactions with surroundings. 

(c) deS = q/θ where Θ is the absolute temperature. 

(d) diS = 0 for every reversible change. 

(e) diS > 0 for every spontaneous change. 

A number of important corollaries to the Second Law can be found. We find 
immediately from (b) and (c) that for every change 

(f) dS = q/θ + diS (every change) 

From (f) and (d) we find 

(g) dS = q/θ (reversible change) 

From (f) and (e) we find 

(h) dS > q/θ (spontaneous change) 

Since q = 0 for an isolated system, we find from (d) and (f) that 

(i) dS = 0 (reversible change, isolated system) 

From (e) and (f) we find that 

(j) dS > 0 (spontaneous change, isolated system) 

It is now possible to formulate equilibrium conditions. In an isolated system, 
dS = 0 for every reversible process. Since every reversible process is only infini-
tesimally removed from a state of equilibrium, 

(k) dS = 0 (equilibrium, isolated system) 

For a system in contact with surroundings, we defined complete equilibrium as 
a state such that it remains in equilibrium when isolated. Thus, a system is in 
complete equilibrium if, when it is isolated, a small displacement gives dS = 0. 
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This condition for equilibrium can be rendered more convenient by realizing that 
every process in isolation must be at constant E and V. Thus, for a system in con­
tact with surroundings a small displacement at constant E and V gives the same 
result as if the system were isolated. Therefore, 

(1) dS = 0 (E, V constant; complete equilibrium) 

If the system is in contact with surroundings and in incomplete equilibrium, we 
find from (g) that 

(m) dS = q/θ (incomplete equilibrium) 

We notice that for a given change in state 

q = OdS (reversible path) 

q < 6dS (spontaneous path) 

Since dS is a property and independent of path, q must be a maximum for the re­
versible path. Thus, 

(n) gmax = OdS (reversible path) 

In other treatments of the Second Law, various combinations of propositions 
(g) to (n) are taken as statements of the law. Here, (g) to (n) are regarded as 
corollaries. 

Finally, for reversible processes, q = 6dS and w = PdV + w'', where wf repre­
sents any additional work terms (called useful work), so that 

dE = q — w 

= ddS - PdV - w' 

From the equilibrium condition (1) we know that dE = dS = dV = 0 at complete 
equilibrium, so that 

(o) w' = 0 (complete equilibrium) 

Hence, useful work cannot be done on the surroundings by a system in complete 
equilibrium. 

If a reversible process is carried on at constant E and V in incomplete equilibrium, 

OdS - w' = 0 

w' = ddS 

and useful work can be done. In fact, at constant E, q = w and it follows from 
(n) that w' is a maximum along the reversible path. 

Temperature scale 
For any system containing only one component the Second Law reads 

dE = ddS - PdV (1-16) 
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By applying cross-differentiation formulas to this equation one may derive the 
thermodynamic equation of state: 

(ff).-(fX-' 
It follows that if (dE/dV)e = 0, then 

\δθ/ν f i1"18) 
This equation is satisfied only if P is proportional to Θ at constant V. However, 
we have previously defined a temperature scale T such that, for a gas obeying 
Boyle's Law, P is proportional to T. It is therefore convenient to define the perfect 
gas as one obeying Boyle's Law and for which (dE/dV)r = 0. Then both T and Θ 
are proportional to P and therefore they are proportional to each other. By selecting 
the same size of degree, we obtain identical scales. The size of the degree is fixed 
by specifying that ice melts at 273.16°. 

Free energy 
A useful function called the Gibbs free energy ((?) is now defined as 

G = E + PV - TS (1-19) 

From the Second Law we find that, for reversible processes, 

dE = TdS - PdV - w' (1-20) 

Differentiating equation (1-19) and substituting equation (1-20), we obtain 

dG = -SdT + VdP - w' (1-21) 
At constant T and P, 

dG = -wf (T and P constant) (1-22) 

Hence, at constant T and P, dG is the negative of the reversible work done on the 
surroundings except for pressure-volume terms. Furthermore, since the complete 
equilibrium condition was found to be w' = 0, we find that 

dG = 0 (T, P constant; complete equilibrium) (1-23) 

This form of the equilibrium condition is frequently much more convenient than 
the one involving entropy which was stated in proposition (1). 

Composition variable 
Thus far we have not obtained any formulas in which the composition of the 

system explicitly appears as a variable. In dealing with variable composition, it is 
convenient to define a number of quantities such that if X is any macroscopic ex­
tensive property of a system then 

■< = ( f ) 
\oni/ τ,ρ,η 

Xi = Ι τ -Μ (1-24) 

where w» is the number of moles of a given component in the system, subscript ni 
denotes all other mole numbers held constant, and X¿ is a partial molar quantity. 
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A number of relations follow from this definition. The total differential of X at 
constant T and P is 

dX =(§) dnt+ ■■■ + (g) dn< + · · · 
\<mi/ τ,ρ,η,... \ση,·/ τ, p,nj 

Ύ VW drii 
T, P,nj 

= Σ Xdni (T, P constant) (1-25) 

This equation can be integrated by supposing that all mole numbers in the system 
be increased in proportion to themselves by a factor da : 

drii = Uida 

Since X is an extensive property, it follows that 

dX = Xda 

and thus equation (1-25) becomes 

Xda = Σ X W ida 
and 

X = Σ X&i (1-26) 

Differentiating equation (1-26) at constant T and P, we obtain 

dX = X Xidrii + Σ nidXi 

Comparison of this equation with equation (1-25) reveals that 

Σ riidXi = 0 (Γ, P constant) (1-27) 

This important result is called the Gibbs-Duhem equation. If both sides of (1-27) 
are divided by Σ nu w e obtain an alternative form: 

Σ NidXi = 0 (1-28) 

in which the equation Ni = W Í / Σ ni is called the mole fraction. 
A useful composition variable called the "molality of a solute" is defined as the 

number of moles of solute per kilogram solvent. Thus, for aqueous solutions, 

"· - 55.5 Γ Σ „ « - ^ 
where ^ m* includes every solute species. For the water, 

55.5 
Nu, = 55.5 + Σ, m i 

where subscript w refers to water. 
Substituting these equations into (1-28), we obtain 

Σ ™4%i + 55.5 dXw = 0 (1-30) 

These equations are of great utility since, if X{ is known for one component of a 
binary mixture, they may be used to calculate Xi for the other. 
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The Second Law is applied to systems in which the number of moles of material 
is variable by expressing the total differential in the internal energy as a function 
of S, V and the n¿. Thus, 

« - (I),.,ds+(#)»...dv+? (£>„„ *■ <·-3ΐ) 

From equation (1-16) we find the first two partial coefficients (recalling that 
Θ = T): 

\dSJr 

\dVJs 

(»< constant) 

-P (nf constant) 

A quantity m, called the "chemical potential," is now defined as 

"' - (if) ( 1~3 2> 
XoUi/ s,V,n, 

Equation (1-31) thus becomes 

dE = TdS - PdV + Σ ndrn (1-33) 
i 

From (1-33) we find an expression for the free energy. First we recall that the 
definition of the free energy is 

G = E + PV - TS 

Differentiating this equation and substituting (1-33), we obtain 

dG = -SdT + VdP + Σ M***,· (1-34) 

Dividing (1-34) by dn{ at constant T, P and n3· yields 

(£υτ.,..,-μ*~β< (1-35) 
Thus, the partial molal free energy and the chemical potential are equal to one 
another. 

We next find the equilibrium condition. Applying equation (1-25) to the free 
energy we find that 

dG = Σ GidUi (T, P constant) (1-36) 

Furthermore, if more than one phase is present we must write 

^ = Σ Σ ) Gidrii (T, P constant) (1-37) 
a i 

where the summation over alpha is a summation over the phases. However, the 
equilibrium condition has been shown to be dG = 0 at constant T and P. Thus, 

« = Σ Σ G%4ui = 0 (T and P constant; equilibrium) (i-3g) 

file:///dSJr
file:///dVJs
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Now, imagine that dn{ moles of the ¿th component are transferred between two 
phases, A and B, which are in equilibrium: 

dG = GAidnAi + GBidnBi = 0 {T, P, ny constant) 

But dnAi = —dnBi and 

GAi = GBi (1-39) 

We might alternatively have written 

μΑί = μΒΐ (1-40) 

Thus it may be said that in a system at equilibrium the chemical potential of each 
component is constant throughout. 

We next obtain an expression for the total differential in /x¿. Choosing T, P and 
ni as independent variables, we obtain 

The various coefficients of this expression may now be evaluated. Dividing equa­
tion (1-34) by dT at constant P and niy we find that 

(i)„.. - -s <"42) 
Differentiating equation (1-42) with respect to Ui at constant T, P and n¿, we 
obtain : 

-i-I fa) 1 =-(—) = -s, 
dUi WdT/ PtniAp,Ttni \dnJptT,ni 

Since the order of differentiation is immaterial 

±[(W\ 1 = _n 
dT\_\dnJp,T,niAP,n¡ 

and 

or 

feL - -Si °-43) 
By an exactly analogous derivation we also find that 

Using Ni = rii/irii + Σ ni)> o n e m a y readily show that 

fe) d», = fe) dN< (1-45) 

Substituting equations (1-43), (1-44) and (1-45) into equation (1-41), we find that 

άμί = -S4T + V4P + Σ fe) dNi (1-46) 
\CLY i/ Τ,Ρ,η,-
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In this equation, as in equation (1-41), the summation is only over the mole frac­
tion of chemical species whose mole number changes. The formal equations re­
quired for the solution of equilibrium conditions for cases of variable composition 
have now been obtained. 

The treatment of variable composition is completed by finding expressions for 
work and heat. We have previously found that, if a process is reversible at con­
stant T and P, then dG = —it/, where w' is the useful work. From equation (1-36) 
we find that 

Σ Gidrii = — w' (T, P constant; reversible process) (1-47) 

The conclusion is that if a process involving a change in composition occurs re-
versibly at constant T and P, the system will do an amount of useful work minus 
Σ Gidui on the surroundings. 

To obtain expressions for the heat effect it is convenient to write the First Law 
in the form 

dE = q- PdV - we (1-48) 

where we includes all work effects beyond a reversible pressure-volume term. (we 
may be different from w'', since w' is always reversible work.) Differentiating the 
heat content equation, (1-6), and substituting equation (1-48), we find that 

dH = VdP + q - we 
or 

dH = q — We (P constant) (1-49) 

Thus, dH is not in general the measure of the heat effect. Another expression for 
the heat content can be found by substituting equation (1-33) for equation (1-48) : 

dH = TdS - VdP + Σ Vidni (!-5°) 

It should be emphasized that, while this equation is derived by considering re­
versible changes, it nevertheless applies to any change in state since the change in 
the properties of a system depend only on initial and final state. We also find that 

dH = TdS + Σ Gidrii (P constant) (1-51) 

The heat effect for various process paths can now be found: 
For a free-running chemical reaction at constant pressure, we = 0, by definition, 

and 
dH = TdS + Σ Vidrii = q (1-52) 

Thus, dH measures the heat effect in this case. 
For a reversible chemical reaction at constant pressure we = — Σ μΐάη^ and 

dH = q + X μ4η{ (1-53) 

q = TdS (1-54) 

Thus, TdS measures the heat effect while dH does not. 
For a chemical reaction in equilibrium, we = — Σ vd71* = 0? a n d 

q = dH = TdS (1-55) 
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SOLUTIONS 
Nonelectrolytes 

In order to apply the Second Law to solutions, it is convenient to follow Lewis 
and Randall (1923) and define a function called the "fugacity" (/t·) as 

Gi = RT In fi + B (1-56) 

where B is an arbitrary constant. We may immediately conclude that, if B is chosen 
to have the same value everywhere, the fugacity of a component is constant 
throughout a system in equilibrium. 

To find the significance of the fugacity, consider one component of a vapor phase 
which behaves as an ideal gas. Then, 

PiVi = RT 

where pi is the partial pressure of the component. We also know that 

dp i 

Pi 

so that integration gives the equation 

Gi = RT In pi + c 

where c is a constant of integration. If we make c = B} we find /»· = p{ for every 
ideal vapor. In every application to be made, taking the fugacity to be equal to 
the vapor pressure results in a satisfactory approximation. 

Raoult's Law can now be stated in the following way : In every sufficiently dilute 
solution, the fugacity of the solvent is proportional to its mole fraction. Thus, 

/i = f°iN! (1-57) 

where /°i is the fugacity of pure solvent. 
The behavior of the solute in dilute solution is found by applying the Gibbs-

Duhem equation, (1-28) : 
Σ NidGi = 0 (1-58) 

Letting subscript 1 refer to solvent and subscript 2 refer to solute, equation 
(1-58) for a binary mixture becomes 

NidGi + N2dG2 = 0 (1-59) 

Using equation (1-56), we find that 

Ö°i = Α Γ 1 η Λ + Β 
and 

(?! - G°! = RT In £ (1-60) 
J i 

Therefore, in dilute solution, 

Gi - ö°i = RT In ΛΓι (1-61) 
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and 
dGi = R T ^ (1-62) 

iVi 
Using the equation dNi = —dN2 and substituting it into equation (1-59), we find 
that 

-RTdN2 + N2dG2 = 0 
and 

dG2 = R T ^ (1-63) 
i\2 

Integrating from N2 to N2" over small values of N2 (where Raoult's Law applies), 
we find that 

G2" - G2' = RTL· N*" 

HoAvever, 

G2 

so that 

This requires that in dilute solution the fugacity of the solute be proportional to 
its mole fraction: . 7 %τ ,Λ ηΑ. 

Í2 = kN2 (1-64) 
Equation (1-64) is Henry's Law and we conclude that, whenever Raoult's Law 
applies to the solvent, Henry's Law must apply to the solute. 

A useful function called the "activity" (a¿) is now defined as 

a{ = -£- (1-65) 

where /°¿ is the fugacity in an arbitrarily defined standard state. We also define an 
"activity coefficient,, (X¿) as ai 

λΐ' = Jf~. (1-66) 

In dealing with solutes in dilute solution we see from equation (1-29) that at 
small values of ra¿ the mole fraction and ra¿ are proportional. Thus, in dilute 
s o l u t i o n ' fi = k'mi 

Correspondingly, an additional activity coefficient may be defined for solutes as 

7i = — (1-67) 
mi 

The following characteristics of these functions may be noted immediately : 
(a) The activity is always unity in the standard state. 
(b) The activity is a ratio of fugacities and has no dimensions. 
(c) The numerical value of a¿ at a given composition depends only on the stan­

dard state selected. 
(d) Since both a¿ and iV» have no dimensions, X¿ has no dimensions. 
(e) Since at- has no dimensions but m¿ is in moles per kilogram, y i has the dimen­

sions of kilograms per mole. 
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The treatment is completed by selecting the standard state for the solvent by 
means of the condition a, 

lim ^ - = 1 (1-68) 
N1-*l i V l 

Thus, λι 9e 1 is a measure of the deviation from RaouhVs Law. 
For the solute, a standard state is selected by either condition : 

lim ^ τ = 1 (1-69) 

lim - ^ = 1 Π-70) 
m3->o m2 

Thus, λ2 T¿ 1 or 72 ^ 1 is a measure of the deviation from Henry's Law. Equations 
(1-69) and (1-70) represent different choices of standard state and thus lead to 
different numerical values of the activity. At extreme dilution we find from equa­
tion (1-69) that a2 = N2, while from equation (1-70) we find that a2 = m-2> 

Chemical reactions 
It is convenient to represent a generalized chemical reaction by means of the 

e q u a t i o n Σ ΆΑ - Σ VBB 
which signifies that various numbers of moles vA of reactants A form various num­
bers of moles VB of products B. The free energy change for this process is 

AG = Σ VBGB - Σ VAGA (1-71) 

Furthermore, if all components are in their standard states, 

AG° = Σ VB&B - Σ VA&A (1-72) 

Subtracting equation (1-72) from (1-71), we find that 

AG - AG° = Σ MGB - G°B) - ΣνΑ{0Α - G°A) (1-73) 

However, from equations (1-56) and (1-65), we find that 

Gi - G°i = RT In at (1-74) 
so that 

AG - AG° = Σ VBRT In aB - Σ vART In aA (1-75) 

This equation may be rewritten in the form 

AG - AG° = RT In S r 5 ^ ^1"76) 

where Π denotes the product. Recalling that AG = 0 is the condition for equilib­
rium, we find that 

-AG° = RT In — ^ (equilibrium) (1-77) 
Tl{aAyA 

Since AG° is independent of composition we may write 

n(qg)y* 

in which 
n(aAy* 

-AG° = RT In k (1-79) 

and k is the equilibrium constant of the reaction. 
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Solutions of strong electrolytes 

The treatment ot strong electrolyte solutions is begun by assuming that in very 
dilute solution, Henry's Law applies to individual ionic species. We therefore 
select the standard state for the individual ions by means of the condition 

lim -A = 1 (1-80) 

An ionic activity coefficient is also defined as 
ai 

7f = — m i 

so that ji = 1 at infinite dilution. 
We next select a standard state for the electrolyte species which is consistent 

with this choice for ions. If an electrolyte X dissociates into v+ cations and z>_ 
anions, the process may be represented by writing 

X = P+X+ + v-X— 

We have already defined the standard states of the ions so that the standard state 
for the electrolyte species may be chosen according to the formula : 

G°x = v+G°x+ + »_(?°x_ (1-81) 

This selection results in the equation 

AG° = 0 (1-82) 

Thus from equation (1-79) we find that 

k = 1 (1-83) 

and from equation (1-78) we find that 

( a ^ · {a-y~ = 1 (1-84) 

It is next convenient to define the mean activity, mean activity coefficient, and 
mean molality of the electrolyte as 

a± = (a+"+ · a^-y<v (1-85) 

7± = (y++ · y--)llv (1-86) 
ra± = (m+F+ · mJ'-)llv (1-87) 

where v = v+ + v-. Dividing equation (1-85) by equation (1-87), we obtain 

*±_[(*±.γ.(<±ΥΎ'' 
m± Lvn+/ \ra_/ J 
= [τ+^ · y-v~]1/v 

= 7± 
or 

a± = y±m± (1-88) 
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From equation (1-86) it is evident that since 7+ and γ_ go to unity at infinite 
dilution, y± also goes to unity at infinite dilution.2 

In all purely thermodynamic formulations, it is the activity of the electrolyte 
ax which appears, or combinations of ionic activities which reduce to aX) since ionic 
activities cannot be measured. The value of ax can be found either from a± or from 
7 ± and the molalities by means of the formulas 

ax = (a±)v 

ax = y±p · m+v+ · m_"-

(1-89) 

(1-90) 

Osmotic pressure 
It seems desirable to include here a treatment of the osmotic pressure of aqueous 

solutions, since it is a quantity which has found widespread application to soil 
solutions. Furthermore, many textbooks have presented erroneous derivations of 
the osmotic pressure equations. 

Consider a system composed of two aqueous phases contained in an apparatus 
which permits the pressure on either phase to be varied by means of pistons. 
Phase I consists of a solution of nonelectrolyte and phase II contains pure water. 
The phases are separated by a membrane, M, permeable to water but not to solute. 

M 

i] I 

Solute + 
water 

II 

Water 

i l l 

In general, water will tend to diffuse across the membrane when P1 = P11. 
However, this diffusion can be prevented by increasing the pressure on phase I 
until G for the water is the same in the two phases. Thus, at equilibrium 

Gw Gw (1-91) 

where subscript w stands for water. The pressure required to establish equilibrium 
is readily found from equation (1-44): 

dGw 
dP = vu (1-92) 

Letting Pu = P° be the standard pressure, we integrate the pressure of phase I 
from P°, where Gw = Gm

l, up to Peq1, where Gw = G°w. Thus, 

_ T dG„ = I Vw dP oj Jp° (1-93) 

Assuming Vw to be constant, 

GJ - G°w = - " M P e , 1 - P°) (1-94) 
2 It should be emphasized that we have not chosen infinite dilution as the standard state, but 

only as a reference state in which y± is unity. l a the standard state, a± is equal to unity. 
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Therefore, if aj is the activity of the water at standard pressure P°, 

/ V - f* = -ψ- In aj (1-95) 
y w 

The osmotic pressure (Π) is now defined as 

Π = Peq1 - P° (1-96) 

The osmotic pressure is thus defined as the pressure that must be applied to a 
solution to equilibrate the solution with pure water. Then, 

Π = -ψ- In aj (1-97) 
y w 

For dilute solutions of nonelectrolytes, many approximate forms of equation (1-97) 
may be derived. We may first obtain Π as a function of the solute concentration 
by applying the Gibbs-Duhem equation in the form of equation (1-30): 

55.5 αμ„ + msdßs = 0 (1-98) 

in which subscript S stands for solute. Therefore, 

55.5 d In aw + msd In as = 0 (1-99) 

, Γ msd In as (Λ 1ΓνΛλ In aw = - I — - — (1-100) 
Jo oo.o 

Substitution of equation (1-100) into equation (1-97) gives 

Π = ? L I msd In as (1-101) 
0 0 . 0 Vw Jo 

For dilute solutions, as = m s and 55.5 Vw = 1, so that 

Π = msRT (1-102) 

The similarity between equation (1-102) and the ideal gas law is wholly without 
significance. 

An entirely analogous derivation for solutions involving strong electrolytes is 
possible except that the Gibbs-Duhem equation must be written 

55.5 άμ„ + Σ ™>ώμχ = 0 (1-103) 

where the summation is over every individual ionic species present. We obtain 

J %mi 

Σ mid In at (1-104) 
. w 0 

In extremely dilute solution this becomes 

Π = RT Σ m (1-105) 
Principle of ionic strength 

The data available for y± in mixtures of electrolytes are limited. This lack would 
constitute a serious problem in dealing with soil solutions if Lewis and Randall 
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(1923) had not discovered the principle of ionic strength. To state this principle a 
new quantity called the "ionic strength'' (s) is defined as 

s = | E ¿Wi (1-106) 

where Zi is the valence. Thus, in a mixture of electrolytes, the ionic strength is 
found by multiplying the square of the valence and molality, summing over every 
ionic species present, and dividing the result by 2. The principle of ionic strength 
then states: In dilute solutions, the mean activity coefficient of a given strong 
electrolyte is the same in all solutions of the same ionic strength. 

This principle is of great use in dilute mixtures such as soil solutions since the 
mean activity coefficient of an electrolyte can be estimated from data obtained on 
a single-salt solution. For example, assume that 7±(Caci2) data are available as a 
function of molality (m) of the CaCl2. The ionic strength is 

s = ^ [4m + 2m] = 3m 

Thus, if we have a mixture of ionic strength (s) containing CaCl2, then Y±(Caci2) 
in this mixture may be estimated by finding y± in pure CaCl2 at molality s/3. 

Debye-Hückel theory 
The Debye-Hückel theory will be presented here in some detail since it has much 

formal similarity to the double-layer theory for colloids. Moreover, very similar 
theories have been used to estimate ionic interactions in suspensions. This presen­
tation will not be rigorous, but will emphasize those aspects of the theory most 
relevant for later work. (For a more detailed treatment, see Harned and Owen, 
1958.) 

The concern of the Debye-Hückel theory (DH) is to calculate the activity co­
efficient of an ionic species in dilute solution. The first step is to write the relation­
ship between the ionic activity and the chemical potential: 

ßi - μ°{ = RT In ai (1-107) 

Further, the ionic activity coefficient has been so defined that it measures the 
deviations from Henry's Law with the result that 

Mi - μ°; = RT In ytmi (1-108) 

= RT In 7 i + RT In mt (1-109) 

That is to say, where Henry's Law applies to the ions we find yt; = 1, and 

μ{ - μ°{ = RT In m{ 

In the DH theory it is assumed that all deviations from Henry's Law are caused 
by electrostatic interactions between the ions. Thus, if μ»(βί) is that part of the 
chemical potential which is due to electrostatic interactions we may write 

ßi(el) = RT In yi (1-110) 

The problem then becomes to calculate μ*(βΖ). 
A basic point of departure in the Debye-Hückel theory is the concept of the ion 

atmosphere. We imagine that a given ion in the solution can be singled out and 
labeled the "central ion." The other ions which surround this central ion consti-
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tute what is called the "ion atmosphere." The Poisson equation is then applied 
to this assemblage of the central ion and its atmosphere. This equation reads, 

VV = - ψ - (1-111) 

in which φ is the electric potential, p is the charge density of a volume element of 
solution, and D is the dielectric constant. It may be remarked in passing that the 
Poisson equation is derived from the classical theory of electrostatics in which the 
charge density may vary continuously. Thus, in the mere assumption that Poisson's 
equation can be applied, it has been assumed that the ions are point charges. 

In spherical coordinates, equation (1-111) becomes 

Now, to apply this equation to the central ion and its atmosphere, it is assumed 
that r is the distance measured outward from the central ion and that the distri­
bution of the ion atmosphere is spherically symmetrical about the central ion. 
This permits the removal of the partial signs: 

hî(*î)--T? <-"*> 
It is next assumed that the concentrations of the ions in the atmosphere will be 
determined by the Boltzmann equation in the form, 

( _ ζ?βφ\ 
\ kTj Ui = n°i exp \—j¿fJ (1-114) 

in which Ui is the ion concentration in ions per cc, n°i is the bulk ion concentration 
in the solution, z{ is the valence, e the charge on the electron, k the Boltzmann 
constant, T is the absolute temperature, and φ is again the electric potential. An 
analysis of the assumptions underlying the applicability of the Boltzmann equa­
tion would carry the present discussion too far afield. (See Bockris, 1959, Chapter I.) 

The density of charge at any distance r from the central ion will simply be equal 
to the difference between the concentration of negative and positive charges: 

P = Σ 2¿^¿ (1-115) 

Combining equations (1-113), (1-114) and (1-115), we obtain: 

We now have a differential equation in φ and r, but no general solution exists. To 
obtain a solution, the factor exp [— (Ζ{βφ)/]ΰΤ] must be expressed in a series: 

In very dilute solution, (̂ ¿βφ)/Α:!Γ « 1, so that 

exp (-£)«'-$ <-"s> 
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Then, 

r2 dr Y d r / Z> ^ *tm % L A:T J 

- D ¿^ zten t -r D 2-u kT 

The first term on the right-hand side must be zero owing to the overall electrostatic 
neutrality of the solution. Therefore, 

r 

For convenience we define 

so that 

¿ Î H Ô - F E * £ * d-ii» 

* - £ Σ ^ C-120) 

This equation readily integrates into 

A B 
φ = — exp (-«r) + - exp (κν) (1-122) 

in which A and 5 are constants of integration. From the boundary condition that 
Φ = 0 at r = oo, we immediately find that JB = 0. 

To evaluate A, we notice that since κ contains n°iy κ must go to zero as n°¿ goes 
to zero. Further, when n°i is zero, the ion atmosphere has vanished so that only 
the central ion is left. Under these conditions, the potential equation must reduce 
to the potential distribution around a single point charge. Thus, at κ = 0, 

A Zie 
φ = 7 - D~r 

Therefore, 
A - D 

and 
φ = g ; exp (-«·) (1-123) 

The term exp ( — κτ) is also expanded according to 

exp ( —KT) ^ 1 - KT (1-124) 
Therefore, 

* = ^ [ l - « r ] 

= f r - f (1-125) 

An inspection of this equation reveals that the first term is that part of the potential 
which is due to the central ion only, and it is independent of concentration. Thus, 
the second term must represent the potential due to the ion atmosphere which is 
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dependent on concentration but independent of distance. Thus, if φ* is the poten­
tial due to the atmosphere, we find that 

Φ* = --§ (1-126) 

The remainder of the development of the DH theory is concerned with φ* only. 
The reason is that we are interested only in that part of the electrical potential 
which produces deviations from Henry's Law, and only ionic interactions produce 
such deviations. If the ions do not interact, they would obey Henry's Law even 
though charged. This is indeed the situation at infinite dilution. 

At the present point, the electric potential due to the ion atmosphere, or due to 
ionic interactions, has been found. We must next find μ^βΐ). This is done by cal­
culating the reversible work necessary to increase the charge on the ions in the 
atmosphere from an initial value of zero up to their full value of 2»e. This work 
gives the extra potential energy of the system due to ion interactions and this 
extra potential energy is just /¿¿(eZ). The reversible work required to change the 
charge on a point electrostatic charge is expressed: 

work = φάα 
Thus, for one mole of ions, 

fzie 
I A) Φ* d(z# 

Jo 
μ,·(βΟ = NA Φ* d(zie) (1-127) 

where NA is the Avagadro number. Substituting equation (1-126) and integrating, 
we find that 

ßlel) = ~ZljÊ^f- (1-128) 

Substituting equation (1-128) into equation (1-110), we find that for the'activity 
coefficient 

RT In 7 i = ~ Ζ ^ ^ (1-129) 

From equation (1-120) note that κ2 is a function of ]>^ 22tW°¿. Since the ionic 
strength is given by s = §]>2 z2¿m¿, it follows that equation (1-129) can be written 
as a function of s1/2. The result is 

logio 7i = - z W 2 (1-130) 
in which 

N*Ae* ( 2 π Ρ \ 1 / 2 

2.3(DRT)*'2 νΐ,ΟΟΟ/ U ό } 

where p is the density of the solution. At 25°C, S = 0.511. This is the final DH 
equation for ionic activity coefficient. 

By noting that for any electrolyte, v+z+ = v-\z-\ and combining equation (1-86) 
with equation (1-130), we find the mean activity coefficient for an electrolyte: 

logioTi = - |*+ * «-I&1/2 (1-132) 

At this point, two inconsistencies in the theory should be noted. According to 
equation (1-125) the electrical potential (φ) rises to infinity at r = 0. Yet, we have 
assumed Ζιβφ « kT. (This difficulty does not arise with φ*3 which is independent 
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of distance.) Further, we evaluate the integration constant B by making φ = 0 
at r = °°. Yet, in equation (1-124) it was assumed that κν <3C 1. The answer to 
these difficulties appears to be simply that the numerical error introduced is not 
large. For a full discussion, see Alexander and Johnson (1949). 

There have been many efforts to extend the DH theory to higher concentrations. 
Only one will be presented here. It involves the introduction of "the distance of 
closest approach" of the ions. Without presenting the details, what is involved is 
a réévaluation of the constant of integration A when the ions have a minimum 
distance of approach a¿. Under these conditions A becomes 

Using equation (1-122), with B = 0, we find that 

, _z£_ |~exp «(at - r)~\ 
φ - Dr L 1+κα< J (1_134) 

At the minimum distance r = a¿, and 

Ddiil + Kdi) ' 

The expression on the right may be separated into two terms : 

Φ(α<) = jf- - n n T N ( 1-136) 
Ddi D(l + Kdi) J 

The first term is the potential due to the central ion, so that 

**(^ = -w+^ύ (1"137) 

Integrating to find μί(βΙ) and solving for the activity coefficient, we find that 

ΐ0^·=-ττΙ^ (l"138) 

where β is a constant equal to 3.286 X 10~9, and a¿ is the distance of closest approach 
in A. Note that in this derivation, the expansion of exp ( — κτ) is avoided. 

The DH theory, as a limiting law, has found widespread experimental verifica­
tion. I t not only predicts the principle of ionic strength, but gives the correct 
numerical magnitude of the limiting slopes of activity coefficient curves for a wide 
variety of valence types. However, as might be expected from the assumptions of 
the theory, it applies only to extremely dilute solutions. At higher concentrations, 
it provides a basis for the evaluation of other types of deviations from Henry's Law. 

SYSTEMS INVOLVING OTHER VARIABLES 
General considerations 

Thermodynamic equations for systems involving variables other than T, P, and 
rti are available in many places. However, the method of treatment is not always 
the same. In particular, the use of the chemical potential has varied. I t will be 
important to examine systems involving other variables closely, since soil systems 
also involve additional variables. Further, the macroscopic properties of systems 
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in force fields, such as electrostatic fields, are of interest since they frequently form 
the microscopic properties of matter in a soil system. 

Consider the case in which a complete specification of the energy change for a 
certain process requires the specification of not only the changes in S, V and n¿, 
but also the changes in the extensive variables Xi, x<¿ · · · xp · · ·. In the same manner 
that the nt· were introduced, we write 

dE = TdS - PdV + Σ μ4η{ + Σ ( T F ) 

\dXp/ S,V,m,x9 

\dXp/ s,V,m, 

(1-139) 
By defining 

XP = 1 ~z) (1-140) 
\OXp/ S, Vtni,xq 

and substituting equation (1-140) in equation (1-139), we find that 

dE = TdS - PdV + Σ μάτα + Σ Xpdxp (1-141) 

This equation leads at once to: 

( I T ) = "' (1-I42) 
\oni/ S,V,nitxp 

It is with equation (1-142) that difficulties enter. In certain cases, we require the 
specification of the xp variable, but its value is not independent of one of the other 
extensive variables in equation (1-141). We will later encounter two examples of 
the sort. In the case of gravitational fields, we will find that 

Xv = gh (1-143) 

dxp = dm = Σ Midni (1-144) 

in which g = acceleration of gravity, h = height, m = mass, and Mi is molecular 
weight. In the electrochemical case, we find that 

XP = Φ (1-145) 

dxp = dq = Σ ZiFydUi (1-146) 

in which ψ = electric potential, q = charge, and Fy is the Faraday constant. 
In both of these cases, specification of the xp variable is required but it is not 

independent of n¿. Thus, equation (1-142) for the chemical potential does not 
exist. Rather, the substitution of the equations for Xp and xp in equation (1-141) 
yields 

dE = TdS - PdV + Σ (Mi + Migh)dni (1-147) 
and 

dE = TdS - PdV + Σ On + ZiFy^drti (1-148) 

These equations lead to: 

and 
\ΟΠ{/ s,V,ni 

\oUi/ s, V.rij 
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In other instances, the xp variable is independent of any of the other extensive 
variables in equation (1-141). In the case of electrostatic fields, we find that 

xP = ε (1-151) 

dxp = d(P (1-152) 

in which δ = field strength and (P = polarization. 
In the case of magnetic fields, we find that 

Xp = 3C (1-153) 

dxp = dl (1-154) 

in which 3C is the field strength and I is the magnetic intensity. Since (P and / are 
independent variables, we may apply equation (1-142) without difficulty: 

xdnj s, v,nit (p 

( - ) 
\dni/ s,v,niti 

(1-155) 

= ßi (1-156) 

It is evident that the thermodynamic treatment of other variables must depend 
upon the experimentally known characteristics of the variables. The significance of 
μι in equations (1-147) and (1-148) differs from its significance in equations (1-155) 
and (1-156), but a point worthy of considerable emphasis is that the significance of 
μι is not arbitrary once we have written equation (1-141). 

Gravitational fields 
If a piece of matter is present in a gravitational field, it is known from mechanics 

that it has a potential energy, E0} given as 

Eg = τηφ (1-157) 

where m = mass and φ = gh, the gravitational potential. By the method used 
above this leads at once to the formula: 

dE = TdS - PdV + Σ 0*< + Mafidni (1-158) 
and 

\¥) = Mi + Μφ (1-159) 
\oni/ s. V.nj 

We now ask how an equation for the chemical potential can be found. In the 
present case this presents no problem since it is a characteristic of the gravitational 
field that the potential is independent of the presence of matter, so that φ is de-
terminable by direct measurements of space (that is, h). Further, it is a character­
istic of matter that its intensive primary properties are not affected by the presence 
of a gravitational field. Thus, all the formulas developed for /¿¿ in the absence of 
the field are valid in its presence. Therefore, we may write 

( - ) = μι (1-160) 
=0) 

in the presence of the field, provided its value is constant. 
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The formula for the free energy may now be found. Resorting to the definition 
of G, we know that 

G = E + PV - TS 

Differentiating this equation and substituting equation (1-158) for dE, we find for 
the total differential in G: 

dG = -SdT + VdP + Σ (M< + Mtfidni (1-161) 

Dividing by dni at constant Γ, P, and nJ} we find that 

Gi = ßi + Μχφ (1-162) 
\dnj τ, p,ni 

Thus, Gi is no longer equal to μ»· when φ 9e 0. 
The condition for complete equilibrium expressed in equation (1-23) becomes 

dG = 23 (Mt- + Mi<t>)dni = 0 (Γ, P constant) (1-163) 

For matter distributed between more than one phase we find that, analogous to 
equation (1-38), 

dG = Σ Σ (μ< + Mtfidrii = 0 (Γ, P constant) (1-164) 
a i 

For the transfer of dui moles between two phases, A and P , equation (1-164) 
becomes 

(μί + Mi<l>)AdnA + (ßi + Mi<t>)BdnB = 0 (T, P, n3- constant) (1-165) 

Since dnA = —dnB, we find that 

(μ< + Μίφ)Α = (ßi + Μίφ)Β (1-166) 

Alternatively, this equilibrium condition can be written in the form, 

dGi = dßi + Μόφ = 0 (1-167) 

The equilibrium condition given in equation (1-167) can be used to derive the 
pressure gradient in a fluid in a gravitational field. Retaining the same formula for 
dßi as on the absence of the field, we have for a single component dßi = F¿dP, and 
using άφ = gdh, equation (1-167) becomes 

VidP + Migdh = 0 (T constant) 

dP = _Mi 
dh Vi 9 

= - P C (1-168) 

This is the familiar formula for hydrostatic equilibrium. 
If a binary mixture is present in a gravitational field at constant temperature, 

we substitute equation (1-46) in equation (1-167) as in the absence of the field and 
obtain, at constant T, 

V'dP + [jiTi dNi + M^dh = ° Í1-169) 
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Solving for dNi/dh, we find that 

dNi W (1-170) 
dh /dm \ 

\ΘΝ{)τ,Ρ.η, 

= JLSLZLIJSI (1_171) 
/ ομ{\ 

in which p is the density of the solution. 
Finally, we may confirm that chemical equilibria are independent of the field. 

Applying previous nomenclature, a chemical reaction is expressed as 

Σ vAA -> Σ *Ί*# 
The equilibrium condition is 

AG = Σ **G* - Σ VAGA = 0 (1-172) 

° r Σ VBUIB + ΜΒΦ) = Σ MVA + ΜΑφ) (1-173) 

However, owing to conservation of mass, 

Σ VBMB = Σ VAMA (1-174) 

Thus from equation (1-173) we obtain the formula 

Σ VBHB = Σ νΛβΑ (1-175) 

just as in the absence of the field. 

Electrostatic fields 
For simplicity, we will develop the formula for a system which consists of a 

parallel plate condensor, with unit capacity in vacuo, immersed in a dielectric 
medium. In this case we have xp = q where q is the charge on the condensor and 
Xp = Αφ, the electric potential difference. Therefore, 

dE = TdS - PdV + Σ A Ä + AWq (1-176) 

In this instance, q is an independent variable so that to unambiguously define μ>, 
we must write / \ 

(If) = "' ^1-1 7 7) 
\dni/ s, v,nj, q 

Using equation (1-176), together with the definition of G, the total differential in 
G is found: dQ = _SdT + ydp + ^ ^ _ + ^ ^ (1-178) 
Dividing by dni at constant T, P, n¡ and q, 

\TÈ) =Gi = "< (1~179) 
XoUi/ T,P,nitq 

Thus, in contrast to the former case, Gi is equal to μ». However, unlike the gravi­
tational case, the intensive properties of the material between the plates depends 
on the field, and further, the field strength between the plates depends on the 
presence or absence of matter. 
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As the result of the lack of any direct knowledge of the field strength between 
the plates, we are also in doubt about the pressure. We follow Guggenheim's treat­
ment (1949), and define P as the pressure outside the plates. It must also be 
recognized that V is the volume of the whole system. 

As the result of the effect of the field on the intensive properties, we must now 
include an extra term in the expression for the total differential in μί. Thus, equa­
tion (1-46) is replaced by 

άμί = -SdT + V4P + Σ \wJdN* + (¿f)dQ ( 1 _ 1 8 0 ) 

where all the partial coefficients except the last are defined at constant T, P, η}· 
and q. 

The relationship between potential and charge is given as 

where D is the dielectric constant. Substituting this equation in equation (1-178), 
we find that / \ 

dG = -SdT + VdP + Σ ßtdrii + ÍÁjdq (1-182) 

By applying cross-differentiation formulas to equation (1-182), we obtain equa­
tions of the type / V / X 

( $ , - - £ f ê ) . <r'"'cons tant) ("84) 
Equation (1-183) gives the dependence of μι on q. Equation (1-184), giving the 
volume change, is called the électrostriction formula. 

Frequently it is more desirable to work with Αψ as the independent variable than 
with q. To accomplish this we define a function Ό as 

O = E + PV - TS - q{ù4i) (1-185) 

Combining this with equation (1-176) leads to 

dD = VdP - SdT + Σ ßdm - qd(Axf^) (1-186) 

= VdP - SdT + Σ ßrfm - Ό(Αψ)ά(Αψ) (1-187) 

Applying cross-differentiation formulas, we obtain equations of the type 

(■2Σ-) , -(Λψ)(^) (Γ, n, constant) (1-189) 
\όΑψ/ P \dr/ Δψ 

The treatment of equilibrium conditions when the intensive properties are de­
pendent on the field requires careful consideration. Suppose that the chemical 
reaction 

Σ VAA -> Σ VBB 
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is in equilibrium throughout the system. If material between the plates is isolated, 
a spontaneous process will occur until conditions in the isolated system become the 
same as they were outside the plates in the original system. By the definitions 
previously offered, the material between the plates is in incomplete equilibrium. 
Thus, we cannot apply dG = 0, which is the condition for complete equilibrium. 
However, a small displacement of the reaction between the plates will be reversible 
since the process occurs in incomplete equilibrium. Thus, reversible work is done 
on surroundings. This is given as 

dG = Atdq (T, P constant) (1-190) 

Comparing equations (1-178) and (1-190) we find that, at equilibrium, 

dG = Σ M¿dn< + Atdq = Arpdq (Γ, P constant) (1-191) 
and 

Σ M A = 0 {T, P constant) (1-192) 

If, now, we consider the transfer of dni moles from inside to outside the plates, we 
find (by the method previously used) 

μί (inside) = μ»· (outside) (1-193) 
or 

άμί = 0 (1-194) 

This is in contrast to the result in a gravitational field. 
The effect of the field on composition is now readily found. At constant T and P 

for a binary mixture, we may write, at equilibrium, 

dß 

», and i 

(45) 
If the solution is ideal, dßi/dNi = RT/Ni, and using equation (1-188) we obtain 
the formula 

Αψ[ 
(1-196) dNi \ση,·/Δψ 

d(Atf) 

This integrates into the equation 

RT 
Nf 

where iV°» is the mole fraction outside the plates. 
To complete this treatment of electrostatic field, heat effects will be considered. 

If a chemical reaction is in incomplete equilibrium between the plates, a small dis­
placement will be reversible, and we know directly from the Second Law that 
q (heat) = TdS. Thus, to find the reversible heat effect, we must find the effect of 
the field on S. At constant P and nt·, equation (1-187) becomes 

dD = -SdT - Ό(Αφ)ά(Αψ) (Ρ, m constant) (1-198) 

By direct application of Euler's theorem we obtain the equation: 
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Thus, by measuring dD/dT, the reversible heat effect of the field can be found. It 
should be noted that, unlike a gravitational field, the electrostatic field is non-
conservative. 

The irreversible heat is also affected by the field. Without presenting any details, 
it can be shown that at constant P and charge, dH = q (heat) for a free-running 
chemical reaction. Further, by methods similar to those previously used, we find 

Thus, if dD/drii and its temperature dependence are known, the effect of the field 
on the irreversible heat can be found. 

Surface area 
In dealing with soil colloids, surface effects are of paramount importance. One 

might expect to find, then, that the application of equations involving surface area 
had received widespread attention. This is not the case, apparently owing to the 
lack of information on surface tension. However, we will develop the formulas here 
as they do lead to important equations for capillarity. 

The treatment is begun by introducing the area of the system into the expression 
iordE: , v 

dE = TdS - PdV + Σ /***»< + I ^ T ) dA (1-201) 
\oA/ s, v,m 

where A is the surface area. We next define the "surface tension," σ, as 

( dA/ s, V,m 
(1-202) 

Resorting to the definition of G, we find that 

dG = -SdT + VdP + Σ Midn¿ + ad A (1-203) 
Thus, i v 

\Öni/ Τ,Ρ,η,,Α 
and 

& ) -
\dA/T, P,m 

(1-205) 

From equation (1-203) we obtain, by direct application of Euler's theorem, 

fe) = te) ^1-206) 
\οΑ/τ,ρ,ηί \θη»·/T,p,A,nj 

Τ, P,A,nj 

and 

Equation (1-206) is called the Gibbs adsorption isotherm. It enables one to find 
the dependence of μι on A from measured values of da/drti. 

In deriving these formulas, it has been assumed that the system is constrained to 
some arbitrary shape as the result of interaction with the surroundings. Thus, A is 
independent of the other extensive variables and the formulas are parallel to those 
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for the electrostatic field. This parallelism can be further extended by realizing 
that, if the constrained surface area changes by dA at constant T and P, an amount 
of work — ad A must be done by the system on the surroundings. This is the re­
versible work term for incomplete equilibrium. Therefore, 

dG = ad A (Γ, P constant) (1-208) 

is the incomplete equilibrium condition. Comparison with equation (1-203) leads 
to the additional equilibrium condition 

Σ ^idrii = 0 (1-209) 

Assume now, that the system is a liquid constrained to a given shape by a solid 
but porous mold which is saturated with the liquid, the whole system being in 
incomplete equilibrium. By considering the transfer of drii moles between the 
phases we find by the method previously used that 

dßi = 0 (1-210) 

If all constraint is removed from the surface area, we must regain the condition 
for complete equilibrium expressed in equation (1-23). Thus, we find that 

dG = Σ f^idrii + ad A = 0 (T7, P constant) (1-211) 

However, in view of equation (1-209), this leads to the formula 

adA = 0 (1-212) 

Equation (1-212) is the condition for either a maximum or a minimum in the 
value of A. Thus, on physical grounds we conclude that if all constraint is removed 
from a surface, spontaneous processes occur until A is a minimum. For a liquid, 
it can be shown from geometry that this is a sphere. 

The constrained equilibrium condition, equation (1-210), may be used to find 
the effect of area on a binary mixture. For a change of composition and area in 
incomplete equilibrium we obtain 

dßi = (j^J dNi + fcj dA = 0 (T, P constant) (1-213) 

Using equation (1-206) and assuming an ideal mixture, we find that 

(f V<+(i> - » <«"> 

Integrating from the spherical condition (where 2V» = N°i and Ai = A°i) to a con­
strained state, the result is 

*wr-{A-AV>&) (1"215) 

Usually, da/drii is very small so that A must be large before Ni differs from iV°t. 
This is precisely the case when the constrained state is colloidal so that composition 
effects are generally noticeable only in colloidal phases. 
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The entire treatment of surface area changes when a specifically spherical shape 
is always imposed on the system. The area is no longer an independent variable but 
is uniquely related to the volume : 

V = |πτ3 

ó 
A = ánr2 

dA = 2 
dV r 

Thus, the internal energy equation becomes 

dE = TdS - PdV + Σ ßtdm + ad A 

= TdS - PdV + Σ »dui + ^ ^ (1-216) 

In deriving the equations for a sphere, special attention must again be given to 
the pressure term. Our usage throughout has been that P stands for the pressure 
in the environment. However, in the present case we specifically wish to derive the 
excess pressure in the sphere. To avoid confusion we will denote the pressure of 
the surroundings by P°. Thus, 

dE = TdS - P°dV + Σ ß4m + ^ ^ (1-217) 
The definition of G becomes 

G = E + P°V - TS 
So that 

dG = -SdT + VdP° + Σ Vidni + ^ ^ (1-218) 
Then, / \ / \ 

XdnJτ,ρο,τα r XdnJ T,p°,ni 
or 

Gi = ßi + ?φ d-2 2 0) 
Thus far, the treatment has involved an additional variable which is not inde­

pendent, and the formulas are parallel to the gravitational case (for example, 
Gi 5¿ μΐ). In the gravitational case, the significance of μ* is found by realizing that 
the properties of matter, and hence μί} are independent of the field. In the present 
case, a similar, but not identical, situation exists, μι is independent of área, and 
therefore of the equilibrium internal properties of the sphere. Thus, while μΐ is of 
course dependent on P°, it is independent of r and of P, the equilibrium internal 
pressure. Thus, for a one component system, μ; = G°i, where G°i refers to r = <». 
From equation (1-220) we find that 

(?. _ G°i = ^ (1-221) 
r 

The partial molal free energy, however, does depend on the area and also upon the 
equilibrium internal properties. Thus, 

^ = Vi (1-222) 
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and integration gives ^ _ ^ = γ({ρ _ p 0 ) ( 1 _ 2 2 3 ) 

Equating formulas (1-221) and (1-223), we find that 

P - P° = — (1-224) 
r 

This formula gives the excess pressure in the sphere. We also immediately derive 

β Γ 1 η ^ = ^ Ϊ (1-225) 
p r 

for the vapor pressure. Since p > p°, we conclude that the sphere is unstable in 
the presence of a large flat surface. 

Electrochemical systems and galvanic cells 
The thermodynamics of a galvanic cell is straightforward and requires no special 

consideration. I t is only in the treatment of the extrathermodynamics of electrode 
processes that formulas involving other variables must enter. We first consider the 
thermodynamics. 

Any chemical reaction which involves the transfer of electrons from one chemical 
species to another is called an oxidation-reduction reaction. Any device by means 
of which this electron transfer can be effected through an external circuit is called 
a galvanic (or electrochemical) cell. In general, we will follow the type of nomen­
clature previously used for a chemical reaction and represent an oxidation-reduction 
reaction as v^ r v-̂  T 

Z^vil —> 2^Ê VJJ 

In this reaction, certain of the / species (called reducing agents) transfer electrons 
to other / species (called oxidizing agents). We arrange the galvanic cell in such a 
way that rather than having a direct electron transfer, the reducing agents give up 
electrons to a system called a cathode, the oxidizing agents receive electrons from 
another system called an anode, and the electrons are externally transferred from 
cathode to anode. If, in the external circuit, we introduce a source of electromotive 
force which exactly opposes the tendency of the electrons to transfer, we establish 
an equilibrium condition. However, the equilibrium is incomplete since a spon­
taneous process would occur if the oxidizing and reducing agents were brought 
together. If n Faradays of electrons are transferred at constant T and P, in a con­
dition only infinitesimally removed from this condition of incomplete equilibrium, 
the reversible work is given by the formula 

AG = -nFyS (1-226) 

where Fy is the Faraday constant and 8 is the equilibrium emf. Following methods 
exactly parallel to those used in the derivation of equation (1-77), we find that 

AG - AG° = RTL· 5^4^ (1-227) 
Π(α/)^ 

Substituting equation (1-226), we derive 

S = S ° - ^ l n ^ 0-228) 
nFy n ( a j ) F ' 
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At complete equilibrium for the oxidation-reduction reaction, AG = 8 = 0 and, 
from equation (1-228), we find that 

8° = ^ τ In K (1-229) 
UFy 

where K is the equilibrium constant. 
From equation (1-228) we see that the emf of a galvanic cell depends upon the 

activity of every chemical species in the oxidation-reduction reaction (cell reaction), 
and the activity of every such species must be known before 8 can be calculated. 
Alternatively, if 8 is measured, and one wishes to calculate the activity of a given 
species, a¿, the activity of every other species, α?·, must be known. 

We next turn to the extrathermodynamics of galvanic cells. Imagine that a 
piece of metallic zinc dips into a solution containing ZnCl2. Within the metal, zinc 
atoms tend to dissociate according to the reaction 

Zn = Zn++ + 2e-

It is postulated that within the metal, this process is in complete equilibrium, so 
t h a t AG = Gzn++ + 2Ge- - Gzn = 0 (1-230) 

It is further postulated that a condition called ' 'electrochemical equilibrium" 
exists by assuming that the zinc ions in the metal come to equilibrium with the 
zinc ions in the solution. Therefore, 

Gzn++ (metal) = GZn
++ (solution) (1-231) 

We now inquire into the mechanism by which electrochemical equilibrium is 
established. Upon initial contact between the metal and the solution, Zn+ + ions 
tend to pass from the metal to the solution. In doing so, electroneutrality is vio­
lated since an excess of Zn++ ions is now in solution and an excess of electrons is left 
in the metal. Thus, an electrostatic charge is built up in each phase. This process 
continues until an electric potential difference is established between the phases 
which offsets the tendency of Zn+ + to move from the metal to the solution. This is 
electrochemical equilibrium. 

The potential difference between the phases at equilibrium is called the "Nernst 
potential." I t is also called the "interface potential," because the excess Zn++ and 
electrons form a microscopic double layer at the boundary between the two phases. 
The number of the excess charges is extremely small, well below the limit of chem­
ical detection. Thus, although one never notices a deviation from electroneutrality 
by chemical analysis, the presence of interface potentials accounts for galvanic 
action. 

In order to develop equations for the interface potential, we must introduce the 
electrostatic charge into the thermodynamic formulas. This is done by writing 

dE = TdS - PdV + Σ vdni + *dq (1-232) 

where ψ is the electric potential and q is the charge on the phase. In the present 
case, q is not independent. The charge on a phase which results from electrochemical 
processes is given as v^ _. 

q = 2L, ZiFyUi 
which is simply the difference between the number of positive and negative charges. 
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Therefore, , v> „ , ίΛ ο ο ο λ 

dq = L, ZiF^jdni (1-233) 

Substituting this result in equation (1-232), we find that 

dE = TdS - PdV + Σ (Mi + ZiFytfdrii (1-234) 

Using the definition of G we find that 

dG = -SdT + VdP + Σ (ja + ZiFy^dni (1-235) 
and 

Gi = ßi + ZiFyt (1-236) 
Thus, as in the gravitational case, μ£ is not equal to G¿ for charged species. Also, in 
analogy with the gravitational case, the value of μ» is not in general affected by \f/, 
since the excess of charge is entirely confined to the surface of the phase. In the 
example given above, μ» for Zn++ ions in the bulk of the liquid phase is unaffected 
by the presence or absence of the metal. In dilute solution, μι for the ions in solution 
could be found from DH theory whether the metal is present or not. Thus, μ» is 
independent of φ. This is not to say that we will not find a relationship between μ; 
and ψ in an electrochemical system at equilibrium. By imposing the equilibrium 
condition we obtain just such a relationship, in the same way that, although μι is 
independent of h in a gravitational system, we nevertheless find dßi/dh at equi­
librium. 

With this understanding, we may apply equation (1-236) to equation (1-230) 
to obtain ( ^ + + + 2F^s) + 2 ( ^_ _ F^M) _ μζη = 0 ( 1 _ 2 3 7 ) 

where subscript S refers to solution and subscript M refers to metal. Solving for 
the interface potential, we find that 

2Fy(ts - ΨΜ) = 2Fy{Ax¡,) = μζη - μζη++ - 2Me- (1-238) 

Equation (1-238) may be written for the case where the zinc, zinc ions, and elec­
trons are in their standard states: 

2Fy(At°) = μ°ζ„ + μ°ζη- + 2MV (1-239) 

Now, the zinc metal is of invarient composition so that μ°ζη = μζη and μ°β- = μβ-. 
Thus, upon subtracting equation (1-239) from equation (1-238), we obtain 

2Fy(ty) - 2Fy{W°) = - ( μ ζ η - - μ°ζη-) (1-240) 

From the definition of ionic activity used in the DH theory (1-107), we find that 

Αψ = Αψ° - f^r In azn- (1-241) 

This is the well-known expression for the Nernst potential. We may generalize by 
saying that if an electrode reaction is written 

22 vAA —> 22 VBB + ne~ 
the corresponding Nernst potential is 
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We next suppose that two different electrodes are immersed in the same solution 
and that each electrode has identical metallic terminals. In general, Nernst poten­
tials will be established at each electrode in such a way that the partial molal free 
energy of the electrons in each metal differs. Consequently, if the electrodes are 
connected, current flows. On open circuit, the difference in Gi for the electrons 
between the metals may be found as follows: 

G e 1 = Me-1 - Fyxl·1 (1-243) 

öe-n = Me-n _ Fjii (1-244) 

where superscripts I and II denote the electrodes. Since the metals are identical, 
μ*Λ = Me"H' a n d Ge-1 - Ge-U = -FyW - φ11) (1-245) 

Thus, a measurement of Ge~l — Ge-U gives ψι — ψ11. As strongly emphasized by 
Guggenheim (1949), equation (1-245) applies only to identical metals. One cannot 
measure the electrical potential difference between two phases which differ in chemical 
composition. 

At each of the electrodes, we have potential differences defined by Δ^1 = \¡/s — ψ1 

and A\//11 = \ps — ψ11. Therefore, 

Δ^ π - Δ^1 = 'ΟΑ1 - φη) = S (1-246) 

which is the measured cell emf. The difference between the two electrode reactions, 
written so as to involve the same number of electrons, is the net cell reaction. This 
may again be written 

Σ Vll —> Σ vjJ 

Therefore, if equation (1-242) is applied to each electrode and substituted into 
equation (1-246), we obtain 

8 = ( A * " ) ° - ( A ^ § > ! g ^ 0-247) 

where δ is the measured cell emf. Putting (Δψπ)° — (Αψ1)0 = δ°, we regain equation 
(1-228). The method of treatment is thus consistent with thermodynamics. 

Thus far we have been largely concerned with potential differences between 
metals and solutions. In fact, electric potentials may arise between any two phases 
of different chemical composition which contain charged species. We now turn 
attention to the boundary between two liquid phases. 

Consider the following cell : 

B 
I 

m1 

II 

m# + dm» 

E represents identical electrodes dipping into two solutions, I and II, which are 
mixtures of ions differing only infinitesimally in composition. Each contains an ion, 
say M+, to which the E are reversible. 

If the electrodes were connected, current would flow through the system. We 
will suppose that positive ions flow from left to right and negative ions from right 
to left. We now define the ionic "transference number," tiy as the fraction of the 
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current carried across J by each ionic species. We also define the ionic "mobility," 
viy as the velocity of an ion in centimeters per second when a field strength of one 
volt per centimeter is applied. By a straightforward derivation which is omitted 
here (see Maclnnis, 1939) we find 

U = lg»;l"^*· (1-248) 
L, \Zi\miVi 

When one Faraday of current flows across the boundary J we will thus find that 
ti/zi moles of each ion move from left to right {z% < 0 for anions). Thus, the trans­
ference process can be written 

Zi Z i 

where /»· denotes an ion species. The free energy change is 

AG = Σ - Giu - Σ - Gi1 (1-249) 
z % Zi 

However, we have supposed that the concentrations differ only infinitesimally so 
that the Gi differ only infinitesimally, and 

dG = Σ - dGi (1-250) 
z% 

Now, when phases I and II are initially brought into contact with the circuit 
open, we postulate that small currents flow according to the above transference 
process until electrochemical equilibrium is established. (This will not establish 
diffusion equilibrium, and equation (1-249) is not the AG for diffusion.) This 
requires that 

dG = Σ - dGi = 0 (1-251) 
Zi 

Separating Gt into chemical and electrical potential terms, we obtain 

Σ - (dßi + ZiFydt) = 0 (1-252) 
Zi 

- Σ W * = Σ - dßi (1-253) 

Using the definition of ionic activities, we obtain the equation 

-F¿t Σ ί < = Σ - RT d In a{ (1-254) 
Zi 

Furthermore, Σ U = 1> since the transference numbers are defined as fractions. 
Thus, we find 

άφ = - Σ - ψ- d In ai (1-255) 
Zi Py 

In the event that I and II differ by finite concentrations, we integrate and find that 

Δ^ = - Γ Σ -; i F d In ai (1-256) 
• / I Ζχ Py 

file:///Zi/miVi
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Subscript J denotes the electric potential difference at the liquid-liquid boundary. 
The ti are clearly dependent on the concentrations, but on substituting equation 
(1-248), we obtain r n 

W> = - ? M Σ ¿ ' ' ? Τ - d In a, (1-257) 
The solution of equation (1-257) requires knowledge of ionic activity coefficients 
and of the dependence of the ionic mobilities on composition, neither of which is 
subject to direct experimental measurement. In very dilute solution, one may 
assume 7»· = 1 and Vi = constant. The result is the well-known Henderson equation: 

A / RT 
Σ - Wi11 - Ni1) 

_ Σ VjNi1 

Fy Σ ViWi11 - N*) m Σ ViNi1 In (1-258) 

where the Ni are normalities. Obviously, it is of limited application. 
Equation (1-256) is also of interest for the case in which phases I and II contain 

only a single uni-univalent electrolyte. For example, suppose we have the cell 

I 
HC1 

B 
I I 
HC1 

By previous methods we find that 
RT 

ΑψΑ = Αψ° - — In αΗ
+Ι 

Γ υ 
and 

Thus, 
ΑψΒ = Αφ° RT , ττ — In αΗ

+π 

ΑψΑ ΑφΒ = — τ τ m 
+ι 

αΗ 
+11 

Applying equation (1-257) to J, we obtain the formula 

A\pj = — I ZH
+ -ΤΓ d In aH

+ + I ter ~rr d In aCr 
J\ by Jl ty 

In the present case we assume that the U are independent of composition (since 
U = υί/Σνΐ)> and 

(1-259) 

(1-260) 

(1-261) 

(1-262) 

Alf/j = — ¿H4 RT Λ αΉ
+η 

In ^ + t e i 
RT , cicr 

dcr 
(1-263) 

Recalling that ¿H
+ = 1 — ter and aHci = «H+ · «cr, equation (1-263) becomes 

RT . OH+H 

Since 
ΑψΑ = φ1 - ψΑ 

ΑψΒ = φ11 — ΨΒ 

Αψ7 = φ11 - φ1 

RT , anci1 

In 
dnci 

(1-264) 
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it follows that , , A , . , A , (Λ OÖ_. 
δ = ψΒ — ΨΑ = ΔΨΑ — ΔψΒ — M/j (1-265) 

where δ is the measured cell emf. Using equations (1-261) and (1-264), we find that 

S = - ¿ c i 
RT , aHc 
F y aHci 1 (1-266) 

Thus, in the case where only one electrolyte is present at different concentrations 
("concentration cell"), the cell emf can be found on the single assumption that the 
Vi, and hence tiy is independent of composition. In writing equation (1-263) it is 
often further assumed that aH

+ = acr = a±uc\, so that equation (1-263) for A^j 
becomes 

/i o¿ ^ RT i a H c r (1 - 2¿H+) -JT- In Δ^, 
Fy ÖHC1X 

(1-267) 

One of the most widely used galvanic cells is the pH meter. The electrode assem­
bly of this apparatus may be represented as follows: 

A 

Ag AgCl 

C 

Std 
HC1 | 

S 

Soin. 

D 

Sat. 
KCl 

Hg2Clo 

B 

Hg 

In this assembly, the Ag-AgCl electrode is immersed in a standard HC1 solution 
of fixed composition. Contact with the solution S is made with a glass membrane 
(g) which is permeable to H + only. The calomel electrode on the left is immersed 
in a solution of saturated KCl which also makes the other contact with the solution. 

In general, the composition of the solution in S is not known so that formal 
thermodynamics cannot be applied. However, the more powerful extrathermo-
dynamic method is available. 

At the Ag-AgCl electrode the reaction is 

Ag + Cl- = AgCl + e~ 

The corresponding electrode potential is 

ΔψΑ = φο _ φΑ = 

At the calomel electrode the reaction is 

2Hg + 2C1- = Hg2Cl2 + 2e 

The corresponding electrode potential is 

ΑΦ°Λ + ψ- In aci-c (1-268) 

ΑψΒ = φο _ ψΒ = Αψοβ + 
RT In aC\ (1-269) 

Assuming electrochemical equilibrium for H + across the glass membrane, we find 
that 

Wo = ¿s — 
Fy ΟΗ^ 

(1-270) 

At the boundary between the solution and the saturated KCl bridge we write 

Δ*, (1-271) 
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The net cell emf is g = φΒ _ φΑ ( , _ 2 ? 2 ) 

= ΑψΑ - ΑψΒ + ψ» - ψ<') 
= ΑψΑ - ΑψΒ + (φΏ - φη + (ts - ψη 
= ΑψΛ - ΑψΒ + Ajsj + Αψ„ (1-273) 

Substituting equations (1-268), (1-269) and (1-270) in equation (1-273), we obtain 
the formula 

8 = ΑΨ°Λ -Αφ% + ^ Ι η ^ - Β + ψ\η^-8+ Αψ, (1-274) 

Since acrD, acrc and an+c are all fixed, we may define the standard emf as 

S°(pH) = Αψ°Α - Αψ°Β +ψ\η αΉ+° ' α™— (1-275) 
ry «ci-

Equation (1-274) then becomes 
6 = δ°(ρΗ) - ψ- In aH+

Ä + Δ ^ (1-276) 

The pH is defined as 
pH = - log» «H+ (1-277) 

so that equation (1-276) becomes 

δ = δ°(ρΗ) + ^ Γ (pH) + Αψ, (1-278) 
Solving for the pH, we obtain 

pH = S - ε ° ^ - ^ (1-279) 

2.3 F 
When the solution concentration is much lower than that of the bridge, an appli­
cation of the Henderson equation to the boundary between S and D leads to 
A\¡/j ^ 0 since vK

+ = vCr in D. Thus, δ°(ρΗ) may be evaluated in principle by 
extrapolating values of δ to infinite dilution. In the concentration range when 
A\pj remains negligible, equation (1-279) becomes 

pH - ^ j p (1-280) 

2.3 Fy 

In the range of the DH theory, values of the pH found from equation (1-280) are 
in agreement with those calculated from the theory. Outside this range, we have 
no means of investigating the accuracy of equation (1-280). This has led some 
writers to define the pH according to equation (1-280). 

A final point concerning electrochemical systems must be made. We have written 
in general that dQ = _SdT + Vdp + £ ( μ . + z.Fyy¡/)dn. ( 1_2 81) 

The fact that the μ» are independent of ψ has been emphasized. Therefore, if we 
are dealing with a single phase containing electrolytes, in which any electric poten­
tial which characterizes the phase as a whole is incidental, we may abritrarily put 
ψ = 0 just as we put φ = 0 in the gravitational case. At constant T and P, equation 
(1-281) becomes dG = Σ M Ä (1-282) 

where the summation is over every ionic species present. 



Section II 

D O N N A N THEORY 

Introduction 
The theory of membrane systems developed by Donnan (1911) and generalized 

by Donnan and Guggenheim (1932), has been widely applied to colloidal systems 
of both organic and inorganic origin. The concern of the original theory was to 
develop equations for the distribution of ionic species between two macroscopic 
phases which are separated by a semipermeable membrane and also to develop 
equations for the potential difference which may exist at such a membrane. Un­
fortunately, the expressions "Donnan system" and "Donnan theory" have been 
used in different ways by different writers. 

For certain writers (Davis, 1942; Overbeek, 1956; Babcock, 1960), any macro­
scopic system of two phases, one containing electrostatically charged colloidal par­
ticles and the other a solution, separated by a membrane impermeable to colloid 
but permeable to ions, may be called a Donnan system. Other writers (Bolt and 
Peech, 1953) hold a similar view, but contend that there must be volume homo­
geneity of charge in the suspension before the system can be called a Donnan 
system or the Donnan theory applied. In both of these approaches, a Donnan 
system is macroscopic and contains a phase boundary at which macroscopic dis­
continuities in ionic concentrations occur. 

Still other writers (Wiklander, 1955) prefer to speak of the "Donnan distribution" 
of the ionic concentrations in the immediate vicinity of charged colloidal particles. 
This distribution does not necessarily involve a discontinuity in the concentrations. 
One then speaks of the "micro-Donnan system." 

In the present chapter, the most general macroscopic nomenclature, as described 
above, will be adopted. Consider a two-phase system, one phase of which contains 
an aqueous suspension of charged colloidal particles and an electrolyte (I) and the 
other an electrolyte only (II) : 

M 

WP7K I 
mm I 

The phases are separated by a membrane, M, permeable to electrolytes but not to 
colloids. We will consider any such system to be a Donnan system. Furthermore, 
any formulas which apply to this macroscopic system will be called Donnan equa­
tions. Thus, we might construct a model in which the microscopic state of the 
suspension is governed by the double-layer theory and use the Donnan equations 
to find the macroscopic state, since the theories are not incompatible. Such an 
effort will be made in Section III. Overbeek (1956) used a similar approach. 

[ 4 5 8 ] 
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Macroscopic equations and negative adsorption 
Certain equations can be developed with only a minimal number of assumptions. 

Consider a diffusible electrolyte species X in the system. We may with confidence 
say that, at equilibrium, ^ T ^ TT / n .« 

Further, if the same standard state is chosen for the electrolyte in the suspension 
as for electrolyte in the solution, then we also find 

ax1 = ax11 (2-2) 

In order to proceed further, it is necessary to go beyond purely macroscopic con­
siderations. I t will be recalled that in choosing the standard state for strong electro­
lytes, it was postulated that Henry's Law applies to ions at infinite dilution. This 
led to y± = 1 at infinite dilution. In defining the activity coefficient of electrolyte 
in a suspension, it is postulated that the electrolyte and the colloid are completely 
dissociated, so that the mean ionic concentrations are determinable unambiguously. 
Thus, we may write for the electrolyte 

ax
l = ( T Í 1 · m±

lY (2-3) 

where y± and m± are given by equations (1-86) and (1-87), respectively. The only 
limitation on this equation is that the mean ionic concentrations must be deter­
minable. In the event that ions in the suspension obey Henry's Law, y±

z will equal 
unity at infinite dilution. This will certainly occur if there is volume homogeneity 
of charge. If not, it must remain for experiment to determine 7±* at infinite dilution. 

It must be noted that certain potentiometric measurements made in clay sus­
pensions have been interpreted to mean that clays are not completely dissociated 
(Mattson, 1926; Marshall and Krinbill, 1941). If this is so, equation (2-3) cannot 
be applied in a straightforward manner. However, in the writer's opinion, the 
weight of experimental evidence strongly favors the conclusion that for the alkali 
metals, such as Na+ or K+, and the alkaline earths, such as Mg+ + and Ca++, the 
ions are completely dissociated from the surface. The alternative is that they are 
covalently bonded, or in some sense "complexed," by the surface. In general, the 
data on the rapidity of ion-exchange, the apparent mobilities of ions in suspensions, 
and the activity coefficients of electrolytes in clay systems, all indicate complete 
dissociation. We will thus assume that equation (2-3) is unambiguous. 

Assume that the suspension contains a single electrolyte which dissociates into 
v+ cations (X+) and v_ anions (X_). Using equation (1-90) for the electrolyte in 
the suspension we derive from equation (2-2) 

[y±'m+v+ · m."-]1 = [y±p ' % 1 n (2-4) 

where ra¿ is the mean or bulk ionic concentration. Solving for y^.1, we derive 

i _ y±u mx" . . 
7 ± [(ro+'+ · m. ' - ) 1 ' ' ] 1 l ù 

Thus, if the quantities on the right-hand side of equation (2-5) are known or meas-
sured, 7±χ can be found. This equation is also applicable whenever the ionic molali-
ties in the suspension are determinable. We may also write 

[y±
9m+9+ · m."-]1 = [y±'m+9+ · m_F-]n (2-6) 
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or / \ v + / \ v / \ p -

fe) - ($ fev) 
Thus, in general the ionic concentrations are not the same in the two phases. 

For the most part, we will be interested in negatively charged colloidal systems. 
In what follows, then, the equations for anion distributions will be found. 

It is convenient to rewrite equation (2-7) in the following way. Let mp be the 
concentration of the particles expressed in equivalents per liter, and Θ be defined as 

(2-8) 

(2-9) 

Then, 

and equation (2-7) 

m+
l = 

may be written 

\z+ 

Θ = 

mp 

.\mJ 

7±" 
Ti1 

+ ^ 

) -

-Im-1 

(m+ n 
ΈΤ) ( 2 - 1 0 > 

For a symmetrical electrolyte, J>_ = v+ = 1, v = 2, and 

, ( Β . + * £ = ! ) _ ^ „ ( = = £ ) (2-n) 

This equation can be solved for the "anion ratio" (a) using m+u = m_n = ra0: 

mJl 2|2_|0mo 
a = 

\/Θ2ηι2
ρ + 4:Z+\z-\m2o — θπιρ 

We also define the "negative adsorption" of anions as 

(2-12) 

Vp 

Solving equation (2-11) for β, we obtain 

= |,-l(m_" - mJ)_ 

_ 2\ζ-\θτη0 + θπιρ - \Ζθ2πι2
ρ + 4ζ+\ζ_\ιη2ο (0_ΛΛΛ 

β " 2θπιΌ
 {Ζ 1 4 ; 

It is convenient to introduce the parameter 

\z- m. II 

as an index of the relative amounts of salt and colloid in the system. Equations 
(2-12) and (2-14) then become 

2ye ( 2 _ 1 6 ) 

V > + 42/ - 0 

= A2" + 1} - Ve2 + W (2-17) 

Thus, the ratio and the negative adsorption are determined by y and Θ. 
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In general, Θ will be a marked function of y. However, insight into the behavior 
of Donnan systems under nonideal conditions is gained by plotting a and jö as 
functions of y at constant 0. The plots must be considered to represent a series of 
different exchanger systems in which, as y increases, the exchanger interactions 
change in such a way that Θ remains constant. The plots are given in figures 1 and 
2. The results for nonideal systems are interesting in that at low values of Θ, a be­
comes less than unity while ß goes negative. This means simply that for low values 
of 7±

T, due to strong interaction between cations and the colloid, the anion concen­
tration in the suspension must exceed that in the solution in order that the activity 
of the salt be the same in two phases. That is, owing to strong interaction between 
cation and colloid, one may get positive anion adsorption in a system of negatively 
charged particles. 

0.5-1 

OAA 

0 = 1 
0*05 

10 

Figure 1. Effect of the relative salt content of a 
suspension (y) and the anion ratio (a). 

Figure 2. Effect of the relative salt content of a 
suspension (y) on the negative adsorption (ß). 

Electrochemistry of a Donnan system 

Whenever two phases of different chemical composition, each containing ionic 
species, are brought into contact, the possibility of an electrostatic interface poten­
tial exists. Interface potentials of this type are discussed in Section I under electro­
chemical systems. In the Donnan system, we have the conditions required for the 
existence of such an interface potential. 

We must consider the possibility, then, that when contact is established between 
two phases of a Donnan system an electric potential difference may arise at the 
membrane. Like all potentials in electrochemical systems, this potential would be 
due to very small excesses of charge in each phase which form a localized double 
layer at the interface. 

For each diffusible ionic species at electrochemical equilibrium 

Gi1 = Gi11 

Separating 0¿ as m equation (1-2S6) we derive 

(2-18) 

μ,·1 + ZiFyV = μΐ11 + ZiFy*11 (2-19) 
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The "membrane potential" may now be defined as 

At m = Φ11 - Ψτ (2-20) 

Combining equations (2-19) and (2-20), we obtain 

Δ ^ = - ^ τ (μ? - μ<") (2-21) 
Zit y 

Using the definition of ionic activity from equation (1-107), we obtain 

^=S>S (2-22) 
Thus, in general the ionic activities are not the same in the two phases. 

In deriving equation (2-22), the method employed is precisely the same as that 
used to derive interface potentials in a galvanic cell in Section I. Thus, the chemical 
potentials in equation (2-21) are independent of A^m. For example, if phase II is 
dilute, μίη — μ°ί could be calculated from the DH theory whether phase I is present 
or not. In both phases all electrostatic interactions within the phase are included 
in μι and in a^ Thus, the electrostatic interactions between the ions and the colloid 
in phase I are included in μ;.3 

These points require emphasis because the symbols μ* and ai are sometimes 
given a different significance in the literature. In writing 

Gi = μ{ + ZiFy\¡/ 

for an ion in the suspension, many authors (Low, 1951; Whitney and Peech, 1952) 
intend ψ to stand for the electric potential in the diffuse layer of ions around the 
colloidal particle. Since this potential is a function of position and since Gi is a 
constant throughout the suspension, /x¿ becomes a function of position. Thus, if we 
write 

Mi — μ°ι = RT In di 

the activity also becomes a function of position. In this usage, the interaction be­
tween the colloid and the ions is not included in μι. 

As discussed in Section I under "Systems involving other variables," the use of 
μί is not arbitrary once one has written equation (1-125). Thus, using μ{ to stand 
for a quantity which includes only a part of the interactions in phase I is in viola­
tion of the basic definition of μι in thermodynamics. In respect to the activity, one 
is free to define this arbitrary function in any manner which is the most convenient, 
but to define a¿ such that it is a function of position violates usage in electro­
chemistry in general and the DH theory in particular. For example, one does not 
obtain the conventional formula (2-22) for the membrane potential. 

8 Given the existence of equation (2-21), it may seem strange to state that the chemical poten­
tials are independent of A\¡/m. To make this completely clear, recall the gravitational case. It was 
carefully stated that μι is independent of the gravitational field, since the properties of matter are 
not affected by the field. However, in a series of phases at equilibrium, we know from equation 
(1-167) that αμί = Μαφ, which gives μ* as a function of φ. This is in no way different from asserting 
that T and P are independent variables, but then finding the equilibrium pressure of a phase as 
a function of temperature. Thus, in electrochemical systems, it is precisely by realizing that M¿ is 
independent of A\pm that we arrive at the equilibrium condition, equation (2-21). 
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Therefore, in the nomenclature to be used here: 
a) Axpm is a nonspecific membrane potential resulting from a very small charge 

separation localized at the membrane. 
b) μΐ is independent from ψ and is uniform throughout both solution and sus­

pension. It includes interactions between the ions and the colloid. 
c) ai is also independent of ψ and is uniform throughout both solution and sus­

pension. It also includes interactions between the ions and the colloid. 

This nomenclature and its interpretation are in agreement with the treatment 
presented by Overbeek (1956). 

An additional point must be made. In certain theories of Donnan systems, the 
activity of the cations in a suspension is assumed to be the sum of two parts : the 
activity of the cations associated wdth the colloid (Z) and the activity of cations 
associated with the anions in the suspension (F). Thus, 

α+ι = z + Y 

This separation does not appear to have meaning. Ionic activities are not additive 
in the way the concentrations are additive. For instance, if one has a mixture which 
is 0.1 M in KCl and 0.1 M in KN03, the concentrations may be added to find that 
the solution is 0.2 M in K+. However, the activity of all potassium ions in the 
mixture is the same. 

Electrical potential measurements in Donnan systems 

Consider the following galvanic cell : 

A M 

Ag AgCl 

I 

NaR 
NaCl 

II 

NaCl 
AgCl Ag Cell I 

This cell consists of two silver-silver chloride electrodes, each immersed in a phase 
of a Donnan system. Phase I contains the colloid NaR and NaCl. Phase II contains 
NaCl only. The emf of the cell may be found by the methods used in Section I. 
The electrode reaction at A is 

Ag + Cl- -> AgCl + e~ 

By assuming electrochemical equilibrium on open circuit (AG = 0), separating the 
Gi for charged species, and applying the definition of ionic activity, we find 

ΔΨΑ fyl — ώΑ = Αψ°Α + RT In aC\ (2-23) 

where \pA is the electric potential of the piece of silver at A. Similarly at B, 

ΑψΒ = φ11 - ψΒ - Αφ°Β + ψ- In acr1 1 (2-24) 
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Combining equations (2-23) and (2-24), we obtain 

ΆφΑ - άφΒ = (φΒ - φ*) + (φ1 - φη) 

F y dC\ 

Using equation (2-20), we find that 

δ = φΒ - ψΑ (2-26) 

= ΑψΒ - ΑφΑ + Atm (2-27) 

Equation (2-22) for the membrane potential in the present case becomes 

Δ*. = -ψ In f 4 (2-28) 
ry (1er 

Substituting equation (2-25) and (2-28) in equation (2-27) gives 

8 = 0 (2-29) 
Thus, by the extrathermodynamic method, we conclude that there is no potential 

between Ag — AgCl electrodes immersed in each phase of a Donnan system, even 
though μοΐ"1 9a Mer11· This fact is often useful experimentally in determining 
whether or not a suspension has come to equilibrium with its dialyzate. 
Consider now a second cell : 

I M II 

Hg Hg2C12 
KC1 
Sat. 

NaR 
NaCI NaCI 

KC1 
Sat. Hg2C12 

B 

Hg 

Cell II 

Here we have two calomel half-cells with KCl-saturated salt bridges, each immersed 
in a phase of the Donnan system. The electrode reaction at A is 

2Hg + 2C1- -> Hg2Cl2 + 2e-

The corresponding electrode potential is 

ΔψΛ = ψ° - ψΑ 7?77 

Αψ°Α + -=r In « c r c 

Γ υ Similarly at B, 

Therefore, 
ΑφΒ = ΦΒ - ΦΒ = Αψ°Β +ψ\η acrD 

Γ υ 

ΑφΑ - ΑφΒ = (ψΒ - φΑ) - (φ° - ψ°) 

RT . acrc 

= — In ñ F y aCrD 

(2-30) 

(2-31) 

(2-32) 

(2-33) 

Now, dcrc and acrD are the activity of C l - in two identical saturated KC1 solu­
tions, so that they are equal. Thus, ΑψΑ = ΑφΒ, and 

ψΒ _ ψΑ _ ψΌ _ ψϋ (2-34) 



HILGARDIA - Vol. 34, No. 11 · August, 1968 465 

or, since ψΒ — ψΑ is the cell emf, 

δ = φΏ (2-35) 

We must examine the interfaces between the bridges and the phases of the Don-
nan system. The Henderson equation (1-141) predicts that if the concentration of 
phase I is low, and if vK

+ = vCr> then the interface potential between bridge D 
and phase II should be very small and may be neglected. In many quarters, the 
same assumption has been made at the interface between bridge C and phase I. 
If these assumptions are arbitrarily made, 

and equation (2-35) becomes 
f v " - , /yI 

(2-36) 

(2-37) 

(2-38) 

= Δψ„. 

Thus, if the assumptions are correct, Cell II should measure the membrane poten­
tial. Furthermore, 

Axpm = y In - — Y = — In — 
V y «Cl ry aNa 

+1 a (2-39) 

Thus, if phase II is very dilute so that acr1 1 and ON&
+11 can be found from the DH 

theory, acr1 or aNa
+I can be calculated. 

Considerable controversy has arisen over the assumption that the junction po­
tential at the boundary between C and I can be neglected. There can be little 
doubt that the assumptions underlying the Henderson equation are not applicable 
to the boundary between the bridge and the suspension. Since there is no means 
available for measuring junction potential, the significance of measurements made 
with Cell II, or activities calculated from such measurements, must remain in 
doubt. 

An additional point concerning the interpretation of measurements made with 
Cell II is of interest. Suppose that the colloid in phase I consists of charged particles 
surrounded by ions whose concentration gradients are governed by the double-
layer theory to be developed in the next section. The question arises, to what 
extent does the measured emf in Cell II include the electric potential in the diffuse 
layer around the particle? A wholly unambiguous answer to this question can be 
provided. 

To make matters clear, consider the following membrane system : 

M 

Hg 
1 *2 2 

KC1 
Sat . 

I 

NaCI 

I I 

NaCI 
KC1 
S a t . H g 0 C l l a 2 21 

B 

Hg 

Cell I I I 

Here, M is a membrane permeable to Na+ ions only, I and II are dilute solutions 
of NaCI at different concentrations. At electrochemical equilibrium, 

GNa+I = <?Ν.+Π (2-40) 
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and MNa+I + Fyt1 = MNa+I1 + F νψτΐ 

Fy(Vl - Φ1) = MNa+I - MNa+H 

(2-41) 

(2-42) 

It is emphasized again that ψ11 — ψ1 is due to slight charge excesses in each phase 
which are localized at the membrane. Within each phase we have electrostatic 
interactions, of the type considered in the DH theory, which are included in the 
μι and therefore in a¿: 

(2-43) (*» - V) = f- In ^ 4 
Γυ «Na+ 

If the extrathermodynamics is applied to Cell III in the same way that it was 
applied to Cell II, and if we make the ad hoc assumption that junction potentials 
at the bridges are absent, then 

8 = φ11 - φ1 = Αφ,η 

Thus, under the assumed conditions, the cell measures only the membrane poten­
tial, and does not directly measure the difference between the electrostatic inter­
actions with each phase. Indeed, if the solutions are so dilute that the interactions 
can be entirely neglected, we still have a large membrane potential given as 

g = Kr ln CNa 
F y CNa +11 

(2-44) 

where c is the concentration. 
Exactly the same considerations apply to Cell II . Whatever the nature of the 

electrostatic interactions in the colloidal phase, if we make the ad hoc assumption 
that the junction potentials between the bridges and the phases of the Donnan 
system are zero, the cell emf is equal to Αψη, which in turn results from a small 
charge separation at the membrane. At equilibrium, this A\f/m is related to the 
ionic activities by equation (2-22) and ionic activities include all electrostatic 
interactions within a phase. In the case of an ideal Donnan system, all interactions 
can be neglected and the membrane potential is given by equation (2-44). 

A related question concerning pH measurements in suspensions is sometimes 
raised. Let pH electrodes be immersed in a suspension of particles with diffuse 
layers. Assuming no junction potential, to what point in the double layer does the 
activity or pH measurement refer? To find the answer, consider the cell: 

Ag AgCI 

I 

Std 
HC1 

9 
II 

II 

HR 
HC1 

III 

KC1 
Sat. Hg2C12 Hg Cell IV 

Phase I is a standard HC1 solution enclosed in a glass electrode, g is a glass mem­
brane permeable to H + ions only. Phase II is a suspension containing HR and HC1. 
The application of extrathermodynamics (see Section I), yields 

S = ε°ρΗ - ψ In αΗ+π + ¿ m - ^11 
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If the ad hoc assumption is made that ψ111 — ψ11 is zero, αΗ
+π can be calculated 

from ε. The point deserving emphasis is that aH+ in this equation is defined in 
terms of the chemical potential which is uniform throughout the phase. Thus, in 
the absence of junction potential, the cell assembly measures the chemical potential 
of H+ in the phase, and this chemical potential is not a function of position in any 
of the diffuse layers which may be present in phase II. The question posed above 
thus has no meaning. 

Filtration of a Donnan system 
Perhaps the most common method of extracting a solution from a soil system or 

suspension is filtration. To apply the Donnan theory to this problem, consider a 
suspension which is, at some point during the filtration, in equilibrium with a 
solution phase of infinitesimal volume. For simplicity, the electrolyte is taken 
as NaCl. 

w \ t f 

Ψ7// 
/ / N a R / / 
/ N a C K / 7/ ¿Δ 

1 1 

1 

Let the volume of the remaining suspension be V and the amount of salt in the 
suspension be a. The volume of the drop will be — dV and the amount of salt in 
the drop will be —da. Thus, 

wer _II _ da 
dV (2-45) 

If Vo is the initial volume and m°p the original concentration of the colloid, then 
the concentration of colloid at a time when the volume is V will be 

Then, 

_ ν0πι°ρ 
7ΠΡ — y 

mNa+I = rnp + raCr* 

= Tr + wer1 

(2-46) 

(2-47) 

Applying the equilibrium condition, 

02(mNa+I) (mciJ) = (mcr11)2 (2-48) 
Substituting mcr1 = a/V and equation (2-47) in equation (2-48), we derive 

Therefore, 

Q 

mcr11 = -y a(a + V0mo
p) 

— = —a(a + Vom°p) 

(2-49) 

(2-50) 

After integrating equation (2-50) and substituting the result into equation (2-49), 
we obtain , — 

π 0 \ /α 2 + aVom° m C f u = ΛΤ f2fl + FoW°p + 2a2 + aVom°p-] 
Vol J Ί 

(2-51) 
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where J is a constant given as 

J = 2a0 + V0m°p + 2 V ^ o + a0V¡m% (2-52) 

and α0 is the initial amount of salt in the suspension, raer11 may now be plotted as 
a function of a or V. This has been done in figures 3 and 4 for the arbitrarily as­
sumed values m°p = V0 = a0 = 1. In these plots, the filtration proceeds from right 
to left along the abscissa since a and V decrease. 

For 0 = 1 , the initial drop filtrate concentrations are higher than the initial 
average concentration in the suspension due to the negative adsorption. This effect 
is decreased by nonideality (0 < 1). At 0 = 0.5, the initial drop concentration is 
lower than initial mean concentration, corresponding to the positive anion adsorp­
tion discussed above. 

Figure 3. The filtrate concentration ( w c l
n ) Figure 4. The filtrate concentration ( m c , n ) 

as a function of the salt remaining in the sus- as a function of the volume of the suspension 
pension (a) during the filtration of a Donnan (V) during the filtration of a Donnan system 
system at various degrees of ideality. at various degrees of ideality. 

It is interesting to note that the concentration curves fall to zero at finite values 
of the volume. At 0 = 1, this occurs because salt is removed from the system at a 
higher concentration than the initial mean for over more than half of the filtration. 

The curves in figures 3 and 4 were obtained by integrating equation (2-50) at 
constant 0. Actually, 0 would be expected to be a function of the salt content of the 
suspension. The curves therefore have the same arbitrary significance discussed in 
connection with figures 1 and 2. 

The Donnan theory can be applied to other methods of obtaining extracts from 
soils. Some of these have been worked out and discussed by the writer (Babcock, 
1960). 

Osmotic equilibrium 
Thus far, nothing has been said about equilibrium conditions for water in a 

Donnan system. In effect, the membrane has been made impermeable to water as 
well as colloid. We now wish to relax this restriction. The treatment parallels the 
development of the osmotic pressure equations in Section I. 

Consider a Donnan system contained in an apparatus which permits the pressure 
on either phase to be varied by means of pistons: 
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Assume that every diffusible electrolyte in the system is in electrochemical equi­
librium and the pressures Pu and P1 are so adjusted that the water is also in equi­
librium. By a derivation parallel to equation (1-95), we find (when Pu = P°) 

- P° = RT . au (2-53) 

where aw
l and aw

11 are the activities of the water in the phases when the pressure 
on each phase is P°, and Peq1 is the equilibrium pressure. The constancy of VJ- is 
assumed in the derivation. The term Peq1 — P° is not the osmotic pressure of the 
suspension, which is defined as the pressure necessary to make Gw

l equal to G°w. 
In the present case we have made G«,1 equal to Gw

u at P1 1 = P°. 
To find the distribution of ions, we begin by assuming that phase I is in the state 

of composition which it has at equilibrium, but the pressure of the phase is P°. 
Then μρί - μ°ί = RT In api (2-54) 

where superscript p denotes phase I at P 1 = P°. If now the pressure is increased 
to its equilibrium value we find, assuming incompressibility, 

μΐ1 - μρΐ = TV(Peq ,1 - P°) 

Combining equations (2-54) with (2-55) to eliminate μ% we obtain 

μ .i _ μ°( = RT In a"i + F ^ P « , 1 - P°) 

(2-55) 

(2-56) 

Substituting ßiu — μ°ί = RT In a,11 and equation (2-56) in the equilibrium con­
dition equation (2-19), we obtain 

RT In a'i + ^ ' ( P « , 1 - P°) + z(Fνφτ = RT In a,11 + zj?**11 

Thus, 
RT aP V -1 

Αφ„, = ^ψ In - ^ + -75- (^ec,1 

< χΓ y (Xi Z {Γ y 

P°) 

(2-57) 

(2-58) 

This formula replaces equation (2-22). By a very similar derivation, the macro­
scopic equation for the distribution of an electrolyte across the membrane can 
be found : 

r,V 1/1 

(2-59) -RT In ^ = ^ (Pe,1 - P°) 

where v is the number of ions into which the electrolyte dissociates. 

Applicability to soil systems 
As already remarked, the only limitation which appears to exist in the macro­

scopic equations is the determination of the mean ionic concentrations in the sus­
pension. In very wet systems, for example, a 1% bentonite suspension, it seems 
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reasonable to write equation (2-9), which states that the average cation concen­
tration is simply the sum of the particle concentration and the anion concentration, 
each specified in equivalents per liter. 

The desirability of this approach is by no means obvious when we consider soil 
systems at water contents in the field moisture range. As we will see in a later 
chapter, in such soil systems there is frequently reason to assume that the solution 
consists of two discrete phases: an exchanger phase and a solution phase. There is 
nothing formally incorrect in applying equation (2-9) to such cases, but it seems 
awkward and unnatural. A different sort of model altogether, however, becomes 
possible. We suppose that the soil system is composed of a discrete phase containing 
exchangeable cations, and no anions, and a homogeneous solution phase. It does 
not immediately follow that the filtrate would have a composition identical with 
this homogeneous solution owing to the possibility of a membrane potential at 
the filtering interface. This model will be examined in some detail in the chapter 
on ion exchange. 

Negative adsorption of anions in soil systems is well established, but it has not 
been extensively studied. In clay suspensions it has been studied by Whitney and 
Peech (1952) and in soil systems at low water content by Bower and Goertzen 
(1955). The results are not inconsistent with equations (2-16) and (2-17). In 
general a decreases with salt content while ß increases. Positive adsorption of anions 
has been more extensively studied, but nearly always under conditions where it 
may be the result of positive adsorption sites on clays (for example, kaolinite at 
low pH). Whether positive adsorption can occur as a Donnan effect in a system of 
negative particles is not known. 

Membrane potentials between clays and filtrates, as measured with Cell II, have 
frequently been made (Davis, 1942; Peech and Scott, 1950; Whitney and Peech, 
1952; Peech, Olson, and Bolt, 1953). Jenny et al. (1950), however, state that ap­
preciable junction potentials may occur at a salt bridge in a clay suspension. Recent 
measurements of apparent mobilities of K + and Cl~ in clays tend to confirm this. 
It appears that nothing conclusive can be inferred from efforts to measure mem­
brane potentials. The significance of the "suspension effect" for soil pH is likewise 
open to question (Jenny, et al, 1950; Peech, Olson, and Bolt, 1953). 

Few measurements of the osmotic pressure of clay suspensions have been made. 
Low (1955) obtained interesting results using a dynamic flow method. However, 
the significance of equation (2-59) does not appear to have been examined. 

In summary, the scant data available at the present time do not permit an 
evaluation of the significance of the Donnan theory for soil systems. 



Section III 

DOUBLE-LAYER THEORY 

GOUY THEORY 
Introduction 

A theory for the distribution of ionic concentrations in the neighborhood of 
electrostatically charged particles was developed by Gouy in 1910. Since that time 
the theory has been presented and discussed in many places (Verwey and Over-
beek, 1948), and it has been applied to soil systems in various ways (Bolt and 
Peech, 1953; Bolt, 1955a). 

In many applications of the Gouy theory, the charge on the colloidal particles 
is assumed to arise from the preferential adsorption of one ionic species from a 
solution phase. Electrostatic neutrality then requires the presence of a second 
layer of ions of opposite charge. The "double layer" thus consists of two layers of 
adsorbed ions. For example, stich double layers arise in systems of colloidal silver 
iodide particles in equilibrium with a solution of the ions. The meaning of the 
expression "double layer" is unambiguous in such cases. 

When the Gouy theory is applied to clay particles, the significance of the expres­
sion "double layer" may not always be clear. In many clay systems, the charge 
on the particles is due to isomorphic substitutions in the lattice of the particles, 
rather than to adsorption on the surface. Such a particle charge requires the pres­
ence of a layer of ions of opposite charge on the surfaces. Thus, there is actually 
only one layer of adsorbed ions, and in this section it will be called the "diffuse 
layer" since it extends outward from the particle surface. 

The Gouy theory as it is usually presented yields only the distribution of con­
centrations and potentials around the colloidal particles. Once these have been 
obtained, other problems may be attacked. For example, Verwey and Overbeek 
(1948) used the distributions in developing a theory of suspension stability. In a 
later section, the Gouy theory will be used to find the chemical potential of ionic 
species in suspensions. 

Infinite plate distance 
We begin by assuming that the surface of the colloidal particles can be repre­

sented by a flat surface without edge effects (that is, an infinite surface). The sur­
face has a continuous and uniform electrostatic charge density. It is immersed in 
an electrolyte solution which has a uniform dielectric constant. The charge on the 
surface is neutralized by an excess of ions of opposite sign, and all ions are taken 
as point charges. The model is completed by assuming that the electric potential 
is given by the Poisson equation (1-111) and that the ionic concentrations are 
governed by the Boltzmann equation in the form of equation (1-114). The latter 
condition means that only electrostatic interactions with the surface are considered, 
and that the mutual ionic interactions such as those treated by the Debye-Hückel 
theory are omitted. Thus, we have at the start 

ά2φ _4ττρ 
dx2 D 

[ 4 7 1 ] 

(3-1) 
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and / \ 
» . = n°i exp ( - | f ^ (3-2) 

Equation (3-1) is the Poisson equation for the electric potential in the x direction 
measured outward from the surface, and all other symbols have the same meaning 
as in equations (1-111) and (1-114). The density of charge at any point in the 
diffuse layer is given as 

P = Σ zieni (3-3) 

Combining equations (3-1), (3-2) and (3-3) leads to an equation similar to that 
used in the DH theory: 

£--5Σ.-Λ«Ρ(-£) <3-4) 

The Gouy theory is concerned with the solution of equation (3-4) for various 
special cases since no general solution exists. 

We first assume that the suspension contains a single symmetrical electrolyte. 
Equation (3-4) may then be written 

Β--ίΈίΨυ[^(-Ψ)-^(Ψ)] M 
where |z¿| is the absolute value of the valence of either ion. It is convenient to 
introduce a new parameter, 

y - -¡or (3-6) 

Equation (3-5) then becomes 

% = --JÊ^ [exp (-y) -exp {y)] (3~7) 

Furthermore, recalling that by definition 

sinh y = exp (y) - e x p ( - J a 

(where sinh y is called the hyperbolic sine of y) we obtain 

It is now convenient to define a new parameter, 

0 8TZ2ie2n°,; 
¡,Δ ~— 

DkT 
Equation (3-8) becomes 

(3-9) 

H = K2 sinh y (3-10) 

Applying the integrating factor 2(dy/dx)dx to both sides of equation (3-10), the 
solution of equation (3-10) is found to be 

\dxl 2/c2coshi/ + C (3-11) 
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in which 

473 

cosh y = exp (y) + exp (-y) 

(called the hyperbolic cosine of y) and C is a constant of integration. 
To evaluate C, we use the boundary condition that at x = °o, y = 0, and 

dy/dx = 0. Since cosh (0) = 1, we find 

( J O = 2K2 cosh ?y - 2K2 (3-12) 

After taking the square root and applying the half angle formula sinh (y/2) = 
Vè(cosh y — I), equation (3-12) becomes 

| = - 2 « sinh ( | ) (3-13) 

since the negative root is required. By integrating equation (3-13), we obtain 

In tanh ( | J J = -κχ + C (3-14) 

in which tanh y = (sinh ?//cosh y) and C is a constant of integration. C is evalu­
ated by using y = y0 at a; = 0. Thus, 

In 
tanh I ? 

tanh (*) j 

This can be solved for 2/ as follows: 

Let 

= — KX (3-15) 

tanh l * ) = tanh f ^ J exp (-*r) 

(1) a = tanh 
so that 

tanh [- ) = a exp ( — κ#) 

y = 4 tanh- 1 [ a exp ( — /ex) ] 

Using an identity for tanh-1, this becomes 

y = 2 In ( f J ^ ü ) 
Equation (3-17) may also be written 

(3-16) 

= 2 1 n ( e - ^ ) \eKX — a' 

(3-17) 

(3-18) 
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Knowing y as a function of x, one may return to the Boltzmann equation and find 
the concentration as a function of x as follows : 

o ( Ζ$Φ\ 
ni = n i exp y-j-jTJ 

= n°¿exp("RV 
Γ 2z- ( 1 + αβ-κΑΊ = n°<expL-tílnvr^^^;J 

il - α β — Y " " " 1 

'< (ττ2=) (3"19) η% = n ¿ 

The distribution of the electric potential and the concentration have now been 
found. We next find the net space charge on the diffuse layer, σ, by integrating the 
charge density at each point over the distance: 

-r pdx (3-20) 

This space charge will be equal to but opposite in sign from the surface charge 
density. Solving the Poisson equation (3-1) for p and substituting in equation 
(3-20), we find that -

~-f.iB* (3-21) 
This integrates into 

Since άφ/dx = 0 at x = oo ) 

B_d$ 
4π dx 

= Ü. (§Φ) 
4π \dxj x=o 

T_(dA 
i\e \dx/x=o 

Substituting equation (3-13) in equation (3-23), we obtain 

_ DJCTK 
σ ~ 2w\z 

Another form of this equation is 

Γκ . , (y0\ 
JeSmh\2j 

(3-22) 

(3-23) 

(3-24) 

σ = -^f^sinh (f) (3-25) 

The form of these equations becomes simpler if the DH approximation ζβφ^/kT 
<<C 1 is applied. This is equivalent to y0 <<C 1. Expanding the exponents in equation 
(3-7), we obtain 

' d?y &πζ*#*η0ί 
dx2 DkT y 

= K2y 

Integrating twice and using the same boundary conditions the result is 

y = y0 exp (-κχ) (3-27) 
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Expanding the exponent in the Boltzmann equation and substituting equation 
(3-27), we obtain 

m = n\ I 1 - ¿ L y | (3-28) 

= ™°¿ L 1 — τ έ τ τ e x p (~"*^J (3-29) 

Equations (3-27) and (3-29) are limiting laws which apply at low-charge den­
sities. In figure 5, the electric potential is plotted as a function of distance for σ = 
100 esu/cm2 at two values of m°¿ (the molality at x = » ) . In figure 6, the surface 
electric potential is plotted as a function of ra°¿ at σ = 100. It will be noted that 

m.v. 

6 0 0 

Figure 5. The electric potential in the diffuse 
layer as a function of distance at two salt con­
centrations, according to simplified theory. 

.005 
o 

.01 

moles per liter 
Figure 6. The surface electric potential as a 

function of salt concentration according to 
simplified theory. 

φο increases as m°¿ decreases. This means that to use the limiting equations, m°i 
must be sufficiently high to keep the surface potential low enough to satisfy the 
condition ^ « 1. At σ = 100, the required concentration is in the order of 0.2 
me/liter. It is frequently convenient to define the "double-layer distance' ' as the 
distance at which φ has dropped to 1/e of its value at the surface. From equation 
(3-27) this is seen to be a distance equal to l/κ. Figure 5 shows that this distance 
decreases as m°i increases. In order to obtain calculations which are reasonable, 
1/K should be large in relation to actual ionic sizes, and this consideration forms 
an upper limit for the value of m°¿. At σ = 100, this is about 2 me/liter. The 
limiting equation thus has a narrow range of applicability, and this range decreases 
as σ increases. For clay particles, with σ in the order of 104 esu/cm2 or higher, 
there is no range of applicability. 

Using the general equations (3-17) and (3-19), no lower limit on m°¿ is formed. 
However, it is still desirable to keep m°¿ sufficiently low that l//c will be large enough 
to render the assumption of point charges reasonable. Unfortunately, this also 
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requires the use of values which are below the values found for clays. At σ = 104, 
the value of \/κ required is less than an order of magnitude greater than actual 
hydrated ion sizes at all reasonable values of m°t·. Thus, equations (3-17) and (3-19) 
will represent only systems with low surface charge densities. In figure 7, the elec­
tric potential is plotted as a function of distance for m°t = .005 M and σ = 5 X 
103 esu/cm2. In figure 8, the concentrations of cation and anion are plotted for two 
values of m°t·. 

0.2 

0.15 

0 5 K -> 

Figure 7. The surface electric potential as a Figure 8. Cation and anion concentrations as 
function of distance for m°i - .005 M and σ = a function of distance for σ = 5 x 103 esu per sq 
5 x 103 esu per sq cm, according to general cm at m°i = .05 and m°ι = .01 according to gen-
theory. eral theory. 

It is of interest to recall that the Boltzmann equation in the form of equation 
(3-2) requires not only that n°t be the concentration at x = oo, but also that it 
represent the mean concentration in the system. We now verify that equation 
(3-19) meets this requirement. The mean concentration in the diffuse layer is 
given as 

friidx 
¡dx 

For the cations we find that 

n+ = n\ (f^S-lV (3-31) 

Ui = (3-30) 

Substituting equation (3-31) in equation (3-30) and integrating to find the mean 
value of n+ between any two distances x\ and #2, we obtain 

n+ 
Λ. n +Vl + ae-*) dx 

X2 — Xi 

n\ 
κ(Χί xi) Le- + a + KXi 

(3-32) 

(3-33) 
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= n\ Γ if— - £—Γ-Λ + « I Ö-34) 
Χι) (e*** + α) (χ2 - £ι) (eKXl + α) 

On letting Χι —·» 0 and α?2 —> °° , we find that 

(3-35) 

The same result is obtained for anions. Thus, notwithstanding the concentration 
gradients near the surface, the average concentrations are equal to n°i and the 
requirement of the Boltzmann equation is satisfied. This result might have been 
anticipated since at infinite distance between the plates, the colloidal particles are 
at infinite dilution. 

The important findings of the theory in this section are : 
a) that in the case of a negative surface, the excess cations near the surface 

neutralize more of the charge than the anion deficit; 
b) that the surface electric potential decreases as the salt concentration increases ; 
c) that the double-layer distance l/κ decreases as the salt concentration increases. 

The two most important limitations on the theory are : 
a) it applies only to infinitely dilute clay suspensions; 
b) it applies only to low surface charge densities. 

Finite plate distance 
When the distance between two plates becomes finite, the electric potential 

between the plates is everywhere finite. The two diffuse layers are then said to 
intermingle or overlap. We cannot then apply the Boltzmann equation in the form 
of equation (3-2). By applying statistical mechanics, however, new distribution 
equations can be developed. We shall attempt a much simpler treatment based on 
extrathermodynamics. 

In the nomenclature adopted in Section II, the chemical potential of all ions in 
the diffuse layer is constant throughout at equilibrium: 

dßi = 0 (3-36) 

By analogy with the treatment of electrochemical systems, we assume that the 
chemical potential of an ion in a volume element of the diffuse layer is the sum of 
a concentration term and an electrical term whose source is external to the volume 
element. Thus, still leaving mutual ionic interactions out of account, we write 

άμι = kTd In n{ + ζ$άφ = 0 (3-37) 

Integrating from any point in the diffuse layer to x = d, the distance to the mid­
point between the plates, we find 

kT In ^ + 2,«(φ - φά) = 0 (3-38) 
ΎΙ i 

Ui = ndi exp [-||ίψ-^)] (3-39) 
in which ndi and φά are values at x = d. This equation must be used in place of 
equation (3-2). 
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We next recognize the existence of a purely formal number defined by putting 
Φ = 0: 

n°t- = ndi exp ( ^ ) (3-40) 

Therefore, 

n'< = n°i exp ( - ^ ) (3-41) 

Substituting equation (3-41) in equation (3-39), we obtain 

\ kT ) m = n% exp \—^) (3-42) 

This has exactly the same form as the Boltzmann equation for d = <χ>, and combi­
nation with the Poisson equation leads once more to equation (3-11) for sym­
metrical electrolytes. However, n°» now apparently stands for a hypothetical con­
centration outside the plates. To evaluate the integration constant in equation 
(3-11), we use the boundary condition that at x = d, y = yd, and dy/dx = 0. The 
result is 

( | Π = 2K2 cosh y - 2κ2 cosh yd (3-43) 

Thus, 
dy = -Kdx (3-44) 

\/2 cosh y — 2 cosh yd 

Unfortunately, no solution for this equation exists. However, it can be transformed 
into the elliptical integral (Verwey and Overbeek, 1948) 

T / 2 

κά = 2 exp ( - %) ¡ dz - (3-45) 
2 / 

sin-1 e~{ 

sin a = 

sin a sin22 

/ 
tv0-Vd)/2 

exp (-

V i -

~Vd) 

= exp (-y) 

sin2« sin2^ 

where 

and 

Thus, solutions for equation (3-44) can be found from tables. 
An expression for the space charge is readily found using equation (3-22). From 

equation (3-43), we find that 

(dy) = 
\dx/x=o Λ/2/C2 cosh ?/o - 2#c2 cosh yd (3-46) 

and substituting these terms in equation (3-22), we obtain 

DUTK 
4úr\zi\e 

This equation can also be put in the form 

DkTn°i 

y/2 cosh y o - 2 cosh yd (3-47) 

(cosh yo — cosh yd) (3~48) 
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An analytical solution for the distribution equations can be found by setting 
the condition y0 <<C 1 and expanding exponents. We again obtain equation (3-26) 
and, after the first integration, 

Thus, 

(V)2 

\dxj 
dy 

K2y2 — K2y2d 

= — κάχ 
v V - y2a 

Integrating from d to x, we find that 

y = yd cosh (κά — κχ) 

(3-49) 

(3-50; 

(3-51) 

Equation (3-22) may again be used to find the space charge. The result can be 
put in the form 

σ = - ^ t a n h M (3~52) 

On substituting equation (3-51) in the expanded Boltzmann equation, we obtain 
the concentrations as functions of distance : 

U = n°i\ 1 - kT cosh (κά - *aOJ (3-53) 

Equation (3-30) can now be used to find the mean concentration by integrating 
from x = 0 to d. The result can be put in the form 

In figure 9, the electric potential is plotted as a function of distance for σ = 
100 esu/cm2 and m°t- = .0005 M, as calculated from these limiting laws. In figure 
10, the concentrations are plotted, and the mean concentrations are also shown. 

8.0 .00071 

100 200 3 0 0 4 0 0 
.00031 

X - A 
Figure 9. The electric potential as a function 

of distance for a finite plate distance of 400 Â 
and σ = 100 esu per sq cm according to simpli­
fied theory. m°i - .0005 M. Infinite plate dis­
tance (dashed line) is included for comparison. 

Figure 10. The cation and anion concentra­
tions as a function of distance for a finite plate 
distance of 400 Â and σ = 100 esu per sq cm 
according to simplified theory. The mean con­
centrations are shown. 
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Φ 

m.v. 
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40 80 120 

O 
X - A 

Figure 11. The electric potential as a func­
tion of distance for a finite plate distance 
according to general theory, σ = 5 x 103 esu per 
sq cm and m° - .0005 M. 

-♦■ 

100 300 400 200 
X d - A 

Figure 13. Potential at the midpoint and 
potential at the surface as functions of the 
plate distance according to general theory, σ -
5 x 103 esu per sq cm and ra° - .0005 M. 

m-XIO' 

X-A 
Figure 12. Cation concentrations (top) and 

anion concentrations (bottom) as a function 
of distance for finite plate distance according 
to general theory, σ - 5 x 103 esu per sq cm and 
ra° = .0005 M. 

The difference between these mean concentrations is of course the clay concen­
tration in me/liter. 

Returning to the general case, the electric potential and concentrations are 
plotted in figures 11 and 12 for σ = 5 X 103 esu/cm2, m°¿ = .0005 and <¡>d = —60 mv. 
In figure 13, φ0 and </><* are plotted as a function of d. While <¡>d varies widely, φ0 is 
a constant until d becomes very small. 
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CHEMICAL POTENTIALS 

Introduction 
Thus far we have obtained only the expressions for the electric potential and 

concentrations around the charged colloidal particle. The next task is to calculate 
the chemical potential of ions in the diffuse layer. As in the Debye-Hückel theory, 
this will lead to the activity coefficient. 

Efforts have been made in a number of places (for example, see Bolt, 19556) to 
include mutual ionic interactions in the double-layer theory and to calculate activ­
ity coefficients defined in terms of these interactions. However, in the present sec­
tion, the aim is to calculate the chemical potential defined so as to include surface-
ion interactions and to find the corresponding activity coefficients from the Gouy 
distributions. Mutual ionic interactions are left out of this model on the assumption 
that surface-ion interactions constitute the first-order effect. 

We must first inquire somewhat more closely into the significance of the activity 
coefficient. Following the usage developed in Section II, we obtain 

M¿ - μ°ί = RT In ai (3-55) 
= RT In yifñi (3-56) 

in which ÜÍ is uniform throughout the phase and mt- is the mean concentration. We 
may therefore interpret y i as follows. Imagine the transfer of a chemical species 
from its standard state to a hypothetical solution which is at molality rä», which is 
ideal, and in which μι = μ*». Then, 

Δ/xi = M*Í - M°¿ = RT In ña (3-57) 
Next imagine the transfer of the species from the hypothetical ideal solution to a 
final solution at molality m¡. Then, 

ΔΜ2 = MÍ - M*i (3-58) 
The overall Αμ is 

Αμί = Αμι + Αμ2 = MÍ - ß°i (3-59) 
From these equations we find 

Mi - M*Í = RT In ji = ΔΜ2 (3-60) 
Thus, to find y i we must find the Αμ for transfer from a hypothetical ideal state at 
a concentration m¿ to the actual solution at the same concentration. In the DH 
theory, we realize that if the hypothetical state is to be ideal, the species must be 
uncharged, so that ΔΜ2 can be found by calculating the reversible work to charge 
the ions. We may note in passing that in general it is not obvious whether ΔΜ2 is 
negative or positive. In the DH theory it is negative because the attraction between 
ions of opposite signs outweighs the repulsion between ions of like signs. 

An alternative to this interpretation is to find the AG for changing the whole 
system from the hypothetical ideal state to the actual state, and then differenti­
ating with respect to w» to find ΔΜ2 and yi. 

This latter technique is most advantageous in dealing with colloids. We imagine 
the colloidal plate and the ions to be in a hypothetical ideal state with concentra­
tions that are uniform and equal to the mean concentrations in the final state. We 
then find the AG to change the system to its final state and differentiate with respect 
to n{. This leads to ΔΜ2 and to 7¿. 
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Charging processes 
First, the electrostatic work required to charge the system must be found. An 

equation well suited to this problem has been developed by Verwey and Overbeek 
(1948). The derivation is as follows. 

The charge on each ion in the system is s*e. We may therefore write the process 
by which the ions are charged by expressing the change in the charge by Ziedk, 
where λ is the fractional part of the charge and will increase from zero to one. The 
change in the charge on a volume element dV, due to the change in the charge of 
the ith ion species at a concentration nif is the product of the number of ions in 
the volume (ntdV) and the change in charge per ion: 

dqi = ZieriidXdV (3-61) 

where dqi is the change in charge. The net change in charge due to all ion species is 

dq = Σ ZieriidXdV (3-62) 

At any point during the charging process the charge on each ion is zie\) so that the 
charge density (ρ') of a volume element is given as 

p' = Σ ZieriiX (3-63) 

It follows from equations (3-62) and (3-63) that 

dq = ^ d\dV (3-64) 
Λ 

If φ' is the electric potential of the volume element at some point during the charg­
ing, then the free energy change is given as 

dGiel) = <¡>'dq (3-65) 

Thus, 
^ - d\dV (3-66) 

Λ 

AG(el) =jj^d\dV (3-67) 
Since λ is independent of position, 

AG(eÎ) = J Y J<t>'p'dV (3-68) 

Since φ' and p' vary in the x direction only, 

-iff* AG(el) =JYJ <t>'p'dx (3-69) 

in which AG(el) is now the free energy change per square centimeter of surface. 
That is, AG(el) is the free energy required to charge all volume elements opposite 
one square centimeter of surface. 

One method of employing equation (3-69) immediately suggests itself. We 
imagine that as λ increases, electrochemical equilibrium is continuously main­
tained as required by the Boltzmann equation. Thus, as the charging goes on, the 
concentration gradients will be created automatically. To attempt this, consider 
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the simplest case in which y0 <<C 1 and d = <». At any point during the charging 
we find from equation (3-27) that 

φ' = φο' exp (-K'X) (3-70) 

Furthermore, if we replace (¿¿e)2 in equation (3-9) by (¿¿eX)2, we find that 

κ' = \κ (3-71) 
Therefore, 

φ' = φο' exp (-κλζ) (3-72) 

From the Poisson equation we obtain for the charge density 

/ = _D d%4>' 
p ~ 4ττ ώ 2 (3-73) 

= - £ ( O V (3-74) 

= - £ λ ν ψ ' (3-75) 

Thus, at any point in the double layer we do not find p' = λρ since the charge and 
concentration of each volume element are both changing. However, we must obtain 

σ' = λσ (3-76) 

since the total number of ions in the diffuse layer does not change. The relation 
between the surface potential and the space charge for the present case is 

σ = -^Φο (3-77) 
47Γ 

Therefore, 

T' = - ^ φ « / = λσ (3-78) 4π 
From equation (3-78) we find 

φο' = lÍ = φο (3"79) 

Hence, the charging must be at constant surface potential. From equation (3-72) 
we note that this requires that φ' = φ0 everywhere at λ = 0. The conclusion is that 
while the electrical work can be found for the equilibrium charging process, this 
is not the desired process since we wish to begin from an initial state in which the 
potential is everywhere zero. 

To overcome this difficulty, the charging process is carried out with all ionic 
concentrations fixed at their final values in the diffuse layer. This may be called 
charging in situ. Later we will find the purely osmotic work to create the concen­
tration gradients and thus obtain the overall AG. (An analogous osmotic term does 
not enter the DH theory since the potential due to the ion atmosphere alone is 
independent of distance, and does not create concentration gradients.) 

For a charging process in situ, only the ionic charges in a volume element change 
since the concentrations are constant. Thus, 

p' = λρ (3-80) 
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The Boltzmann equation cannot be applied during the charging process as we do 
not have electrochemical equilibrium. However, the Poisson equation is still 
applicable. Therefore, 

άψ 4ΤΓΡ' 
dx2 D 

_4λρ 
D 

(3-81) 

Integration immediately yields 
Xg (3-82) 

\>' = λφ (3-83) 

Thus, φ' is everywhere proportional to λ and we have the correct initial and final 
states. 

The charging process may now be carried out for the general case with d = °o. 
Beginning with 

P' = λΡ 

= χΣζΐβηι (3-84) 

we substitute equation (3-19) and find that 

P^xE^f^^J (3-85) 
For a single symmetrical electrolyte, 

Substituting equation (3-17) in equation (3-83), we obtain 

φ. = ψ£ Jn (μ^) Í8-87) 

Letting w = exp (κχ) and using equations (3-86) and (3-87), we find 

pVdx = β Γ(^Υ- (íL+üYl In (*±ϋ) ^ (3-88) 
K L \M + a/ \M — a/ J \u — a/ u 

After a lengthy integration, we obtain 

f" uu 2fc7W,· Γ 8ou . (u + a\ 8α2 1 I °° ._ β ω 

= _»Γ&^lnίμΛ _ ^ i 
Ac LI — a2 \ 1 — a/ 1 — a2J 

The free energy is now found from equation (3-69) : 
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Equation (3-91) can be put in the more convenient form, 

Since one cannot obtain an analytical solution for the general case at finite plate 
distance, the charging process cannot be carried out. However, the necessary equa­
tions are available for y0 <<C 1. 

We begin with the components of the system in an uncharged state and with the 
ion concentrations everywhere equal to their value at equilibrium. We again obtain 

9 = λρ 

= Σ ZteXrii (3-93) 

Combining equation (3-93) with the expanded form of the Boltzmann equation 
and with equation (3-51) for the electric potential leads to 

p = — — κ2λφά cosh {ad — KX) (3-94) 
47Γ 

Using equation (3-83) for charging in situ, 

φ' = λφα cosh (nd — KX) (3-95) 

We then find by straightforward integration that 

f Όκ\2φ d ρ'φ'αχ = - ^ ; ^ [sinh (2κά) + 2κα] (3-96) 
' 0 1θ7Γ 

Finally, 

AG(el) =]γ]ρ'Φ'αχ = ~^f [sinh (frd) + 2κά] (3-97) 

Using equation (3-52), equation (3-97) can be written as a function of σ: 

AG^ = ~t [tssb + ¡s^] (3-98) 
Osmotic free energy 

It is now necessary to find the osmotic free energy required to create the con­
centration gradients. Consider a given volume of any solution containing solute 
and a molality mt·. The free energy change for a change in the number of moles of 
solute, at constant water content, is 

dG = Gidm (3-99) 

Since by definition m¿ is the number of moles of solvent per kilogram of water, 

ru = mi7^ (3-100) 
0 0 . 0 

and 
drii = ^ arm (3-101) 

0 0 . 0 

If the volume of the solution is one liter and the solution is dilute, ΠΗ,Ο = 55.5, and 

drii = dmi (one liter) (3-102) 
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Substituting equation (3-102) in equation (3-99), 

dG(l) = Gidrrii (3-103) 

where G(l) is the free energy of one liter of solution. Therefore, if we transfer drrii 
moles from a solution at a concentration m / to a solution at a concentration m¿, 
the free energy change is 

dG(J) = Gidrrii - G/drm (3-104) 
If the solutions are ideal, 

dG(l) = RTL· (^jdrrii (3-105) 

(In writing the double-layer theory we have already left the mutual ionic inter­
actions out of account so that assuming ideal solutions here represents no loss in 
generality.) Therefore, 

AG(l) = RTJ ' In fe W ¿ (3-106) 

= m/RT\l + - ^ In ~ 4 - ~ Μ (3-107) 
L rrii rrii rrti J 

For convenience, let Ui = ra^/m/, so that 

AG(l) = mi'RT[l + U{ In Ui - U{] (3-108) 

For the diffuse layer at infinite plate distance, we wish to begin with an infinite 
volume at a concentration of m°t- and find the free energy change to create the con­
centration gradient opposite one square centimeter of the surface. Since the free 
energy change per cubic centimeter is Δ(?(Ζ)/1,000, the free energy change for 
each volume element in the double layer is [AG(l)/l,000]dXj and we find the total 
free energy change per square centimeters of surface, AG(os), by the integration 

Substituting equation (3-108), we obtain 

l,000AG(os) = | m°iRT[l + Ui In Ui - Ut]dx (3-110) 

in which Ui = rrii/rrfi . 
Beginning with the general case and d = oo}we find from equation (3-19) that 

for cations 

u+ = ( f r ^ ) 2 (3-m) 

Letting u = eKX and substituting equation (3-111) in equation (3-110), we obtain 

1,000Δ(?+(ο5) = P ̂  Γΐ + ( ^ Υ In ( ^ Υ 
7 Jo KU L \u + a/ \u + a/ 

(3-112) 
du \u + a/ J 
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A similar equation may· be found for AGL(os). After lengthy integration the result is 

AG(os) = AG+ + Δ(?_ 

- ¡ ^ * [- fe) - *] <*-> 
The osmotic free energy can also be found for finite plate distance provided y0 « 1. 
In this case we must begin with each ion in an uncharged state and at a concen­
tration equal to the final mean concentration given by equation (3-54). Thus, we 
put Ui = mi/fñi to integrate equation (3-110). The result is 

AG(os) = - g - |_2 t a n h M ) + 2 sinh* M) ~ 7d\ ( 3 " U 4 ) 

Free energy of the plate 
It will be recalled that in the DH theory, the expression for the electric potential 

was divided into a term for the central ion and a term for the ion atmosphere. 
Only the term for the ion atmosphere was retained since we wished to calculate 
only the extra energy due to interactions. No analogous separation occurs in double-
layer theory, but in the present treatment of particles with a permanent charge, 
we wish to find only the extra free energy of the diffuse layer. This requires that 
the free energy of the plate be calculated and discarded. This situation is also 
different from the case treated by Verwey and Overbeek (1948) in which the charge 
is built up by the preferential adsorption of a "potential determining" ion. 

The free energy of the plate is readily found. As the space charge is built up by 
charging the ions in situ, we also gradually build up the electrostatic charge on the 
plate. I t follows that if σρ is the charge on the plate then 

σρ = \σρ (3—115) 
Φο' = λφο (3-116) 

where φ0 is the potential of the plate. Therefore, 

/ AG(p) = J φ0'ασρ' (3-117) 

f 
= I φολσρά\ 

Jo 

= *ψ (3-118) 
For the general case with d = <»} substitution of equation (3-25) results in 

AGO,) = ^ j ^ sinh (g) (3-119) 

AG(P) = , n°n";;; z „* ^ ( f í ^ ) (3_120) 
This can be transformed to read 

SaRTm° 
1,000K(1 - a2) 

For the case of finite plate distance with y0 <£ 1, if we substitute equation (3-52) 
in equation (3-118), we find that 

^w-:dsra (3"121) 
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Final free-energy equations 
The final equations for the free energy may now be found. For the case of infinite 

plate distance, the free energy per square centimeter, AGS, is 

AGs = AG(el) + AG(os) - AG(p) (3-122) 

1,000*(1 - a2) 

+ 
SaRTm! 

r,ooo,(, = ^ [>" ( τ ^ ) ] O"123» 
Equation (3-123) simplifies to 

AGs - - i ,oooK(i - ««) ( 3"1 2 4 ) 

For the case of finite plate distance with y0 <<C 1, if we substitute equations 
(3-97), (3-114) and (3-121) in equation (1-122), we obtain 

\n _ __ΈΞ1 1 | κα 
^S " DK Ltanh M) + sinh2 (jcd)J 

7τσ̂  1_ /cd 1_ 
+ DK L2 tan h (κά) + 2 sinh2 (Kd) ~ κά\ 

(3-125) Z)/c tan h (κά) 
Equation (3-125) simplifies to 

AG° = - ¥ [ϊϊΠΓΜ + h] ^ 
Content of the diffuse layer 

We must next find the appropriate composition variable against which to dif­
ferentiate the equation for AGs. Returning to equation (3-32) for the mean con­
centration of ions between two points Xi and x2, we may let Xi = 0, and find that 

m + 
m+ = — -

X2 
If we integrate equation (3-127), we obtain 

ra°+ Γ . 4α 4α Ί 

= m°+ + - ^ r : - - ^ % - n (3-128) 
κχ2(α + βκχη κχ2{α + 1 ) 

The surface excess of ions between x = 0 and x = x2 is, therefore, 

,_ 0 \ 4am°+ 4am°+ , . (m+ - m°+Ja:2 = -7—:—¡τγ- - -(—:—ττ (3-129) κ(α + βκχή κ(α + 1 ) 
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Now, as x2 —> °°, the right-hand side of equation (3-129) becomes 

(m+ - m\)Xl = - ^ f l ) (3-130) 

A similar derivation for the anions yields the equation 

(m_ - m°J)x2 = f^~a) (3-131) 

Thus, although x2 is infinite, we have previously shown that m+ = m°+ and that 
the difference m+ — m°+ is zero. In this case, the product (m+ — m°J)x2 = 0 X œ 
is finite. We obtain a similar result for anions. Therefore we define an "ionic con­
tent of the diffuse layer' ' (A¡) as the difference between the mean concentration 
and the concentration at infinity, multiplied by the complete thickness of the layer. 
Thus, 

Δ+ - - Í A T ¡ ) (3'132) 

Δ- = ι ,οοα^Γ- «) <3"133) 

The subscript has been dropped from m°¿ since m°+ = m°_ for symmetrical elec­
trolytes. In defining the Δ», equations (3-130) and (3-131) have been divided by 
1,000 to give units of moles per cm2. Equations (3-132) and (3-133) give the excess 
or deficit of ions per cm2 of surface, and AGs is the extra free energy due to these 
ions. Thus, the required derivative is dAGs/dAi. 

For the case of finite plate distance and Î/0 « 1, we define the content of the 
diffuse layer as 

Δ ΐ " 1,000 {ό l d 4 ) 

Following a derivation similar to the one just presented, we find 

Δ+ = 2Ék (3_135) 

Δ- = " A (3"136) 
The form of these results might have been anticipated since the expansion of 
exp ( — y) always leads to symmetrical concentration curves for cations and anions. 
The surface charge is therefore neutralized equally by an excess of one ion and a 
deficit of the other. 

Activity coefficients and filtrate composition 
The activity coefficients of the ions in the suspension are now readily found : 

fe) - « - <·*< 9-m 
Since AGs in equation (3-124) is in units of RT per cm2 and Δ» is in moles per cm2, 
μ*ί is in RT per mole. Thus, 

μ< - /Λ = RT In yt (3-138) 
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The differentiation of equation (3-124) is carried out as follows. We notice that 
the Ai is the excess or deficit of each ion species per cm2 of surface. I t follows that 

Σ Zie^i = σ (3-139) 

(This equation can be verified by substitution of equations (3-132) and (3-133) 
and comparing the resulting equation with (3-25) after making appropriate changes 
in units.) Thus, to bring about the change in the ionic content of the diffuse layer 
required by equation (3-137), we make a displacement in σ. To do this it is con­
venient to define two new parameters, Βχ and B2) as 

Bh = 

B2 = 

8πβ2ΝΑζ2ΐ 
l,000DkT 

2πβ\ζ\σ 
DkT 

If appropriate transformations in these equations are made, we obtain 

B\ = 
m 

B2 = - 2ακ 
1 

(3-140) 

(3-141) 

(3-142) 

(3-143) 

Omitting the algebra, these equations lead to the following equation for AGS as a 
function of Δ+: 

AG° = S - iRTA+ 
Thus, 

dAGs SRT dB2 
dA+ l,000ß2i dA+ 

Again omitting the algebra, we find 

2 

- 4RT 

(3-144) 

(3-145) 

Thus, 
dA+ 
dB2 

l,000ß2i 

2 

[B* - K + V«2 + Bh] 

B2 

l,000B2i 1 + 
-\Λ2 + BhS 

Upon substituting equation (3-147) in equation (3-145), we find 

dAGs ARTB2 

Therefore, 
dA4 

In 7+ = 

Bi + \ A 2 + B\ 

4B2 

B2 + V«2 + Bh 
Rationalizing the denominator on the right, we obtain 

4£2 lnT+ = - ^ ( V « 2 + ß 2 Β,) 

(3-146) 

(3-147) 

(3-148) 

(3-149) 

(3-150) 
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By a similar derivation we find that, for anions 

4B 

491 

In 7- = ^ ( \ A 2 +BS + B2) (3-151) 

In fact, a second derivation for anions can be avoided simply by realizing that the 
behavior of an anion in a negatively charged system must be identical with the 
behavior of the cation in a positively charged system and by writing equation 
(3-150) for this latter case. Since the sign of B2 runs with the sign of σ, this merely 
involves changing the sign of B2. 

It is interesting to note that the activity coefficients in equations (3-150) and 
(3-151) depend only on the ratio κ/Β2. This ratio in turn is fixed by the ratio of 
m° to σ. In figure 14 the value of 7+ is plotted against κ/Β2. I t is seen that as the 
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0.4 

0 . 2 

Figure 14. Cation activity coefficient in a 
system of negative particles as the relative salt 
content (measured by κ/Β2) increases, accord­
ing to general theory. The plate distance is 
infinite. 

0.8 

Figure 15. Cation activity coefficient in a 
system of negative particles as the salt content 
decreases from high values according to gen­
eral theory. The plate distance is infinite. 

relative salt content of the system increases, 7+ increases. This is of course quite 
the opposite of DH behavior. I t results from the fact that as the relative salt 
content increases, the electric potential everywhere decreases according to equa­
tion (3-17). Thus the attraction energy between the cations and the negative 
particles decreases, and the activity coefficient increases. 

In figure 15 the value of y+ is plotted against the inverted ratio Β2/κ for positive 
values of σ. This curve shows that 7+ rises to unity at infinite salt concentration, 
where all attraction energy between the cations and the plate has been "salted 
out." Actually, mutual ionic interactions would presumably prevent 7+ from rising 
to a value of unity. 

In figure 16 7_ is plotted against κ/Β2 for positive values of σ. Here the activity 
coefficient decreases as the relative salt content increases, from large positive values 
down to unity. The limit of 7_ at high salt content is also shown in figure 17 where 
7_ is plotted against the inverted ratio Β2/κ. The positive values of 7_ simply mean 
that, owing to the repulsion between the anions and the plate, the value of μ — μ* 
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is positive. Thus, if the path were open, anions would spontaneously transfer from 
the suspension to the hypothetical ideal state. 

The activity coefficients are not unity at infinite dilution. This result was antici­
pated in Section II where it was noted that in cases where we have inhomogeneity 
of charge distribution, the ions would not be expected to obey Henry's Law at 
infinite dilution. This, however, does not constitute any limitation on the Donnan 
equations of Section II. We have at hand the situation where the microscopic state 
of the suspension is determined by the double-layer theory and the macroscopic 
behavior may be found from the Donnan equations. Overbeek (1956) has also 
treated this system. 

25 
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10 12 14 16 18 20 
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Figure 16. Anion activity coefficient in a 
system of negative particles as the relative salt 
content (measured by κ/Β2) increases, accord­
ing to general theory. The plate distance is 
infinite. 

0.5 

Figure 17. Anion activity coefficient in a 
system of negative particles as the salt content 
decreases from high values according to gen­
eral theory. The plate distance is infinite. 

The mean activity coefficient of salt in the system and the composition of filtrates 
in equilibrium with the suspension may now be found from the Donnan equations. 
For a symmetrical electrolyte, 

7± = (7+ · y-)h (3-152) 

Using equations (3-151) and (3-152) we find 

(3-153) 

To find the filtrate composition, it must be remembered that the condition d = <χ> 
requires an infinitely dilute suspension. Therefore, the mean molality of both ions 
in the suspension is ra°. Assuming a dilute filtrate at compsition mf, equation (2-4) 
becomes 

72±(m°)2 = m2/ (3-154) 
Therefore, 

rrtf 
= 7± (3-155) 
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and from equation (3-153), we obtain 

In ^ = 4(^Y (3-156) 

In figure 18, mf/m° is plotted as a function of κ/Β2. The results show that at low 
relative salt content there is a large negative adsorption which rapidly decreases 
as the relative salt content increases. The curve is remarkably similar to figure 1 
in Section II. 
These results are in contradiction to the usual assumptions made in the double-
layer theory. It is frequently assumed that for d = <χ>, the composition of the 
equilibrium filtrate must be equal to ra°. According to the present theory, the 
filtrate composition can be found only by calculating the chemical potential, and 

Figure 18. The ratio of the salt concentra­
tion in a filtrate to the salt concentration in an 
equilibrium suspension as the salt concentra­
tion decreases. The plate distance is infinite. 

100 
X d - A 

Figure 19. Cation and anion activity coeffi­
cients as a function of plate distance according 
to simplified theory. σ = 100 esu per sq cm and 
m° = .00322 M. 

thus the activity coefficient, of the ions in the suspension, and applying the Donnan 
equations. The results indicate that κ/Β2 must be in the order of 6 or 7 before mf 
is within a few per cent of m°. 

For the case of finite plate distance and y0 <<C 1, equation (3-135) may be re­
written _ 

2B2 
1,000£2 (3-157) 

Using equations (3-126) and (3-157) and following a derivation parallel to the one 
given, the activity coefficients are found to be 

l n T + = - — [ _ ; 
1 

In 7_> = 
4B2 

.tan h κά 

1 

+ .7 Ll 
KdJ 

K [ tanh κά + L] 
KdA 

(3-158) 

(3-159) 

Thus, the y i are no longer determined by κ/Β2 since the plate distance enters the 
equations. In figure 19 the activity coefficients are plotted as a function of plate 
distance for σ = 100 esu/cm2 and m° = .00322. Under these conditions, one cannot 
calculate with d < 13 A without violating the condition i/o « 1. 
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In all cases for which y0 <<C 1, the symmetrical concentration curves also lead to 
symmetrical equations for the activity coefficient. Thus, the result of substituting 
equations (3-158) and (3-159) in equation (3-152) is 

7± = LO (3-160) 

However, this result does not mean that negative adsorption is absent. The ionic 
activity coefficients have been defined such that 

ai = ym% (3-161) 

Therefore, assuming a dilute filtrate, we find from equation (2-4) that 

(m+ · m_) = m2/ (3-162) 

m. 

m_ 
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Figure 20. The ratio of the filtrate molality to the mean suspension molality as a function of plate 
distance according to simplified theory, σ = 100 esu per sq cm and m° — .00322 M. 

Substituting equation (3-54) for the mean concentrations and solving for mf the 
result is , 

"* - m° Ψ - ( J i ä ) 2 (3-163) 

In figure 20 the ratio mf/m^ is plotted as a function of the plate distance to show 
the negative adsorption. Equation (3-163) also shows that one cannot identify ra° 
with the filtrate composition. 

Strong interactions 
A general analytical solution for the case of overlapping diffuse layers has not 

been found. However, the value of yd was shown to increase as the plate distance 
d decreases. If the plate distance is sufficiently small that y¿ >̂> 1, then 

2 cosh y = ey + e~y ^ ev 

Equation (3-44) takes the form 
ill I 

= — κάχ 
dy 

(3-164) 

(3-165 
\/ev — eyd 



HILGARDIA · Vol. 84, No. 11 · August, 1963 495 

This equation can be integrated. The result is 

Ud - x) exp ( I ) ' 
y = yd - 2 In cos I 

The corresponding concentration equation is 

m» = mdi cos ' 

(3-166) 

(3-167) 

The use of these distribution equations to calculate chemical potentials would 
undoubtedly lead to more realistic results than the approximation 2/0 <3C 1. However, 
the use of equations (3-166) and (3-167) to find p and φ' for substitution into the 
charging equation leads to a lengthy expression which cannot be integrated. 

APPLICABILITY TO SOIL SYSTEMS 

It has been shown that the theory itself contains inherent limitations. While it 
may be reasonable in many systems to assume point charges, it does not seem 
reasonable to apply the theory to systems in which the theory itself predicts that 
the concentration gradients are confined to distances which are in the same order 
as the size of ions in solution. We have seen that this limits the theory to surface 
charge densities which are lower than that of clay systems. At best, then, one would 
expect the theory to predict the behavior of clay systems with low surface charge 
densities. I t furthermore seems unlikely that any of the equations based on the 
condition y0 « 1 would apply to clays. 

Other aspects of the theory have been examined in detail by Bolt (19556) who 
concludes that the introduction of a number of effects such as mutual ionic inter­
actions, dielectric saturation, and ionic polarization tend to have a cancelling 
effect. Bolt (1955a), Bolt and Peech (1953), and Bolt and Miller (1955) have also 
presented evidence to show the applicability of the Gouy theory to clay systems. 
The negative adsorption data mentioned at the end of Section II may also be 
interpreted as evidence for the Gouy theory. Marshall (1958) has reviewed further 
evidence. In recent years, then, there is a growing body of evidence that a diffuse 
layer does exist around soil particles. As previously explained, the presence of such 
a diffuse layer would also lead to the expectation of Donnan effects, in the sense 
that this term is used in Section II . However, the full evaluation of the significance 
of the diffuse layer must be postponed until the theory of ion-exchange in the next 
section has been presented. 



Section IV 

ION-EXCHANGE THEORY 

ION-EXCHANGE EQUATIONS 
Introduction 

In dealing with negatively charged colloids thus far, the main concern has been 
with the distribution of a single salt between two macroscopic phases. When we 
include more than one salt and focus attention on the cation distribution, the prob­
lem becomes one of cation exchange. Any equation which gives the distribution of 
cations between a suspension and its dialyzate may be called a cation-exchange 
equation. 

Two categories of model systems have been employed for the derivation of 
cation-exchange equations. The first is the double-layer model, in which the Gouy 
distribution equations are used. In the second, the suspension is assumed to be 
composed of two discrete phases. One phase contains only the exchangeable ions 
and an infinitesimal amount of electrolyte, and the other is a homogeneous solution 
of electrolyte. This latter model is the basis for the mass-action approach and the 
statistical-thermodynamic approach. After examining the theory of these models, 
an attempt will be made to find which is most suited for soil systems. 

Double-layer theory 
A general analytical solution for the local distributions when d ^ <» cannot be 

found, since the equation for dy/dx given by equation (3-44) leads to an elliptical 
integral. However, Ericksson (1952) has shown that to find the cation distribution, 
this equation does not need to be integrated. A cation-exchange equation can be 
found provided we deal with mixtures of symmetrical electrolytes. 

Consider first a mixture of two uni-univalent electrolytes. The general form of 
the Poisson-Boltzmann equation given by equation (3-4) becomes 

dx* = lÏÏcT ^n°l S i n h y + n°2 S i n h ^ ( 4 - 1^ 

In the case of overlapping double layers, n°t· is the concentration outside the plates. 
We define 

Equation (4-1) becomes 

This integrates into 

g [ = λ2(η°! + n°2) sinh y (4-3) 

^ = λ y/2(n°i + rf2) (cosh y - cosh yd) (4-4) 

Using equation (3-23) for the space charge, we obtain 

DkT\ \/2{n° i + n°2) (cosh y0 — cosh yd) (4-5) 
[496 ] 
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We next find the fraction of this space charge which is due to the ¿th electrolyte 
species : ^d 

σ%: = I pidx (4-6) 

Then, ^ 
Pi = 2 ^ ZißUi 

Σ 0 / Ζίβφ] 

z-ien i exp \—¡¿f) 
= -(2en°i)smhy (4-7) 

Substituting equation (4-7) into equation (4-6), we find that 

ai = - I (2 en°i) sinh y dz (4-8) 

Solving equation (4-4) for dx and substituting the result in equation (4-8), the 
resulting expression can be integrated. 
Letting 

v — cosh y (4-9) 
the result is 

σ,· = ^r1 <\j2¿o ^ 3 > Λ (4-10) 4 β η i / VQ — vd 

λ \2(η°ι + n°2) 
Then, dividing equation (4-10) by equation (4-5), we obtain 

^ = ̂ l h r (4-Π) 
σ n i + n 2 

Thus, the fraction of the surface neutralized by either electrolyte is simply equal 
to its fraction outside the plates. This result might have been anticipated since 
the Gouy distribution equations contain no ionic specificities. 

Consider next an unsymmetrical exchange between two symmetrical electrolytes. 
Let electrolyte species 1 be a uni-univalent salt and species 2 be a di-divalent salt. 
The Poisson-Boltzmann equation becomes 

g = x2[n°i sinh y + 2n°2 sinh 2y] (4-12) 

Upon integrating once and using equation (3-23) for the space charge, we find that 

DkT 
47Γ6 

V/2n°1(t;o - vd) + 4η°2(Λ - v*d) (4-13) 

Equation (4-6) may again be used to find the fraction of the surface neutralized 
by either electrolyte. Thus we find that 

en°i , [\σ \ /n02 + 4βζ;0κ°2 + en°i~\ ,. Λ Λ. 
σι = — -7F 1η L {4w**+n*ùe—} (4"14) 

\\Zri 
Equation (4-13) may be solved for υ0 and used to eliminate v0 from equation (4-14). 
The result is 

en i , σι = In 
\\/n°2 

λσ\/η02 + Ve2(n°i + 4η2νά)2 + η°2λ2σ2 

( 4 ^ ° 2 + n°i)e (4-15) 

file:////Zri
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Equation (4-15) can be transformed to read 

en i . , 
σ\ = sinn 1 

λσ \/n 

and 
\Vn°2 Ln°! + 4vd V(n°2)eJ 

σ 
en i sinh- 1 λσ \/η02 

λσ \/n02 Ln°i + 4vd -\Z(n°2)eJ 
Equation (4-17) can be put in the form written by Bolt (1955a) : 

r · Vß Ti 
Γ 

in which 
r · Vß 

sinh"1 

Lr + 4vd \/m02J 

r = 
m i 

V 

(4-16) 

(4-17) 

(4-18) 

(4-19) 
m 

is called the ''reduced ratio." Γ is the surface charge density in me/cm2 and β is a 
constant given as 

= 8,0007^ 
P " DRT (4-20) 

where $F = 2.892 X 1011 esu/me. At 25° C, β = 1.080 X 1015. Equation (4-18) 
gives the fraction of the surface charge neutralized by the monovalent electrolyte 
and may therefore be considered an ion-exchange equation, provided the m°i (the 
concentration outside the plates) can be identified with the filtrate. In Section III 
it was argued that this may not be the case, but we shall find in the next section 
that this argument has no effect on the ion-exchange equation. In most applica­
tions of equation (4-18), the value of vd is taken as unity. This amounts to cosh 
yd = 1.0 or yd = 0, that is, infinite plate distance. 

Mass-action theory 
In order to apply the mass-action theory, a model must be assumed in which a 

suspension consists of two discrete phases. We may then speak unambiguously of 
the "exchanger phase" and the "solution phase" in the suspension. I t is not neces­
sary to assume any further details. The process of cation exchange may be repre­
sented as an interchange of ions between the exchanger phase and the solution 
phase as follows : 

vAA(ad) + vBB —> vAA + vBB{ad) 

The suffix (ad) represents an adsorbed ion and the absence of a suffix denotes an 
ion in solution. The free energy change for this process is 

AG = vBGB{ad) + VAGA — vBGB — VAGA (ad) (4-21) 

The partial molal free energies may be separated into chemical potentials and the 
electric potential of each phase according to the equation 

Gi = M¿ + ΖίΡνΨ 
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Equation (4-21) becomes 

AG = νΒ(μΒ{αα) + ZBFyxPE) + νΑ{μΑ + ZAFy\¡/s) 

- νΒ{μΒ + ZBFy^s) - νΑ(μΜαά) + ZAF^E) (4-22) 

Superscript E refers to the exchanger phase and S to the solution. However, 
electroneutrality requires that 

vBzB = vAzA (4-23) 

The electric potentials therefore cancel out of equation (4-22), so that 

AG = νΒμΒ(α<ΐ) + νΑμΑ — νΒμΒ — νΑμΑ{αά) (4-24) 

The possibility also exists of an electric potential difference between the solution 
in the suspension and an equilibrium filtrate. Any such potential difference also 
cancels out of the free energy equation, and we may therefore regard equation 
(4-24) as the AG for an exchange between the exchanger phase and a filtrate. It is 
this fact which also allows the identification of the m0» with the molalities in the 
filtrate in the case of the double-layer equation of the preceding section. For an 
exchange in which all ions are in their standard states, equation (4-24) becomes 

AG° = νΒμ°Β(αα) + *Άμ°Α — νΒμΒ — νΑμΑ^αά) (4-25) 

Subtracting equation (4-25) from equation (4-24) and using the definition of ionic 
activity according to the equation μ̂  — μ°; = RT In a¿, we have 

AG - AG° = RT]n (g"*(ad) ' ^A (4-26) 

At equilibrium, AG = 0, so that the equilibrium condition is 

AG° = -RT In (aVBB(ad) ' aVAA (4-27) 
Therefore, at equilibrium, 

^Μ^^Λ = / Δ£\ = } 
av*Aiad) · avBB

 y \ RT / v } 

Here, k is the equilibrium constant. Equation (4-28) may be regarded as a mass-
action equation. 

The derivation of equation (4-28) is exactly parallel to the treatment of a chem­
ical reaction. There is, however, nothing in the derivation which assumes that a 
molecular species is formed by the ion on the surface. The mass action approach 
has been criticized on the ground that it implies an exchanger phase of homogeneous 
composition. This condition is not required for the derivation of equation (4-28). 
μί must be uniform in the exchanger phase at equilibrium, but the composition 
need not be uniform. 

The standard state for ions in the exchanger phase is sometimes taken as the 
same as that selected for ions in solution (Babcock, Davis, and Overstreet, 1951). 
This results in AG° = 0, since the exchange reaction will involve the transfer of 
ions between two states having the same free energy. Then, k = 1 and 

^ Β ^ ■ a'AA = 1 (4-29) 
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With this selection of standard state, all thermodynamic equilibrium constants 
become equal to unity. This procedure is perfectly acceptable for certain purposes, 
but it is uninformative from the point of view of predicting the cation distribution. 

The activity ratio av¿A/a"BB in the solution phase is thermodynamically well 
defined. It is somewhat clumsy to write the general case, but if each electrolyte 
has a common anion X of any valency, it can be shown that 

α - , = (y^±)Arn^ 

where v is the number of ions dissociated from either salt Av+Xv_ or Bv+Xv_. 
To obtain a cation-exchange equation, a theory for the activity of the ions in 

the exchanger phase must be found. One of the first theories was advanced by 
Vanselow (1932) who assumed that the exchanger phase could be treated on 
analogy with an ideal solid solution. On this assumption, the activities of adsorbed 
ions are set equal to their mole fraction in the exchanger phase. Equation (4-28) 
becomes 

= kv (4-31) Nv*B{ad) ' aVAA 

NvAA(ad) ' av*B 

where N is the mole fraction. 
Vanselow found that many systems obey (4-31). When the value of the function 

on the left does not yield a constant, kv may be called a "selectivity function." 
Argersinger, Davidson, and Bonner (1950) have extended Vanselow's theory for 

the case where the selectivity function kv is not a constant. Activity coefficients 
for adsorbed ions are defined as 

fi = ^ (4-32) 
iv i (ad) 

Equation (4-28) becomes 

f * - g"«™ · aVAA = £**. = * (4-33) 
The activity coefficients are evaluated by applying the Gibbs-Duhem equation to 
the exchanger phase. We obtain 

NAdßA + ΝΒαμΒ = 0 (4-34) 

NAd In/A + dNA + NBd ln / Ä + dNB = 0 (4-35) 

Since NA + NB = 1.0, 
NAd \nfA + NBd ln / Ä = 0 (4-36) 

From equation (4-33), we find that 

VB In j B - vA In fA + In kv = In k (4-37) 

Differentiating equation (4-37), we obtain 

vBd In fB = vAd In fA — d In kv (4-38) 

Substituting equation (4-38) in equation (4-36) for d In fB, and solving for d In fA, 
we obtain 

d ln ¿4 = —^Γ^—ΪΓ d]nk" (4~39) 
VBNA + VANB 
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It is convenient to define a parameter x as 

Equation (4-39) becomes 
' - ssffb: «~m) 

vAd In/A = xd In kv (4-41) 

Equation (4-41) is more convenient in the form 

vAd In fA = d{x In kv) — In kvdx (4-42) 

If we select NA = 1 as the standard state for the A ions, then according to equation 
(4-32), fA = 1 at NA = 1, since the activity must be unity in the standard state. 
Then, çx 

vA In fA = x In kv — I In kvdx (4-43) 

since x = 0 at NA = 1. By an entirely parallel derivation we find the activity 
coefficient of B based on a standard state of NB = 1 : 

*·Γ VB In JB = (x ■— 1) In kv I In kvdx (4-44) 

Therefore, when kv is variable, the activity coefficients for A and B can be found 
by measuring kv as a function of x and using equations (4-43) and (4-44). When 
these equations are substituted in equation (4-37) we find the equilibrium constant : 

In k = Í In 
Jo 

kvdx (4-45) 

Argersinger and his associates have evaluated a number of such thermodynamic 
constants for synthetic exchangers. 

Equations (4-43) and (4-44) are expressions for single ionic activity coefficients 
in the exchanger phase. Thus, although the derivations appear straightforward, an 
extra-thermodynamic assumption must have entered. This assumption is that the 
activity of an adsorbed ion is uniquely determined by its mole fraction in the 
exchanger phase. Thus it is assumed that the standard chemical potential is com­
pletely specified by assigning Ni = 1 as standard state. In fact, this may not be 
the case. At unit mole fraction the chemical potential of an adsorbed ion may be a 
function of the single electrolyte concentration with which the exchanger phase is 
in equilibrium. In such a case, the values of fA, /# and k will be found to depend 
upon the particular path of composition variables over which the parameter x is 
varied during the integration of equations (4-43), (4-44) and (4-45). A better 
insight into the nature of this problem will be found in the course of a statistical-
thermodynamic analysis. 

An interesting standard state for adsorbed ions was presented by Gaines and 
Thomas (1953). For adsorbed ions, they select as standard state a condition in 
which the ions are at unit mole fraction and in equilibrium with a solution of the 
ions at infinite dilution. A practical difficulty with this selection is that weakly 
adsorbed cations hydrolyze as the salt concentration in the solution decreases. 
Thus, extrapolation of the data to the standard state may be impossible. It might 
be imagined that this difficulty could be overcome by specifying an arbitrary 
solution concentration with which the adsorbed ions at unit mole fraction are in 
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equilibrium. This procedure has a curious result. Suppose the arbitrary concen­
tration of solution ions chosen is m/. This may be assumed to fix the chemical 
potential of the solution ions at some value, μ/. AG° is now found by summing the 
AG values of the following processes : 

1. VA moles of A ions are transferred from an infinite surface at unit mole fraction 
of A to a solution at composition m A with which it is at equilibrium: 

vAAad(NA = 1) —> VAAÍTUA) 

2. VA moles of A ions are transferred from the solution m A of the ions to its 
standard state (/u = μΆ) : 

vAA{mA') -*νΑΑ{μ°Α) 

3. VB moles of B are transferred from a solution in its standard state to a solution 
at concentration ΤΠΒ' : 

νΒΒ{μ0Β) -+ vBB(mB') 

4. VB moles of B are transferred from the solution mB
f to an infinite surface at 

unit mole fraction of B with which it is in equilibrium : 

vBB(mB') -> vBBad{NB = 1) 

The AG for the net process is AG°. For processes 1 and 4, we obtain AG = 0, since 
they occur in equilibrium. Summing the AG values of processes (2) and (3), we 

° b t a m AG° = VAG°A - VAGA' + VBGB' - VBG°B (4-46) 

Here, each value of G refers to the solution, so that (as explained in Section I) 

AG° = νΑμ°Α - νΑμΑ + νΒμΒ ~ νΒμ°Β (4-47) 

= Ä T l n ( S > (4"48) 

Thus, whenever we choose a standard state for adsorbed ions by selecting an 
arbitrary mole fraction (unity or otherwise) and an arbitrary solution concentra­
tion with which the surface is in equilibrium, AG° simply becomes a function of the 
ratio of the ionic activities at the arbitrarily chosen concentrations. 

This is scarcely the desired result. One may arbitrarily select standard states, 
but they should be selected in such a way that AG° measures the relative affinity 
of the ions for the surface when all components are in their standard states. To 
accomplish this, the components must not be in equilibrium when they are in their 
standard states or in reference states. 

The problem, then, becomes one of selecting states for adsorbed ions and solu­
tion ions which are not in equilibrium with one another so that AG° measures the 
tendency of ions to either enter or leave the exchanger phase. Doubtless many such 
states may be chosen. There is some convenience in selecting standard states such 
that the ions have the same mole fraction on one and the same surface. This can 
only occur at ΛΓ» = 0.5. Furthermore, since the activity is always unity in the stan­
dard state, we know for this selection that/0» = 2 for all ions. While this may seem 
unusual, it is a convenient method of procedure. (The activity coefficients for ions 
in solution are not equal to unity in the standard state. They are equal to unity 
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at infinite dilution rather than when a» = 1.) The value of k and AG° may now be 
found by the method given above, provided that the mole fraction is sufficient to 
specify the chemical potential. AG° then represents the relative affinity of the ions 
for the surface when the adsorbed ions are each at the same mole fraction and the 
solution ions are in their standard states. For the special case in which the value 
of the selectivity function kv is found to be a constant experimentally, we conclude 
from equation (4-33) that the ratio JBVB/JAVA must be a constant. Since f°B = 
fA = 2, we find that 

k = kv(2)vB-*A (4-49) 

The value of AG° is thus 

AG° = -RT In kv - (vB - vA)RT In 2 (4-50) 

= -RT In kv - (VB - vA)(0.693)RT (4-51) 

Since AG° refers to the standard states discussed above, a more rational measure 
of relative affinities for the case of unsymmetrical exchanges is provided. This also 
illustrates the advantage of having both adsorbed ion species in their standard 
states on one and the same surface. 

Osmotic effects 

In deriving equations for the distribution of cations from either the double-layer 
theory or the mass-action model, nothing has been said about the equilibrium con­
ditions for water. 

The equations for the chemical potential of a single ion have already been found 
in Section II. According to equation (2-56), we know that for an ion in the 
suspension 

μ*1 - /Λ = RT In a*i + Vi{P^ - P°) (2-56) 

in which api is the activity of the ion at standard pressure P°, and Peq1 is the pres­
sure which must be applied to the suspension to equilibrate the water in the 
suspension with the solution phase which is at P°. Subtracting equation (4-25) 
from equation (4-24) and substituting equation (2-56), we obtain 

AG - AG° = vB[RT In a ^ M ) + Í V ( P e q - P°)] + RT In av*A 

- vA[RT In a*A(ad> + TV(Pe q - P°)] - RT In a**B (4-52) 

At equilibrium, AG = 0 and 

RT h [£%]Ä+{VBYB1 - ' ^ ( p - 1 - po> = - A G ° <4"53) 
The^thermodynamic equilibrium constant is still given by AG° = —RT\nk. 

Therefore, 

g.gjj^-^l-^-^-XPV-i".} (4_54) 
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If, at standard pressure, the activity of adsorbed ions is determined by the mole 
fraction'then - - - ^ x z v - n i 

kv = k\F~B)exp{ RT (4-55) 

Thus, in swelling systems, kv will not in general be constant even \ÎJVAAIYBB is con­
stant, since Peq1 — P° will vary with composition. 

Anion effects 
It is of some interest to note that the ratio of solution ion activities, which is 

required by mass-law equations, depends upon the nature of the anion present. 
This is seen in equation (4-30). For example, if we have Na+ and Ca++ present as 
chlorides, equation (4-30) gives, 

fl2Na+ _ 7 4 ± (NaCl ) ' ^ 2 N a + 

«Ca++ 7 ±(CaCl a ) * ^Ca++ 

However, if the Na+ and Ca+ + are present as sulfates, 

fl2Na _ 7 3 ± (Na a SQ 4 ) * ^ 2 N a 

ÖCa++ 7 ±(CaS04) ' m C a ++ 
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Figure 21. Exchangeable sodium percentage as a function of calcium concentration at a fixed 
cation ratio for different anion species. The curves were calculated from Vanselow's equation. 

Thus, at identical values of m2
Na/wca

++, the activity ratios are different. As an 
example of such effects, the equilibrium exchangeable sodium percentage has been 
calculated as a function of mca

++ for a ratio of mx&
+/mca.++ = 9. Vanselow's equation 

was used for the calculations, and 7 ± values were estimated from available data 
with the aid of the principle of ionic strength. The results, shown in figure 21, 
indicate that the anion effect can be appreciable. 

Statistical thermodynamics 
In the double-layer theory, the charge density on the surface of the particles is 

assumed to be uniform and the ions are taken as point charges. However, the actual 
charge on colloidal particles may be due to the dissociation of a surface group, the 
preferential adsorption of a given ion, or isomorphic substitution of ions within 
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the colloid. Thus, the charges arise at specific points on or near the surface, and 
at any given time an adsorbed ion may be associated with a particular adsorption 
site. In the language of statistical thermodynamics, such adsorbed ions are said to 
be localized, whereas in double-layer theory the adsorbed ions are nonlocalized. 

An ion-exchange equation, derived for localized adsorbed ions by the methods 
of Fowler and Guggenheim (1939), was first presented by Krishnamoorthy, Davis, 
and Overstreet (1949) and developed by Davis (1950a, b) and Davis and Rible 
(1950). The model to which the statistical thermodynamics is applied may be stated 
as follows: 

(a) The surface is composed of identical, discrete sites with unit electric charge. 
(b) The total number of ionic charges on the surface is equal to the number of 

oppositely charged sites, and each ion is localized. 
(c) The interaction energy between a site and its adsorbed ion is not affected by 

neighboring ions. 
(d) The mutual interaction energy of the adsorbed ions is the same for ions of 

the same valence. 

We may note in passing that condition (b) involves the exclusion of anions, and 
the model thus consists of two discrete phases. Although each ion is assumed to 
be localized at a given time, its position is not rigidly fixed and the adsorbed ions 
may constitute a more or less diffuse layer. 

When statistical thermodynamics is applied to this model for symmetrical ion 
exchanges, the result is identical with Vanselow's equation (4-31). In a model 
which meets conditions (a) to (d), the chemical potential is specified by the mole 
fraction because the energy is independent of configuration, that is, the way in 
which the ions are distributed among the sites. Furthermore the constancy of the 
selectivity function results from the constancy of the specific ionic interactions. 

For unsymmetrical exchanges, two additional characteristics must be assigned 
to the model : 

(a) A polyvalent ion of valency 2» must occupy a number of nearest neighbor 
sites of Zi. 

(b) When a polyvalent ion of valency Zi replaces 2» monovalent ions, the mutual 
interaction energy is decreased by the interaction energy of the monovalent ions. 
The resulting ion-exchange equation reads 

where n¿ is the number of moles of adsorbed ions, qi is a parameter which depends 
upon the valence of the ion and the geometry of the surface as follows: 

qi = Zi —y + -γ (4-57) 

where z% is valence and Y is the number of adsorption sites which are nearest neigh­
bors to a given site. Davis (1950a) discusses three types of surfaces: 

1. A multilinear array of widely spaced rows— 

Y = 2 and all q{ = 1 
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2. An open-packed array of sites— 
Zi+ 1 Y = 4 and g¿ = 

of sites— 

Y = 6 and g* = 

2 
3. A close-packed array of sites— 

2ZÍ + 1 
3 

The results for the multilinear array that all qi = 1 means that in this case equation 
(4-56) becomes identical with Vanselow's equation. Krishnamoorthy and Over-
street's results (1950a) indicate that choosing an open-packed array with g¿ = 
(ZÍ + l ) /2 leads to somewhat more constant values of kD. 

Other equations 
Two other types of equations are in use in the current literature. One was ad­

vanced by Gapon (1933), and it may be obtained in the following way. Assume 
that the exchange between Na+ and Ca+ + can be presented by writing 

Cai/2X + Na+ = NaX + 1/2 Ca++ 

The suffix X denotes an adsorbed ion. The equilibrium constant is then formulated 

^ (NaX)(Ca++)"2 _ 
(Ca1/2Z)(Na+) ~ ke ^4 Ö8J 

where parentheses denote activities. If the activities of adsorbed ions are replaced 
by the number of moles on the surface and the activities of ions in solution are 
replaced by concentrations, the result is Gapon's equation: 

n w .+(«, ) · ( m c H ) ' " = k o ( 4 _ 5 9 ) 

ttCa++(ad) ' ^Na+ 

Still other equations have been used by workers at the U. S. Salinity Laboratory 
(Richards, 1954). These equations involve the following quantities: 

SAR4 = sodium adsorption ratio 
mNa+ 

~ (raMg++ + mca++)1/2 

Here, the molalities of the solution ions are in millimoles/liter. 

ESR = exchangeable soldium ratio 
ES 

CEC - ES 
Here, ES is the exchangeable sodium (me/100 g) and CEC is the cation exchange 
capacity (me/100 g). The analyses of a large number of soil samples led to the 
following empirical regression equation: 

ESR = -0.0126 + 0.01475 (SAR) (4-60) 

More recently, Bower (1959) has published a similar empirical regression equa­
tion in which ESR = (Na+)ad/(Ca++)ad + (Mg)ad is correlated with SAR. The 
r 6 S u l t 1S ESR = .0057 + .0173 (SAR) (4-61) 

4 SAR, in (millimoles/liter)1/2, is related to the r in equation (4-18), which is given in (moles/ 
liter)1/2, by: SAR = 31.6 r. 
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APPLICABILITY TO SOIL SYSTEMS 
Introduction 

The two major theoretical approaches to cation exchange are the double-layer 
theory and the statistical-thermodynamic theory. The mass-action theory is 
largely formal, and does not present any detailed picture of the state of ions in 
soils. We will therefore regard Vanselow's equation as a special case of the statis­
tical theory, although it will be frequently convenient to make calculations based 
on Vanselow's equation. 

The double-layer theory assumes that the charge on the surface is continuous 
and uniform and that the adsorbed ions are nonlocalized. In a general way, these 
assumptions should find greatest applicability where the distance between the 
charged sites on the surface is small relative to the radius of the adsorbed ions. 
Under these conditions, several layers of ions would be required to neutralize the 
surface. On the other hand, the statistical-thermodynamic model assumes discrete 
adsorption sites and localization of the adsorbed ions. This model should be appli­
cable where the distance between the adsorption sites is large relative to the size 
of the ions. Under these conditions one layer of ions would neutralize the surface. 

In the case of symmetrical ion exchanges, the double-layer theory predicts a 
value of unity for all selectivity functions since no specificity is included in the 
theory. The statistical-thermodynamic approach seems far more informative in 
such cases. If the selectivity function is a constant, we may infer that the conditions 
set forth in the model are met. If it is not a constant, one may apparently infer 
that the specific interaction energy is not fixed. 

Greater attention has been given to unsymmetrical exchanges, particularly the 
Ca+ + — Na+ exchange. Here, the double-layer equation (4-18) and the statistical 
thermodynamic equation (4-56) are again in conflict. Data supporting both equa­
tion (4-18) (Bolt, 1955a; Bower, 1959; Lagerwerff and Bolt, 1959) and equation 
(4-56) (Vanselow, 1932; Krishnamoorthy and Overstreet, 1950a; Van der Molen, 
1958) have been presented in the literature. 

After considering Gapon's equation and the significance of the regression equa­
tions, an effort to resolve this conflict will be made. 

Double-layer theory and Gapon's equation 
The double-layer equation gives a plot of the ratio of exchangeable monovalent 

and divalent ions (ESR in the case of sodium) against the reduced ratio (r) that 
appears to be linear for values of ESR below unity. This has been a basis for the 
contention that the double-layer exchange equation provides a theoretical basis for 
Gapon's equation (4-18). While it is a fact that the plots appear to be linear, the 
double-layer equation actually predicts a considerable dependence of the ratio on 
c2, and this is not consistent with Gapon's equation. In figures 22, 23, and 24, 
values of ΓΊ/Γ2 are plotted against r as calculated from equation (4-18) for various 
surface charge densities. The values of the slopes (Gapon's constant) are sum­
marized in table 1. For a given surface charge density, there is a marked dependence 
of the slope on c2, and it is difficult to see how any support for Gapon's equation 
is provided by the double-layer equation even at low values of ΓΊ/Γ2. This same 
conclusion can be reached from Lagerwerff and Bolt's calculations (1959) at two 
different values of c2. 
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TABLE 1 
VALUES OF GAPON'S FUNCTION (ke) CALCULATED FROM DOUBLE-LAYER 
THEORY FOR VARIOUS DIVALENT-ION CONCENTRATIONS AND SURFACE-

CHARGE DENSITIES AT LOW VALUES OF THE REDUCED RATIO 

C2 
(mobility) 

0 

.0025 

.025 

.25 

^«(moles/liter) ~l>2 

Γ = 1 X 10~7 

1.392 

1.123 

0.792 

0.404 

Γ = 2 X 10~7 

0.653 

0.580 

0.473 

0.304 

Γ = 3.5 X IO-7 

0.379 

0.348 

0.302 

0.219 

0.5 

[moles/liter J * 

C =.0025M 
2 

C2 =.025M 

Ct = .250M 

Figure 22. Eatio of adsorbed mono- and divalent ions as a function of the reduced ratio at various 
divalent ion concentrations according to Gouy theory. 
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C2 = .025M 

C2=.0025M 

C2 = 0 .250M 

[moles/liter]/« 
Figure 23. Ratio of adsorbed mono- and divalent ions as a function of the reduced ratio at various 

divalent ion concentrations according to Gouy theory. 

When Γι/Γ2 exceeds unity, the plots no longer appear to be linear as shown in 
figures 25, 26, and 27. 

Finally, it should be noted that at low values of the reduced ratio, Vanselow's 
equation also gives a linear relation between the ESR and r, when activity coef­
ficients of solution ions are omitted. To see this, consider Vanselow's equation for 
a Na+ — Ca+ + exchange : 

[Na+ad]2 · (Ca++j 
— i&v (4-62) (Na+)2[Ca++ad][Ca++ld + Na+oJ 

Here, brackets denote the moles of adsorbed ions and parentheses denote solution 
concentrations. Let C represent the exchange capacity, so that 

Na+ad + 2 Ca++a¿ = C 
and 

(Na+) r = — -
V(Ca++) 
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1.5 

i.o 

r, 

0.5 

Γ = 2Χ Ι0" Τ m.e./cm* 

Γ r l ' / 
[moles/liter) * 

Ct = .0025M 

C t = . 0 2 5 M 

C t « .250M 

Figure 24. Ratio of adsorbed mono- and divalent ions as a function of the reduced ratio a t various 
divalent ion concentrations according to Gouy theory. 

Solving for ESR, we find 

ESR = 
[Ca-H-od] 

2r y/kv (4-63) 
__ -\/4 + kvr2 — r \/kv 

For r y/kv <^ 2, this gives 
ESR ^ r Vkv (4-64) 

Thus, linearity between ESR and r at low values of r is predicted by both the 
diffuse-layer model and the discrete-phase model. 

Regression equations and Gapon's equation 
A number of workers have obtained good correlation coefficients between the 

ESR of soils and the SAR of their saturation extracts when a large number of 
samples were analyzed and subjected to statistical analysis (Banerjee, 1959; 
Richards, 1954). I t has been contended that these results support the practical use 
of Gapon's equation since that equation predicts a linear relationship between the 
quantities. 
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Γ, 

C2=.025M 

C t = .250M 

[moles/liter] 
■/, 

Figure 25. Ratio of adsorbed mono- and divalent ions as a function of the reduced ratio at various 
divalent ion concentrations according to Gouy theory. 

There are two objections to the contention. First, plots of the regression equa­
tions do not actually intersect the origin as required by Gapon's equation. Thus, 
values of kG calculated from the regression equations deviate from constancy at 
low ESR values even though the discrepancy appears small in the regression plots. 
In figure 28 the course of kG is plotted using the regression equation (4-60). Since 
the regression equation leads to variability in kG below about ESP = 50, and 
since validity is claimed for the regression equations only up to ESP = 50, it is 
difficult to accept the conclusion that the high correlation coefficients support 
Gapon's equation. This difficulty is less marked with the regression equation (4-61) 
published by Bower, since the regression equation comes nearer the origin. 

The second objection, perhaps more serious, involves the nature of "proofs" that 
use statistics. One may question the procedure of taking a large number of soil 
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r, 
r. 

C t = . 0 0 2 5 M 

Ct=.025M 

Ct = .250M 

4 6 8 
r r i ' / 
[moles/liter]'* 

10 

Figure 26. Eatio of adsorbed mono- and divalent ions as a function of the reduced ratio at various 
divalent ion concentrations according to Gouy theory. 

samples, with widely varying properties (including, no doubt, exchange character­
istics), and attempting an interpretation of a statistical analysis of the results. The 
regression equations may have practical significance, but there is doubt that the 
correlation coefficients have any meaning in relation to Gapon's equation. 

As an illustration of this point, a number of workers have obtained high corre­
lation coefficients between ESP and SAR (Lewis and Juve, 1956; Longenecker and 
Lyerly, 1959) rather than between ESR and SAR. This should not have been pos­
sible if Gapon's equation were obeyed by all soils studied and if all soils had the 
same exchange constant. However, the fact that a statistical correlation between 
ESP and SAR has been established does not necessarily mean that Gapon's equa­
tion is invalidated. 

As another example, when Vanselow's equation is used with kv = 0.5 (moles/ 
liter)-1 (based on Krishnamoorthy and Overstreet's results for Yolo clay, 1950a) 
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Figure 27. Eatio of adsorbed mono- and divalent ions as a function of the reduced ratio at various 

divalent ion concentrations according to Gouy theory. 

and appropriate activity coefficients for the salts in solution are employed, one can 
calculate an ESP versus SAR pilot. This has been done for the chloride salts of 
sodium and calcium and the results are presented in figure 29. The ESP and SAR 
are highly correlated by a factor of 0.979. Such a linear relationship between these 
quantities should not exist in a system obeying Vanselow's equation. Thus, by the 
method of statistics, results calculated from Vanselow's equation can be used to 
show that Vanselow's equation is invalid. 

Finally, and perhaps most importantly, it must be pointed out that when Gapon's 
equation has been subjected to direct experimental test, it has been shown to be 
completely inadequate. The most familiar examples of this are the experiments of 
Krishnamoorthy and Overstreet (1950a) and of Vanselow (1932). To provide 
another example, taken at random from the literature, values of kG and kv' (where 
kv is kv uncorrected for activity coefficients) have been calculated from the data 
of Mattson and Larsson (1946) on the NH4

+ — Ca+ + exchange in bentonite. The 
value yfkv' is used because it is more directly comparable with kg. Mole fractions 
were calculated from the data by assuming that the difference between the sum of 

Γ= 3.5ΧΙΟ"7Γη.β./οηη* 

Ct = .0025M 

Ct = .025M 

Ct = .250M 
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0.4 

0.3 

6 Λ [mole s/liter] 0.2 

0.1 

ESR= -0 .0126+ . I475(SAR) 

0 10 20 30 4 0 50 

ESP 
Figure 28. Gapon's ion exchange "constant" calculated from the indicated regression equation. 

(NH4
+)ad and (Ca++)ad is adsorbed H+.5 The results are presented in table 2. The 

regular trend of kg and the random differences in kv' are quite typical. Note the 
wide variation in pH over which kj is roughly a constant. Krishnamoorthy and 
Overstreet's data are even more striking. 

Statistical-thermodynamic and double-layer equations 
Bolt (1955a), Bower (1959) and Lagerwerff and Bolt (1959) have presented 

experimental evidence in support of Ericksson's double-layer exchange equation.6 

8 This assumption is in error if exchangeable aluminum is formed during the course of the 
experiment. 

6 Note added in proof: P ra t t and Blair (Hilgardia 33:689, 1962) have added an impressive 
example of support for the double-layer equation. 

TABLE 2 
VALUES OF JCG* AND Vkv'* CALCULATED FROM MATTSON AND LARSSON'S DATA 

FOR THE N H 4
+ — Ca + + EXCHANGE IN BENTONITE 

pH 

4.94 

2.51 

2.19 

1.08 

Solution concentra t ions 
(normal i ty) 

NH~4+ 

.01005 

.01017 

.00997 

.00995 

C a + + 

.01004 

.01031 

.00938 

.00963 

Adsorbed ions 
me/100 g 

NH4
+ad 

10.52 

6.92 

6.32 

5.12 

Ca++ad 

64.26 

30.40 

26.68 

10.84 

ÏCG 

1.64 

2.27 

2.30 

4.66, 

VW 

2.43 

2.05 

1.93 

2.36 

* Uncorrected for activity coefficients. 
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Figure 29. Exchangeable sodium percentage calculated from Vanselow's equation and plotted 
against the reduced ratio. 

Before considering these articles it is important to point out that the double-layer 
equation predicts, for the case of ion pairs of unequal valency, that the replace-
ability of the monovalent cation should increase as the surface charge density 
increases. This is illustrated in figures 30 and 31, where ΓΊ/Γ is plotted against r at 
various values of r, and also in figure 35. In fact, Ericksson has pointed out that 
if the NH4

+ — Ca+ + exchange constant found by Krishnamoorthy and Overstreet 
(1950a) is multiplied by the exchange capacity of the clay, one gets rather a good 
constant. However, this is fortuitous. Table 3 shows the value of the product of 
the Ca-monovalent ion constant and the exchange capacity (C) for other cations. 
Only for the NH4

+ — Ca+ + case is the product a constant. In addition, Bolt (19556) 
has called attention to the fact that it is the surface charge density, rather than 
the exchange capacity, which should influence the exchange constant. 
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i.o 

S 
r 

r = IXI0"Tm.e./cm4 

•r=2XI0"Tm.e./cm* 
T= 3.5X10 me. /cm* 

C2=.0025M 

0 5 10 
r 

Figure 30. Degree of monovalent ion saturation as a function of the reduced ratio according to 
Gouy theory. 

r = IXIO"Tm.e./cm* 
r=2XI0"Tm.e./cm* 
T=3.5XI0"Tm.e./cm* 

Figure 31. Degree of monovalent ion saturation as a function of the reduced ratio according to 
Gouy theory. 
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TABLE 3 
PRODUCT OF THE Ca + + — MONOVALENT ION-EXCHANGE CONSTANT AND 

THE EXCHANGE CAPACITY (C) FOR VARIOUS CLAYS 

Material 

Utah Ben ton i t e 

Yolo 

A i ken 

C 
m e / g 

1.30 

0.60 

0.30 

¿Na+ · C 

0.0025 

0.0047 

0.0021 

& N H 4 + · C 

0.057 

0.054 

0.055 

kK+ · C 

0.095 

0.055 

0.019 

knb+ · C 

0.58 

0.28 

0.90 

¿Cs+ · C 

12.2 

3.8 

In Bolt's article, the results of a study of the Na+ — Ca+ + exchange in an illite 
suspension over a wide range of concentrations are presented. The experimental 
values of ΓΊ/Γ were plotted against log r and the resulting graph was compared 
with the theoretical plot from equation (4-18) at c2 = .001 moles/liter. The data 
in a general way accord with the theory. However, it is interesting to note that a 
plot of Γι/Γ against log r as calculated from Vanselow's equation has the same 
appearance. Figure 32 is plotted with results calculated from Vanselow's equation 
using kv = 0.5 (moles/liter)-1 but uncorrected for activity coefficients. It seems 
clear that Vanselow's equation could account for the general shape of the curve 
obtained by Bolt. However, the double-layer equation does fit the data better than 
Vanselow's equation, at least in the form where activity coefficients are taken 
equal to unity. 

i.o r 

0.8 h 

Γι 0.6 
Γ 

0.4 

0.2 h 

-1.5 -1.0 -0.5 O 0.5 1.0 1.5 
, 0 Q r i / 2 

r in [moles / liter] 
Figure 32. Degree of monovalent ion saturation as a function of the logarithm of the reduced 

ratio calculated from Vanselow's equation. 
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r 
0.5 

C2=.025M 

.250M 

Figure 33. Degree of monovalent ion saturation as a function of the logarithm of the reduced 
ratio according to Gouy theory. 

Ct=.025M 
Ct=.250M 

log r 
Figure 34. Degree of monovalent ion saturation as a function of the logarithm of the reduced 

ratio according to Gouy theory. 
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It is again instructive to recall that the double-layer equation contains a depend­
ence of Γι/Γ on c2. This is illustrated in figures 33 and 34 in which values of ΓΊ/Γ 
calculated from equation (4-18) are plotted against log r. For Γ = 3.5 X 10~7 

(the surface charge density used by Bolt), there is a discernible dependence of 
Γι/Γ on c2 which is not evident in Bolt's data, although in his experiment c2 varied 
from .00028 M to .69 M. 

Thus, it might be argued that Bolt's data actually support Vanselow's equation, 
since the Vanselow plot in figure 12 is independent of c2. 

A strong point in favor of the double-layer equation is the fact that it contains 
no undetermined parameters, and therefore numerical predictions are possible. 
For this reason, the numerical agreement between the theory and experiment 
obtained by Bolt is impressive. Unfortunately, this agreement seems to be partly 
illusory. The surface charge density for the illite sample used by Bolt was estimated 
from negative adsorption data by the method of Schofield (1947), and multiplied 
by a factor of 1.2. This method is based on the assumption of the validity of the 
double-layer equation, so that when the determined value is used in Eriksson's 
equation, one would expect the numerical results to be in the right order of mag­
nitude. 

More recently Bower (1959) has presented data to show that in soil systems the 
double-layer exchange equation is followed for the Na+ — Ca+ + exchange. Bower 
plots Γι/Γ2 against r for six soils and clays, and the plots have the same appearance 
as figures 5 to 7 as required by the double-layer equation. Again, there is fair nu­
merical agreement between theory and experiment. Bower, in agreement with 
Bolt, concludes that these results rationalize Gapon's equation up to about ESP = 
50%. 

Bower presents data to show that the exchange relationships for Chino soil are 
independent of the total cation concentration, by equilibrating the soil with a 
series of solutions of varying reduced ratio but a constant total cation concentra­
tion (50, 100, and 200 me/1). The experimental points in plots of Γι/Γ2 against r 
all fall on the same curve. Actually, this is contrary to the behavior required by 
the double-layer theory, since equation (4-18) contains a dependence on c2. Table 4 
shows the effect of total salt concentration as predicted by equation (4-18) for the 

TABLE 4 
EFFECT OF TOTAL SALT CONCENTRATION ON Γ1/Γ2 FOR CHINO SOIL* AS 

CALCULATED FROM THE DOUBLE-LAYER EXCHANGE EQUATION 

r 

0.25 

0.50 

0.75 

1.00 

2.00 

ci + 2c2 = 0.05N 

C2 
(moles/liter) 

.0116 

.00585 

.00330 

.00210 

.00060 

Γ ι /Γ 

.099 

.187 

.262 

.324 

.513 

Γι /Γ 2 

.110 

.230 

.355 

.480 

1.050 

ci + 2c2 = 0.2JV 

c? 
(moles/l i ter) 

.0675 

.0463 

.0322 

.0235 

.0084 

Γ ι /Γ 

.079 

.154 

.224 

.288 

.484 

Ti/Tt 

.0856 

.1827 

.289 

.404 

.936 

RD] 

% 

22.2 

20.2 

18.6 

15.8 

10.9 

*Γ = 1.76 X IO-7 me/cm2. 
t Relative decrease in Γ1/Γ2 due to increased salt concentration. 
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r, 

[moles/liter] % 

Figure 35. Ratio of adsorbed mono- and divalent ions as a function of the reduced ratio calculated 
from Vanselow's equation. 

range examined experimentally by Bower. It will be noted that in the region for 
which validity is claimed for Gapon's equation (that is, up to Γι/Γ2 = 1), the double-
layer equation predicts a notable dependence on total salt concentration between 
0.05 N and 0.2 N. The effect is even more pronounced with soils of lower surface 
charge density. For example, at Γ = 1 X 10~7, the relative decrease in ΓΊ/Γ2 
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between .05 N and 0.2 N is 3 1 % at r = 0.5 (compared with 20.2% in table 3). 
The relative decrease is, of course, also larger when a greater concentration range 
is selected. Thus, for Chino soil, the relative decrease in going from zero molality 
to 0.2 N at r = 0.5 is 33.7%. 

These effects, predicted by the double-layer equation, are not evident in Bower's 
data. Once again, the fact that the plot is independent of c2 could actually be 
interpreted as evidence for Vanselow's equation. When results calculated from 
Vanselow's equation are used to plot ΓΊ/Γ2 against r, the curves present an appear­
ance very similar to Bower's plots. This has been done in figure 35, using activity 
coefficients for chloride salts. 

Bower also studied mixtures of Na-Ca-K and Na-Ca-Mg-K in Chino soil. He 
found that the presence of K had little or no effect on the exchange relationship 
between Na+ and Ca+ + or between Na+ and Ca+ + + Mg+ +. He remarks that 
"there appears to be no theoretical explanation" for these results. However, Krish-
namoorthy and Overstreet (1950a) also found that the value of a given statistical 
ion-exchange constant was independent of the amounts of a third ion present, and 
this is what one would expect on the basis of the two-phase model : the equilibrium 
constant in equation (4-56) should not be affected by other composition variables. 
The data of Mattson and Larsson (1946) given above lead to the same conclusion. 

Lagerwerff and Bolt (1959) have published data on the Ca-K exchange in illite 
and montmorillonite suspensions. They conclude that the double-layer equation 
applies to this exchange in montmorillonite suspensions up to an exchangeable K+ 

percentage of 25%, but does not apply to illite. They further conclude that the 
results indicate that Gapon's equation should be of practical use in natural soil-
water systems. While the usefulness of an exchange equation is not the question 
primarily considered here, the experimental results do not provide much confidence 
in Gapon's equation. For the montmorillonite used by Lagerwerff and Bolt, the 
value of Gapon's "constant" varied from 0.82 to 2.10; the double-layer theory 
accounts for the observed variation in a qualitative way. 

In the three articles just discussed, the conclusions are reached that the mono-
divalent exchange reaction at low degrees of monovalent ion saturation is con­
trolled mainly by valence and concentration and that specific effects are of a second 
order which can be treated by multiplying Γ by various factors. However, Krishna-
moorthy and Overstreet's results (1950a) indicate very pronounced specificities. 
The constants, in (me/100 cc)_1, for the M+ — Ca+ + exchange when Davis' statis­
tical equation is applied to Utah Bentonite, are : 

Li+ : 7.76 X 10~5 

Na+ : 1.95 X 10"3 

K+ : 7.32 X 10"2 

Rb+ : 0.448 

Cs+ : 9.38 

These values indicate that there is pronounced specificity in monovalent-mono­
valent exchange reactions; double-layer theory does not include these effects in a 
direct way. 
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Hysteresis 
Vanselow's study of cation exchange (1932) revealed that in certain exchanges 

an effect called hysteresis may be observed. That is, a different value of the equi­
librium constant is obtained depending upon the direction of approach to equilib­
rium. In a recent study of this problem, Tabikh, Barshad, and Overstreet (1960) 
conclude that hysteresis is not an inherent part of the exchange reaction, but that 
it is induced by treatments which change the character of the adsorbing surface. 
In particular, when clay systems are dried, changes are induced which affect the 
interactions between adsorbed ions and the surface, which in turn affect the selec­
tivity function. The exchange reactions are completely reversible in systems which 
are always wet. 

Exchangeable hydrogen 
Krishnamoorthy and Overstreet (1950a) found very satisfactory exchange con­

stants for all ion-pairs except those involving hydrogen ions. Later, Krishna­
moorthy and Overstreet (19506) were able to obtain exchange constants for H+ 
by defining a special function of the hydrogen adsorbed to be used in place of the 
function derived from statistical thermodynamics. The theoretical significance of 
their procedure is not at present understood. 

Summary 
According to the present analysis, support is not provided for Gapon's equation 

by either double-layer theory, or by experimental regression equations. Further­
more, Gapon's equation generally has been shown to be completely inadequate 
when subjected to direct experimental test so that there appears to be every 
reason to abandon this formulation. 

The situation is not so definite in comparing the double-layer equation with the 
statistical-thermodynamic equation. Much of the pertinent data is consistent with 
either equation, although in the writer's opinion, there are a number of reasons for 
preferring the statistical-thermodynamic approach. 

1) At the high surface charge densities of clay particles and at the salt concen­
trations encountered in soils, there is good reason to believe that the exchangeable 
ions are at a distance from the surface which is in the same order as the hydrated 
radius of the ion. Further, an appreciable fraction of the ions may be held between 
the layers of expanding lattices in localized positions. In such circumstances, the 
assumption of point charges and the neglect of ion-ion interactions may constitute 
an omission of first-order effects. The statistical-mechanical approach should prove 
more satisfactory in such circumstances. 

2) Specific effects are more rationally introduced into statistical theory, and 
these effects are large. 

3) The available data do not appear to exhibit the dependence on c2 required 
by the double-layer theory. 

4) The independence of a given exchange relationship from the presence of a 
third ion cannot be explained in the double-layer theory, whereas it is a direct 
consequence of statistical theory. 

5) Direct experimental tests of the statistical-thermodynamic theory have been 
very successful. 
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It would appear, then, that the first order effects in ion-exchange in soils are 
best approached on a localized statistical-thermodynamic model, rather than a 
nonlocalized model. However, Donnan effects and negative adsorption are also 
observed in these systems. There is every possibility that the localized layer treated 
by statistical mechanics has a diffuse "tail" so that in dealing with first order cation 
effects the statistical model is appropriate, while in dealing with first order anion 
effects, the double-layer model is appropriate. 



Section V 

THERMODYNAMICS OF WATER I N SOIL SYSTEMS 

INTRODUCTION 

Much greater attention has been given to water in soil systems than to any of 
the subjects in preceding sections. As a result, there has been an even greater multi­
plicity of methods of approach and systems of nomenclature. Bolt and Frissel (1960) 
have systematically summarized the equations which have been presented in the 
literature. The equations are somewhat bewildering because of their large number 
and the inconsistency of their nomenclauture. 

Two approaches to model systems for the development of the theory of soil 
water are possible. The first assumes that the soil can be represented as an assem­
blage of particles forming pores which contain water and air thus comprising a 
three-phase system. While this seems quite natural, it offers some difficulties for a 
thermodynamic treatment. For example, in specifying composition variables, the 
composition of the gaseous phase should be given, although this is often not neces­
sary or convenient. Another difficulty concerns the partial molal volume of water 
in the system. This quantity is the derivative of the volume of the whole system 
with respect to the amount of water in the system: 

Ϋ· - (ττ) 
\onw/ T, p, m 

where subscript w refers to water. In a three-phase system, this quantity requires 
careful interpretation. For example, one can imagine an assemblage of sand grains 
such that when water is added no change in the total volume occurs. However, 
Vw is not zero in such a case. Such an addition of water at constant external pres­
sure also involves the expulsion of matter from the gaseous phase so that the con­
stancy of the rii required in the partial derivative is not satisfied. If water were 
added in such a way that the quantity of matter in the gaseous phase were held 
constant and the pressure were held constant, a volume increase would in fact 
occur. If the density of water in the system is essentially the same as pure water, 
this volume increase would be V°wdnw where V°w is the molal volume of pure water. 
In the case where water is added and air is expelled, the volume change is given as 

dV =ΣΣν4η{ (5-1) 

the double summation being over the components and the phases. In the simplest 
cases, this summation may be zero, although the various values of F» are not. 

These difficulties might be avoided by defining the soil system to include only 
the particles and the water. The gaseous phase would thus always be a part of the 
surroundings, and composition variables for this phase would not be required. If 
one mole of water were added to a large volume of the system, the volume increase 
would be approximately that of the added water and thus approximately equal to 
Vw. However, even greater difficulties are now presented. An accurate determination 
of the volume of the system becomes difficult. The concept of a saturated soil 
becomes lost or difficult to define. The process of swelling is difficult to treat. 

[524] 



HILGARDIA · Vol. 34, No. 11 · August, 1963 525 

In view of these difficulties, the three-phase system will be used in this section. 
The model will be assumed to be macroscopically homogeneous. Air bubbles will 
be assumed absent and hysteresis will be ignored. These omissions may be serious, 
but at present a means of including air bubbles or hysteresis in a thermodynamic 
treatment does not appear to be available. 

NONSWELLING SYSTEMS 
Chemical potential 

Babcock and Overstreet (1955) presented a treatment of soil moisture by select­
ing temperature, external pressure, solute concentration and water content as 
independent variables. No specific mention of swelling was made. Bolt and Frissel 
(1960) as well as Takagi (1959) have pointed out that where swelling occurs, it 
may be necessary to add a term for the change in the geometry of the particles. 
For the moment we will defer the question of swelling to a later section. 

In an expression for the free energy change of a.model system in which geometry 
is constant, it is convenient to choose the usual independent variables. Thus, 

dG = -SdT + VdPe + Σ maní (5-2) 

It should again be emphasized that Pe is the pressure external to the system, as 
discussed in Section I. In the case at hand, this means the pressure in the gaseous 
phase just outside the solid-liquid-gas system. Just as in the cases of electrostatic 
field or variable surface area treated in Section I, the use of external pressure is 
crucial for a clear exposition of the energetics of soil moisture. 

The significance of the chemical potential in equation (5-2) is given as 

(UT) = μ- = £. (5-3) 
\onw/ TtPe,ni 

where nw represents the number of moles of water in the system. The chemical 
potential is thus defined at constant external pressure. (Geometrical terms are 
again implicitly constant.) Therefore, if a change in the amount of water in the 
system produces a change in the curvature of the air-water interface and thus a 
change in the pressure difference across the interface, the change is nevertheless at 
constant pressure so long as the external pressure is constant. This treatment is 
entirely analogous to the treatment of excess pressure in bubbles required in 
Section I. 

One other aspect of equation (5-3) must be considered. It has already been noted 
that subscript n£ requires that matter other than water be constant in the whole 
system, including the gaseous phase. However, while the matter in the gaseous 
phase may contribute significantly to the volume of the system, it will be assumed 
that it does not contribute significantly to the free energy. Therefore, the free energy 
change with respect to nw represented in equation (5-3) will be taken as independ­
ent of the matter in the gaseous phase. 

The total differential in the chemical potential for water in soil is now formu­
lated in terms of exactly the same independent variables used in equation (5-2) : 

*■ - (£LiT+(£),...«■·+(feL..., *· <™ 
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This form of the expression for the chemical potential is essential in order to 
obtain the correct cross-differentiation formulas for the coefficients of the chemical 
potential: , >. / v 

Xw)P.,ni
 = ~\MJr,P.,n¡

 = ~5' i5'5) 

\dJre/ T, m \onw/ T, n/, pe 

It is important to note that if other independent variables had been used in equa­
tion (5-4) (for example, intensive concentration terms), these formulas could not 
be obtained. 

We now wish to transform equation (5-4) into a form containing intensive com­
position variables rather than the extensive ni. I t was shown in Section I that the 
transformation to mole fraction may be made by using the formula 

(W) dUi=(^) dNi [T,Pe constant] (5-7) 
\dni/nj \dNi/nj 

where Ni represents the mole fraction. Thus, 

dßw = -SwdT + VwdPe + Σ ( l ^ ) dNi (5-8) 

As emphasized in Section I, the summation term in equation (5-8) is still over only 
those chemical species whose mole number changes, not over all mole fractions. 

In applying equation (5-8) to water in soil, it is convenient to make a special 
case of water and introduce the water content Θ as the composition variable. For 
solute ionic species, it is likewise convenient to introduce the molalities in moles 
per 1,000 g of water as the composition variable. Then, for any change at constant 
mass of soil particles, 

dßw = -SwdT + VwdPe + ( 1 ^ ) drm + ( ^ f ) de (5-9) 
\ómi/nhT,pe \oä/niiT,pe 

Any pressure effects due to changes in surface curvature are here included in the 
dßw/dd term. 

It is important to notice two points. As mentioned above, in summing over the 
solute molalities, the summation is over only those molalities whose mole number 
changes. Further, in changing the variable from the n¿ to composition variables, 
the subscript on the partial coefficients in equation (5-7) or (5-8) does not change. 
Thus, άμν/βθ is defined for the change in which the mole number, but not neces­
sarily the composition variable, of all other species is fixed. (For example, if we add 
water to a binary mixture of water and alcohol, only the change in the mole fraction 
of the water enters the equation for the chemical potential of either component.) 
Therefore, for any change in which only the amount of water changes, only the Θ 
composition term is required in equation (5-8) no matter what the changes in 
solute concentrations may be. 

Equation (5-8) is a macroscopic equation in which each variable is subject to 
direct and unambiguous measurement. The value of μ«, itself is directly obtainable 
from the vapor pressure : 

μυ} - μ°ιυ = RT In p/p° (5-10) 
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Therefore, if the vapor pressure is a known function of the water content, βμν)/άθ 
may be directly found. The temperature and external pressure are subject to direct 
measurement with thermometers and pressure gauges. The water content may be 
slightly ambiguous since different values are obtained depending on the temper­
ature at which the soil is dried when the water content is determined. This ambigu­
ity can be completely removed by the arbitrary specification of a drying tempera­
ture of 105° C. 

Two separate treatments of the ionic molalities in equation (5-8) are possible, 
but neither involves ambiguity. First, as in the Donnan theory presented in Section 
II, the bulk concentrations of all the ions in the system may be employed. Second, 
the molalities of the ions in an equilibrium dialyzate may be used in equation (5-8). 
To see this, notice that if the soil system is in equilibrium with a dialyzate, the 
chemical potential of the water in both the soil system and the dialyzate is the 
same. Furthermore, the value of άμν, for water in the dialyzate is determined by the 
dm i term for ions in the dialyzate. This means that the total differential of μυ} for 
water in the soil is fixed by equation (5-8) if the molalities in the equation are 
understood to be molalities in the dialyzate. This treatment is by far the most 
commonly employed and will be the one adopted here. 

Pressure terms 
For a three-phase solid-liquid-air system, an external pressure may be applied 

in different ways. The pressure in the external gaseous phase may be increased, 
pressure may be applied to solid particles by a piston keeping the gas pressure 
constant, or both the gas pressure and the pressure on the solid may be increased. 
Since we wish to work with nonswelling conditions in this section, we will generally 
have in mind changes in gas pressure since these are least likely to produce any 
changes in geometry. It should also be noted that throughout this chapter it is 
assumed that work done on the surroundings during a volume change at constant 
geometry is PedV. This will not be the case if conditions are anisotropic. This may 
be an important limitation in many problems. 

When water is added to a saturated system, the volume of the system will in­
crease by the volume of the added water unless the particles have in some way 
affected the density of the water. In an unsaturated system, the situation is more 
complex. When water is added, its density may be affected by the particles, there 
may be an expulsion of air, and the particle geometry may change. All of these 
will affect the volume change. However, in this section we are not considering 
changes in geometry and, as previously explained, we interpret Vw as the volume 
effect when water is added without the expulsion of air. Thus, Vw for water in the 
soil will differ from Vw for pure water only if the particles have an effect on the 
density of water. 

As the gas pressure on the mass of a confined soil system is increased, the vapor 
pressure of water increases. We wish to find the pressure increase necessary to 
increase the vapor pressure, and therefore the chemical potential, up to the value 
for pure water. If the pressure increase can be effected without change in the 
geometry of particles and at constant composition, then 

dn„ = VwdPe = RTd In p (5-11) 
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Therefore, ^w ,.Pwx 

I dßw = I VwdPe (5-12) 

where μ™(Ρ°) is the chemical potential of water in the soil at standard pressure and 
Peq is the pressure needed to increase μ™ up to ß°w. Therefore, if Vw is independent 

° f Pe' μ.(Ρ°) - μ\ = -7„(Peq - P°) = RT \n^ (5-13) 
V 

Thus, 
Pe q - P° = - f r In V/V° = - ψ In aw (5-14) 

where aw is the activity of the water at standard pressure. This use of the activity 
of the water was introduced by Taylor (1958). Note that it is not assumed that Vw 
is independent of water content, only of pressure. 

Suppose now that the external pressure is increased on a soil sample which rests 
on a membrane with atmospheric pressure on the lower side. The membrane is 
permeable to salts but not to soil particles, as in the pressure membrane apparatus. 
The pressure is increased until solution just begins to flow out of the system. Let 
this pressure be Pe q ' . The water in the soil (I) and in the solution (II) is in equilib-
r i u m ' S ° t h a t ^ = * .« (5-15) 

If, during the increase in pressure, T, niy Θ, and geometry are all constant, 

du»1 = VJdPe (5-16) 
Furthermore, if Vw

l is constant, 
/ W I ( P ° ) /»Peq' 

< W = VJdPe (5-17) 

nu,u(P°) - μΛΡ°) = t V t f W - P°) (5-18) 
Therefore, 

¿ V - P° = -ψ~τ In ^ (5-19) 

Since Peq' — P° depends upon the ratio of the activity of the water in the soil at 
standard pressure, and the activity of water in an equilibrium solution at standard 
pressure, this pressure difference has been widely interpreted as the measure of 
the effect of the soil particles on μ .̂ 

The water in a soil system may be equilibrated with a liquid phase in other ways. 
Suppose, for instance, that the soil system is separated from pure water by a mem­
brane which is permeable only to water. Instead of increasing the pressure on the 
soil, equilibrium may be established by lowering the pressure of the pure water and 
allowing the soil to remain at P°. The necessary pressure lowering is readily found 
by integrating over the pressure change in the pure water: 

/ W ( P ° ) /»Peq 

¿ W 1 = Vw
udP (5-20) 

J ß°w JP° ~ 

Vw
u can be taken as constant, so that 

μΛΡ0) - μ\ = TVHPeq - P°) (5-21) 
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T h U S ' 
Pe q - P° = ψ^ In aj (5-22) 

Alternatively, one may equilibrate the water in the soil with a liquid phase 
across a membrane permeable to both solutes and water by lowering the pressure 
in the liquid phase (as in the tensiometer). At equilibrium the liquid phase will 
have the composition of an extract from the soil. Integrating over the pressure 
change in the tensiometer, 

/ W ( P ° ) /·Ρβ</ 

(W1 = Vw
udP (5-23) 

J M . " ( P ° ) JP° 

Again taking Vw
u to be constant, 

μΛΡ°) - μ*η(Ρ°) = Í V H J W - P°) (5-24) 
Thus, 

¿V - P° = ψττ In f 4 (5-25) 

The nomenclature for these pressure terms has been the subject of considerable 
debate and appears likely to change in the near future. We will note, however, that 
the negative of the pressure difference in equation (5-22) may be called the "total 
stress," and the negative of the pressure difference in equation (5-25) may be called 
the "tension." Thus, 

Total stress = _4^L· l n üwi ( 5_2 6) 

Tension = S— \n Sh¿. y ii π ιι 
V y) My) 

Subtracting equation (5-27) from equation (5-26), we obtain 

(5-27) 

Total stress - tension = —ψ— In aw
u (5-28) 

The term on the right is the osmotic pressure of the extract, so that 

extract 
Total stress = tension + (osmotic pressure) (5-29) 

This nomenclature has been extensively used in the past, although it is now passing 
from use. It should be noted that the derivation of equation (5-29) involves only 
pressures in bulk liquid phases and the partial molal volume of water in such phases. 
The equation for the pressure-membrane apparatus is not as straightforward since 
it involves Vw for water in the soil. 

Bolt and Frissel (1960) have pointed out difficulties in equation (5-9). First, the 
curves for μν) versus Θ show an appreciable hysteresis. Second, the equation does 
not contain a geometrical term. They suggest that to get around these difficulties, 
the total differential in μ™ be expressed in terms of the tension by writing 

Σ fe> <*μ. = -SJdT + VJdPe + ¿ Λ Λ A*™* + y*ndt (5-30) 
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in which t is the tension as defined above. This is equivalent to writing 

Vwdt = (^)de + (j^)dx (5-31) 

where χ is an unspecified geometrical term. It is considered that by avoiding the 
use of a Θ term, in which hysteresis occurs, and a χ term, which is difficult to 
measure, the resulting equation (5-30) is more useful in many applications. 

Equations (5-30) and (5-31) appear to be based on the assumption that only 
variations in the Θ or χ terms will produce a change in the measured tension. How­
ever, the equilibrium pressure in the tensiometer will also depend on the tempera­
ture and external pressure of the water in the soil. For example, as the external 
pressure on the soil moisture is increased at constant composition, the equilibrium 
pressure in the tensiometer will also have to be increased. I t follows that equation 
(5-31) is not the complete expression for the total differential of the tension. The 
complete differential runs 

No term is included for salt concentration as the effect of adding salt on the chemical 
potential of soil water and water in the tensiometer is the same at equilibrium, and 
no change in tension in the tensiometer is required to maintain equilibrium. The 
coefficients in equation (5-32) will now be found. 

For any variation in the properties of the soil, the properties of the water in the 
tensiometer are changed so as to maintain equilibrium. Therefore, 

άμ*,1 = ¿ W 1 (5-33) 

and, for the most general variation, 

<W = -sjdT + vjdPe + Σ (^¿)dm< + {jf)de + (^r)dx (5~34) 

while / v 
cW1 = -Sw

udT + VJHP11 + Σ \f¡^.)dmi (5~35) 

Using the definition of tension to eliminate Pn from equation (5-35), we find that 

¿W1 = -S„udT - VJHt + Σ \J~)dm^ ^5-36) 
Equating formulas (5-34) and (5-36), we obtain 

SWHT + VJdPe + [~ήάθ + (f^)dx = -SJWT - VJ'dt (5-37) 

We at once find that f 
dt \ &u 
dT P, 

(5-38) 
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(sL.... = -^fe) <™> 
It is of interest to note that if Sw1 = Sw

u, then the effect of temperature is 
eliminated. However, the partial molal entropies are not likely to be equal (Bab-
cock and Overstreet, 1955; Taylor and Stewart, 1960). Substituting the coefficients 
into equation (5-32), we obtain 

* - (^^V - ë.dp- - ΐ7· (t)«» -h (&)* ^ 
This is the equation for dt, rather than equation (5-31). 

Multiplying by —Vw and substituting from equation (5-34), we obtain 

<W = -sjHT - vj'dt + Σ \^¿)dm^ (5~43) 

This is the general relationship involving μν3 and t rather than equation (5-30). As 
Bolt and Frissel have indicated (1960), equation (5-43) is much simpler to apply 
in practice than equation (5-34). 

SWELLING SYSTEMS 

Any process in which water spontaneously enters a system and increases the 
volume of the system may be called swelling. The pressure which must be applied 
to the system to prevent such an entry of water may be called the swelling pressure. 
Thus, for aqueous solutions, the swelling pressure is simply equal to the osmotic 
pressure. 

When water enters a system, an external pressure on the surroundings may or 
may not develop. If the system is free to increase in volume indefinitely at atmos­
pheric pressure, then water will continue to enter the system until the water phase 
with which it is in contact is depleted. During this process, no external pressure 
will develop. If the system is surrounded by a rigid semipermeable membrane, an 
external pressure will develop until equilibrium is established with the water phase 
with which it is in contact. The swelling pressure of a system as defined here is 
therefore not necessarily an external pressure which the system exerts on its sur­
roundings under some standard conditions of temperature, pressure and composition 
of the system. Rather, it is the pressure one must apply to the system to prevent 
the entry of water. The external pressure which may develop in a swelling system 
is always exerted on a semipermeable membrane or its equivalent. 

A difficulty is encountered with swelling colloidal systems or with three-phase 
solid-liquid-gas systems which may undergo a change in volume at constant pres­
sure. In such cases a volume change may result from either of two distinct effects. 
The volume may change owing to the simple entry of water, as in aqueous solutions, 
or it may result from a change in the geometrical arrangement of particles. In many 
colloidal systems the geometry change may be the major volume effect. In general, 
energy will be required to change the geometry or packing, and an appropriate 
term must be included in the free energy equation. Bolt and Frissel (1960) intro-
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dG 

duced an unspecified χ term to care for geometric effects. Such a term may be 
introduced into the free energy equation as follows : 

-SdT + VdPe + Σ »idrii + (ψ) dx (5-44) 
\ ο > χ / T,pe,m 

The corresponding expression for the chemical potential, as adapted to soil 
moisture, is 

άμ„ = -SwdT + VwdPe + {^Jdmt + [jf)dd + (^)dx (5-45) 

A second difficulty encountered with swelling systems is that the degree of a 
change in geometry due to pressure change will depend on how the pressure change 
is applied. In the previous section, changes in gaseous pressure were used on the 
assumption that this would minimize changes in geometry. However, if pressure is 
applied to the solid matrix by means of a piston system, significant changes in 
geometry may occur. Therefore, in considering swelling, an external pressure 
change will mean a change induced by a piston system with the gaseous phase 
exposed to the atmosphere. Such pressures are often called "confining pressures." 

The coefficient in the χ term is defined at constant T, Pe, and all mole numbers. 
Thus, its measurement depends upon finding a method of determining the effect 
of a change in particle arrangement at constant temperature, external pressure, and 
composition. The method of inducing the change in geometry is immaterial. For 
example, an external pressure may be applied to compress the sample and then 
removed to restore the original external pressure. In many cases, mechanical 
manipulation such as stirring may induce the change in geometry. In general, a 
volume change will be induced by such changes in geometry. If we continue to 
leave χ unspecified but select volume units, one may express the χ coefficient in 
terms of the volume change : 

te) = te) <5-46) 
\θχ / Τ,Ρβ,τα,θ \θ V / Τ,Ρ,,πί,θ 

Any method of measuring ßw as a function of V at constant T, Pe, Ui and Θ will now 
give this coefficient. For example, one might measure the vapor pressure change 
induced by mechanical manipulation of a sample. 

We have not yet, however, completed the specification of the χ term. To 
attempt this, let us momentarily reconsider the osmometer system described on 
page 434. The equilibrium condition for water in this system is μ«,1 = ßw

u. If, in 
equilibrium, an infinitesimal change in pressure is made on each phase in such a 
way as to maintain equilibrium, we obtain 

dßj = άμ^1 (5-47) 

VJdP1 = Vw
udPu (5-48) 

It follows that the pressure difference required to maintain equilibrium will be a 
constant only if VW

T = Vw
u. Otherwise, 

- ( # - > ) d(Pi _ pii) = 4 Ϊ - _ i ¡¿pu (5-49) 
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Now consider a soil system containing a tensiometer, with variable confining 
pressure P1 and an equilibrium pressure P11 in the tensiometer cup: 

Assume that the system is in equilibrium and that infinitesimal changes are made 
in P1 and Pu in such a way as to maintain equilibrium. We must include any 
change in the geometry in the expression for μ1 : 

VJdP* + dX = Vw
udPu 

d(pi - pu) 

(n), (5-50) 

(5-51) 

Thus, the pressure difference will not in general be constant. In many cases, the 
first term may be much smaller than the second so that Δχ can be found with 
equation (5-51) in the approximate form 

X J (θμ/ον)Ρ 
(5-52) 

In the experimental study of swelling, the usual practice is to compress the sample 
in such a way that equilibrium solution may outflow at atmospheric pressure during 
the external pressure change. Returning briefly to the osmometer analogy, the 
pressure on the solution in an osmometer may be increased beyond that required 
for equilibrium so that water is removed to phase II which is at constant pressure. 
The compression is therefore at constant chemical potential, and we may write for 
phase I 

dßw = VwdP + \dnwJ dnw = 0 (5-53) 

This gives the change in the composition of the solution as the pressure increases. 
The volume change of the solution during the compression is given as 

\dPjnw 

dV 
dnw 

V wd'VW I 

Vw + dP 
dnw 

(5-54) 

(5-55) 

(5-56) 
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To eliminate dP/dnw the equilibrium condition may be written in the form 

VwdP + (θμχν/οηίΰ)ράηιο = 0 (5-57) 
Thus, , x 

dP _ _ {dyw/dnw)p 
dlly) V yj 

(5-58) 

dV 
dnu 

Substituting equation (5-58) in equation (5-56), we find that 

This may also be written 

£ - *. - feX(f L 
Notice that in this case the volume change divided by the change in the number 
of moles of water is equal to Vw only if (dV/dP)nw is zero. For a solution, of course, 
this term is very small. 

Consider now the soil system. If we change the external pressure on the soil 
keeping the pressure in the tensiometer constant, but maintaining equilibrium by 
allowing water to flow, then we have the equilibrium condition 

* . . = VwdP + (lÇ)pdx + {^)pdn = 0 (5-61) 

where P stands for confining pressure and n for moles of water. The expression for 
the volume change of the soil is 

dV=Vwdn+(%\dP+(^)npdx (5-62) 

Combining equations (5-61) and (5-62), we find 

= YW ~ VZ \^)n,Xl\df)p,n\£) + WP.J + \dx~)n,p~à ^ ^ 

The total change in volume with nw is thus a complex function equal to Vw only if 
such coefficients as (dV/dP)n,x and (dV/dx)ntP are zero. Anderson and Low (1958) 
measured dV/dn in an experiment of this type and set this derivative equal to Vw. 
If equation (5-63) is correct, the results will require reinterpretation. I t may be 
noted again that Vw is a partial derivative at constant pressure. 

Taylor and Box (1961) studied the compression of unsaturated soils by measur­
ing the change in the bulk density with a confining pressure and with the gaseous 
phase open to the atmosphere. This constant water content process is represented 
as a function of bulk density only. According to the theory above, one should write 
a two-term equation for the chemical potential change in this case : 

dßw = VwdPe + [jf)dx (5-64) 

Taylor and Box, however, write 

cTV 
dn 

where pb is the bulk density. 

dpw = ( -— )dpb (5-65) 
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The use of bulk density is convenient in that it is easily measured. However, it 
leads to other complications. The bulk density is defined as 

m 
V 

where m is the mass. Then, 

m 

Therefore, 

(5-66) 

(5-67) 

(5-68) 

(5-69) 

\dVjp,n 

(θρλ = _m^ (dV\ 
\dx/p,n V* \dX/p,n 

Using equation (5-46) to find (dV/dx)pfn = 1, we obtain 

dpb\ _ _ m 
dx/p,n~ V 

The dpb/dx term is thus more complex than dV/θχ = 1. 
Collis-George (1961) has indicated that the introduction of additional terms, 

such as a geometrical term or a bulk-volume term, for swelling systems can be 
avoided by defining the moisture content (0) term on a volume basis. However, in 
the view of the present writer, an independent variable for geometry is required. 
This is shown by the fact that the volume of a soil system, and hence its geometry, 
can be changed at constant water content. An additional difficulty in the use of 
the volume of water in soil is that in cases where the particles affect the density 
of water, an accurate measure of the water volume is very difficult. 

RELATION BETWEEN THERMODYNAMIC AND 
MECHANICAL TREATMENTS 

Day and Forsythe (1962) have presented a treatment of unsaturated soil systems 
based on the mechanical principle of virtual work. This treatment has been the 
basis for experiments of exceptional interest, and an effort will be made here to 
provide a thermodynamic analysis of their derivation. 

The usual variables selected in chemical thermodynamics are the pressure, 
temperature and mole numbers. Thus, in equation (5-44) the Gibbs free energy is 
expressed as a function of these variables with a χ term added for swelling systems. 
This leads to the complex equation (5-63) for the relation between the volume and 
number of moles of water in a swelling system. 

The principle of virtual work equation formulated by Day and Forsythe can be 
derived by a similar procedure using the Hemholtz free energy, rather than the 
Gibbs free energy. Consider the following diagram due to Forsythe (1962). 
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The piston compartment on the left contains water, that on the right contains 
air, and chamber B in the middle contains soil. Plate A is permeable to water but 
not to soil and plate C is permeable to air but not soil. The pressures and volumes 
are as indicated and P is the confining pressure. The whole system is in equilibrium 
and we may therefore apply the equilibrium condition that for any small displace­
ment at constant temperature and total volume (all three phases) the change in 
the Hemholtz free energy is zero. (This follows directly from the Second Law, 
although it is not derived in Section I.) The Hemholtz free energy, F, is defined as 

F = E - TS (5-70) 

Differentiating and combining with equation (1-33), we find that 

dF = -SdT - PdV + Σ ßidrn (5-71) 

For a swelling soil system, we may write 

dF = -SdT - PdV + Σ μ4η{ + (ψ)αχ (5-72) 

Therefore, the total Hemholtz free energy change for the system in the diagram is 

dF = -PwdVJ - PdV - PAdVA
f + Σ M»<*nf + \f)dx (5-73) 

Now, as previously argued, if the particles have had no influence on the density of 
water in the soil system, then 

dVw = Vwdnw (5-74) 

where Vw is the volume of water in the soil. Thus, 

VJ + Vw = constant (5-75) 

Further, since it is highly unlikely that there would be a pressure difference between 
the air in the soil and the air in the gas compartment, 

VA' + VA = constant (5-76) 

where VA is the volume of air in the soil. I t follows that 

dVJ = -dVw (5-77) 

dVA
f = ~dVA (5-78) 

Substituting these equations in equation (5-73), we obtain 

dF = PwdVw - PdV + PAdVA + Σ ßtdnt + \ψ)άχ (5-79) 

It will be recalled that the expression for the chemical potential could be simpli­
fied by introducing a tension term which eliminated the Θ and χ terms. A similar 
device may be employed for equation (5-79). A quantity Fi is defined as 

dFi = Σ ßäni + (^Jdx (5-80) 
Then, 

dF = PwdVw - PdV + PAdVA + dFi (5-81) 
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We now set dF = O at constant temperature and total volume as the equilibrium 
condition and find 

PwdVw - PdV + PAdVA + dFi = 0 (5-82) 
or 

- PwdVw + PdV - PAdVA - dFi = 0 (5-83) 

Day and Forsythe (in press) write the principle of virtual work in the form 

- PwdVw + PdV - PAdVA - irdVw = 0 (5-84) 

where π is "the work done by the internal forces of the system per unit volume of 
water absorbed. . . ." Comparing equations (5-83) and (5-84), we obtain 

dFi = wdVw (5-85) 

This shows the equivalence of the thermodynamic and mechanical treatments 
provided that it is assumed that Vw is independent of water content. The signifi­
cance of the quantity π will next be investigated. Substituting equation (5-85) in 
equation (5-81), we find that 

dF = PwdVw - PdV + PAdVA + *dVw 

= (Pw + Tr)dVw (V, VA constant) 
or 

These equations present a situation which is parallel with the treatment of gravi­
tational fields and electrochemical systems in Section I. A new term, the wdVw 
term, has been introduced in which the new extensive variable (Vw) is the same as 
an existing variable in the equation. In the gravitational case, this led to equation 
(1-163), 

dG = Σ (/*i + Mi<t>)dni (T, P constant) 
or 

XonJ T,P,n¡ 

In the electrochemical case the result was equation (1-235), which may be written 
in the form 

dG = Σ (MÍ + ZiFvt)dni (Γ, P constant) 
or 

\L·) = μί+ziFyxf/ 
\dni/ T,p,m 

In each case, the significance of the individual terms μ» and φ or /x¿ and ψ had to 
be determined independently. For gravitation, φ can be determined by direct 
physical measurement, and the significance of μί is not altered by the field. In 
electrochemistry, however, μ; and ψ cannot be given thermodynamic significance. 

In the case at hand, the physical significance of Pw is unambiguous. It may next 
be shown that this is also true of π. Day and Forsythe (in press) show that 

- (Pw - PA)dVw + (P - PA)dV - irdVw = 0 (5-89) 

(5-86) 

(5-87) 

(5-88) 
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We have already assumed equation (5-74), so that 

- (Pv - PA)Vwdnw + (P - PA)dV - irVwdnw = 0 (5-90) 

Dividing by dnl0 at constant confining pressure, we obtain 

- C P . 
and 

, - PA)VW + (P - PA)(J~JP -TVW = 0 (5-91) 

The right-hand side contains only macroscopic properties and thus gives the 
physical significance of π. Notice that for a saturated soil in which geometry effects 
may be assumed absent, (dV/dnw)p = Vw, so that 

7Γ = P - Pw (5-93) 

This is known as the Terzaghi equation. 
In nonswelling soils, P = PA, and 

7Γ = PA - Pw (5-94) 

If PA = P°, 7Γ is the negative of the tension. 

VERTICAL DISTRIBUTION 

Babcock and Overstreet (19576) applied equation (5-9) to the vertical distribu­
tion of water in soil above a water table. For a salt-free soil at constant tempera­
ture, a combination of equations (1-167) and (5-9), results in 

VwdPe + (θμ/οθ)Ράθ + Mgdh = 0 (5-95) 

Solving for the vertical distribution, we obtain 

a M> + Y-(ik) 
dh (ομ/θθ)Ρ

 {Ö y D ; 

This result differs from Buckingham's equation (1907) by the dPe/dh term. Bab­
cock and Overstreet (19576) concluded that where the ahydrostatic pressure" 
gradient in the soil water is governed by the ordinary condition, 

dP = -pgdh (5-97) 

= ~\Yj9dh (5-98) 

Then equation (5-96) yields dd/dh = 0. It was further concluded that ". . . there 
is the possibility of capillary fringes extending to greater heights than might be 
anticipated from curves determined with tensiometers or pressure plates.'' This 
conclusion has been criticized by Collis-George (1961), whose conclusions the 
writer now believes to be correct in many respects. A re-evaluation of the problem 
will be attempted. 
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Imagine a column of dry, uniformly packed, salt-free soil in a cylinder with 
rigid walls. The soil may be supported at the bottom by a rigid screen which holds 
the particles but will allow water to pass freely. The bottom end is now immersed 
in a large free water table, and subsequently sealed at the top. The column is allowed 
to come to equilibrium at a uniform temperature. 

For a nonswelling soil, the equilibrium vertical distribution is given by equation 
(5-96). In any zone of unsaturation, the pressure gradient is merely the vertical 
pressure gradient in the gaseous phase which is negligible. Thus, Buckingham's 
equation is regained. In any zone of saturation, the pressure is the macroscopic 
pressure exerted by the walls on the soil. I t is the same as the "confining pressure" 
exerted by a piston in the previous section. The point overlooked by Babcock and 
Overstreet (19576) is that as water enters the soil, no force can be exerted against 
the wall unless there is a displacement of particles in space,7 that is, by swelling. 
The treatment, then, must be entirely parallel to the treatment of excess pressure 
in spheres in Section I, where the pressure external to the sphere, rather than the 
pressure within the sphere, entered into equation (1-218). Therefore, in the satu­
rated zone of a nonswelling soil, the vertical distribution would still be given by 
Buckingham's equation. Consequently, the vertical distribution could be pre­
dicted from the moisture characteristic. 

For a swelling soil, there appears to be agreement (Bolt and Frissel, 1960; 
Collis-George, 1961) that Buckingham's equation will not give the vertical distri­
bution. Geometric terms must be included in the expression for chemical potential, 
so that 

dh {βμ/ΒΘ) { } 

So far as the writer is aware, no means exists for the prediction of dPe/dh or 
dx/dh. These terms must be measured experimentally by measuring the pressure 
exerted by the confining wall and the geometry term as functions of height. Clearly, 
an experimental check of equation (5-99) would be difficult, and as indicated by 
Collis-George (1961), the results would depend upon the manner in which the 
vertical column is brought to equilibrium. 

First suggested to the writer by R. D. Miller. 
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