HILGARDIA

A Journal of Agricultural Science Published by the California Agricultural Experiment Station

VOLUME 14

OCTOBER, 1941

NUMBER 3

CONTENTS

HYDROLOGIC STUDIES OF THE PUTAH CREEK AREA IN THE SACRAMENTO VALLEY, CALIFORNIA

MARTIN R. HUBERTY and C. N. JOHNSTON

CHEMICAL COMPOSITION OF WATER IN THE PUTAH CREEK BASIN

C. S. BISSON and MARTIN R. HUBERTY

UNIVERSITY OF CALIFORNIA · BERKELEY, CALIFORNIA

CHEMICAL COMPOSITION OF WATER IN THE PUTAH CREEK BASIN

C. S. BISSON AND MARTIN R. HUBERTY

CHEMICAL COMPOSITION OF WATER IN THE PUTAH CREEK BASIN'

C. S. BISSON² AND MARTIN R. HUBERTY³

INTRODUCTION

Concurrently with the 1931-1932 hydrologic investigation of Putah Creek basin, reported by Huberty and Johnston in the accompanying paper (3), studies of water quality were being made. The purpose of the study was to determine, from analytical data, the classification of waters of the area as to their chemical composition; the seasonal variation in the character and amount of dissolved salts; and to determine the boron content of the waters, since this element is highly toxic to most plants when present even in minute quantities (1, 2, 4).

METHODS OF PROCEDURE

Samples were obtained from the pump discharge of wells penetrating water-bearing formations of various depths. Figure 1 shows the locations of the wells, from which water samples were collected in glass-stoppered bottles for analysis. From a small number of wells, perforated at only one water-bearing stratum, water samples were collected at intervals of from one day to one week to determine the seasonal variation in salt content.

Water samples of from 2 to 4 liters, collected in glass-stoppered bottles were placed in wooden containers and immediately taken to the laboratory where determinations were made for pH, bicarbonate, carbon dioxide, and nitrate. Later analyses were made for calcium, magnesium, sodium, potassium, iron, carbonate, sulfate, chloride, phosphate, nitrate, silicon, aluminum, and boron. The total solids were determined at 105° C.

RESULTS OF THE ANALYSES

The results of the determinations of bicarbonate and chloride ions on samples collected to show seasonal changes in the dissolved salt content are recorded in table 1. Table 2 contains the analyses of well waters obtained within Putah Creek lower basin, and the results are reported

¹ Received for publication October 11, 1940.

² Professor of Chemistry, and Chemist in the Experiment Station; died March 13, 1940.

⁵ Associate Professor of Irrigation and Associate Irrigation Engineer in the Experiment Station.

^{&#}x27;Italic numbers in parentheses refer to "Literature Cited" at the end of this paper.

⁵ Dr. Walter Dye, former analyst for the Division of Chemistry, made the analyses.

in parts per million. The pH values reported in the second column were obtained soon after the samples reached the laboratory. For the convenience of those not accustomed to interpreting water analysis in parts per million, table 3 is introduced. Table 4 shows the values in table 2 tabulated according to depth of perforation, and table 5 gives the results for boron.

Fig. 1.—Location of wells in Putah Creek lower basin from which water samples for chemical analysis were obtained.

Concentration of Bicarbonate and Chloride Ions at Various Dates of Sampling.—Table 1 shows the bicarbonate and chloride content of well-water samples collected at short intervals of time. Samples from wells perforated at a single stratum within the depth range of 137 to 420 feet are remarkably constant with respect to these two ions. A well whose casing was perforated at several strata shows a considerable variation from day to day, which is very likely owing to a change in the relative amounts of water of different composition drawn from each stratum. Well no. 34, which is perforated at a single stratum, is a good example of wells showing remarkably constant composition with respect to these two radicals. Well no. 35, having more than one perforation, however, is a good example of wells showing considerable variation in composition. Table 3 furnishes additional proof that other chemical constituents are fairly constant in well water from single-stratum wells.

Composition of the Ground Waters.—Tables 2 and 3 show the results of analyses of samples from thirty-three wells in the area investigated, expressed in parts per million, and in milliequivalents per liter respectively. The hardness of nearly all these waters is of the bicarbonate type. This indicates that there is enough bicarbonate present to precipitate

TABLE 1
SEASONAL CHANGES IN CARBONATE AND CHLORIDE OF NUMBERED WELLS,
EXPRESSED IN PARTS PER MILLION*

Date	No	. 27	No	. 28	No.	. 34	No.	35†
Date	HCO ₈ -	Cl-	HCO3-	Cl-	HCO ₃ -	Cl-	HCO3-	Cl-
1931:								
June 30	467	13.1	373	7.5			393	37.0
July 30	470	12.5	377	8.6	378	13.3	520	27.3
September 18	468	13.0	370	8.0	374	11.2	568	34.0
September 19					375	11.2	l l	
September 21					375	10.8		
September 22					375	10.6		
September 23			l		375	11.5	560	32.8
September 26		12.8	371	8.3	378	12.6	604	39.2
September 29	467	13.2	373	8.7	374	13.2		
October 1			372	10.0	376	13.1	415	27.5
October 3	466	13.4	373	9.3	375	12.1		
October 6	468	14.1	372	9.6				
October 8	470	13.9	380	9.6	375	12.0		
October 10.		12.1	369	9.0	375	13.3	::::	
October 12.	469	13.8	372	9.4	375	12.5	::::	
October 15.			373	9.5	375	11.9		
October 17.		13.2	372	9.3			1	
October 23.					375	12.0		• • • • •
October 30.		• • • •	376	9.4	1			
December 21					377	• • • • •		
December 21					311	• • • • •		
932:								
January 12					375	12.0		
January 23					377	11.4		
January 30					375	11.7		

^{*} With HCO_8 ", the average deviation between check analysis is 1 p.p.m., and the maximum deviation, 3 p.p.m. With Cl", the average deviation between check analysis is 0.2 p.p.m., and the maximum deviation, 0.6 p.p.m.

the calcium on heating; the addition of lime should precipitate the remaining magnesium and bicarbonate. Well no. 43, the deepest well in the basin (1,030 feet), has the softest water, its hardness being 65 p.p.m. of Ca and Mg calculated as CaCO₃. The water from University Farm domestic well, no. 34, and the City of Davis, no. 37, with 255 and 135 p.p.m., respectively, would be called moderately hard. The iron content of the waters of the area is low, as is the nitrogen content, with three interesting exceptions namely, wells 45, 46, and 47. The shallow well, no.

[†] Well 35 is perforated at more than one stratum.

Composition of Well Waters in Putah Creek Basin Expressed in Parts per Million* TABLE 2

Well no. DH Ca+ $M_{\text{e}+}$ Nat K^{+} K^{+					Cations	suc				Anions			Total			
8.4 34 48 23 0.0 0.03-0.05 328 22 10 15 34 48 10 10 24 314 46 10 0.03-0.05 388 23 11 12 34 40 11 Aug. 8.0 35 64 22 0.0-0.03 385 40 2 30 41	Well no.	Нq	Ca+	Mg ⁺⁺	Na+	K+	Fe ⁺⁺ or Fe ⁺⁺⁺	HCO ₂ -	* 0s	NO.	- [5	Al as H2AlO3-	solids at 105° C	SiO	CO.	(1931)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	8.4	34	48	23	0.0	0.03-0.05	328	22	10	16	3.2	374	88	16	l
8.0 3.5 4.0 1.0 0-0.08 2.91 2.4 1.0 3.0 4.0 1.0 0-0.08 3.85 4.0 1.5 1.0 4.0 1.3 4.0 1.0 0-0.08 3.85 4.0 1.5 1.5 1.3 4.14 4.1	6	6.7	30	45	22	0.5-1.0	0.08-0.10	308	23	:	19	2.4	347	40	24	
8.3 8.4 2.3 0.0 0.0 0.0 8.5 3.1 1.5 2.3 450 1.0 0.0 0.0 8.5 3.1 1.5 2.3 450 1.0 0.0 0.0 8 1.1 1.13 414 4.2 1.1 40.0 0.0 8 1.1 1.13 40.0 1.1 40.0 8 1.1 1.13 40.0 1.1 40.0 8 1.1 41.0 4.0 1.1 40.0 8 1.1 1.1 40.0 8.0 8.0 8 1.1 40.0 8.0 8.0 8 1.1 40.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 9.0	7	8.0	35	40	10	1.0	0-0.03	291	24	67	10	3.0	318	41	11	
8.4 38 56 24 0.0 0.003 358 40 8 17 13 414 43 11 Aug. 8.7 38 85 61 0.03-0.04 268 8 6 13 300 27 36 10 7.7 38 48 0.0 0.00-0.02 254 38 8 7 2.7 361 38 10 Aug. 8.7 47 58 48 0.0 0.01-0.02 254 38 3 37 2.7 361 38 10 300 89 10 300 89 10 300 89 10 300 300 89 3 37 2.7 361 300 89 3 30 30 89 30 89 30 89 30 89 30 89 30 89 30 89 30 89 30 89 30 <	88	8.3	38	64	23	0.0	0-0.03	385	31	15	22	2.3	450	:	20	
8.7 33 68 61 $0.03-0.04$ 268 20 0 8 1.3 300 27 132 Sept. 8.5 3.6 4.5 4.2 4.8 0.0 0.01-0.02 2.4 38 8 1.3 300 6.5 1.0 8.1 4.1 3.3 300 6.5 1.0 0.01-0.02 2.4 4.7 2.7 361 38 1.0 Aug. 8.9 4.1 2.3 300 6.5 1.0 Aug. 8.1 4.1 2.3 300 6.5 1.0 Aug. 8.2 4.1 2.7 4.1 Aug. 1.0 Aug. 8.0 1.0 Aug. 1.0 Aug. 1.0 Aug. 1.0	9	8.4	38	26	24	0.0	0-0.03	358	40	∞	17	1.3	414	43	==	
8.5 30 15 42 0.01-0.02 216 8 6 18 2.3 300 62 10 Sept. 8.3 43 48 48 0.0 0.010-0.02 254 48 2.0 48 10 Aug. 8.1 47 63 42 0.0 0.01-0.02 47 2.0 455 2.0 40 2.0 40 1.1 500 40 50 40 0.0 40 0.0 40 0.0 40 0.0 0.0 0.0 40 8.2 45 50 40 0.0 <td< td=""><td>16</td><td>8.7</td><td>83</td><td>83</td><td>19</td><td>:</td><td>0.03-0.04</td><td>268</td><td>20</td><td>0</td><td>∞</td><td>1.3</td><td>300</td><td>22</td><td>12</td><td></td></td<>	16	8.7	83	83	19	:	0.03-0.04	268	20	0	∞	1.3	300	22	12	
7.7 33 48 0.0 0.008 254 38 37 2.7 361 38 11 38 10 44 8.3 4.2 4.8 0.0 0.0 0.0 45 2 45 5.0 415 39 10 40 25 86 1.7 30 415 39 80 2 45 1.7 30 415 39 46 50 60 40 32 485 37 40 90 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 </td <td>17</td> <td>8.5</td> <td>30</td> <td>15</td> <td>42</td> <td>:</td> <td>0.01 - 0.02</td> <td>216</td> <td>∞</td> <td>9</td> <td>18</td> <td>2.3</td> <td>300</td> <td>62</td> <td>9</td> <td></td>	17	8.5	30	15	42	:	0.01 - 0.02	216	∞	9	18	2.3	300	62	9	
8.3 3.8 4.2 4.8 0.010-002 4.7 2.0 415 3.0 415 3.0 415 3.0 415 3.0 415 3.0 415 3.0 415 3.0 40 2.0 3.0 40 2.0 40 5.0 40 5.0 9.0 40 2.0 40 5.0 40 5.0 40 5.0 9.0 40 5.0 9.0 40 5.0 9.0 40 2.0 9.0 40 2.0 9.0 40 2.0 9.0 40 9.0	18	7.7	33	83	48	0.0	0-0.03	254	88	က	37	2.7	361	88	9	
8.7 47 63 42 0 -0.04 467 28 19 21 1.7 500 40 25 Sept. 8.7 44 59 40 0.5-1.0 0.05-0.08 458 26 20 3.2 486 5.7 504 41 30 0.05-0.08 488 30 5 20 2.7 504 41 47 Aug. 8.4 34 61 66 0.5-1.0 0.0-0.08 438 40 5 13 6.1 467 38 10 2.7 504 41 40 30 30 80 40 </td <td>19</td> <td>8.3</td> <td>38</td> <td>42</td> <td>48</td> <td>:</td> <td>0.01-0.02</td> <td>:</td> <td>47</td> <td>67</td> <td>45</td> <td>2.0</td> <td>415</td> <td>33</td> <td>12</td> <td></td>	19	8.3	38	42	48	:	0.01-0.02	:	47	67	45	2.0	415	33	12	
8.1 44 59 40 $0.5-0.08$ 453 26 20 3.2 485 37 57 Dec. 8.7 21 24 47 $0.01-0.02$ 258 26 12 1.4 300 33 10 Sept. 8.7 3.5 68 53 0.0 $0.0-0.03$ 476 29 5 13 6.7 41 Aug. 10 Aug. 10	22	8.7	47	63	42	:	, 0-0.04	467	82	19	21	1.7	200	40	22	
8.7 21 24 47 0.01-0.02 258 26 12 14 300 33 10 Sept. 7.7 36 68 53 0.0 0-0.03 438 30 57 504 41 17 Aug. 7.9 25 61 58 0.0-1.0 0.04-0.08 393 40 14 2.4 403 38 10 July 8.8 36 62 53 0.5-1.0 0.04-0.88 40 5 424 403 30 8 Aug. 8.6 36 60 50 0.0 471 39 4 12 2.4 403 404 40 </td <td>22</td> <td>8.1</td> <td>44</td> <td>29</td> <td>40</td> <td>0.5 - 1.0</td> <td>0.05-0.08</td> <td>453</td> <td>56</td> <td>:</td> <td>20</td> <td>3.2</td> <td>485</td> <td>37</td> <td>22</td> <td></td>	22	8.1	44	29	40	0.5 - 1.0	0.05-0.08	453	56	:	20	3.2	485	37	22	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	8.7	21	24	47	:::::::::::::::::::::::::::::::::::::::	0.01-0.02	258	56	:	12	1.4	300	æ	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	7.7	35	89	23	0.0	0-0.03	438	30	ro	20	2.7	504	41	17	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	8.4	34	61	99	0.5-1.0		476	53	rc	13	6.1	467	38	91	
8.8 36 62 53 $0.5{-}10$ 459 40 3 13 5.6 492 41 0 June 8.6 36 60 50 0.0 0.0 471 39 4 12 2.6 494 38 9 July 8.6 22 44 45 0.5-1.0 0.02-0.04 468 22 6 13 3.2 484 36 25 13 3.2 488 36 28 2 18 22 8 22 8 22 8 2 48 8 2 18 8 2 8 8 9 10 10 9 10 10 9 10 11 11<	26	6.7	52	51	23	0.0	0.04-0.08	393	40	•	14	2.4	403	93	∞	
8.6 36 60 50 0.0 471 39 4 12 2.6 494 38 9 July 8.5 31 62 60-1.0 0.02-0.04 468 22 5 13 3.2 488 36 27 Sept. 8.6 2.2 44 60-1.0 0.02-0.04 468 22 5 11 47 49 36 10 8.7 2.2 44 0.5-1.0 0.02-0.03 369 23 8 8 11 47 49 5 10 8.7 2.5 45 44 0.5-1.0 0.02-0.03 369 23 8 3.3 373 33 373 38 37 39 40	27	8.8	36	62	23	0.5-1.0		459	40	က	13	5.6	492	41	•	
8.5 31 62 59 $0.5-1.0$ $0.02-0.04$ 468 22 5 13 3.2 488 3.2 488 3.2 488 3.7 34 4 June 8.7 2.2 44 45 $0.5-1.0$ 373 23 3 8 2.1 377 34 4 June 8.7 2.2 46 $0.5-1.0$ 3.8 8 3.1 447 49 5 July 8.5 2.5 63 774 460 60 1 21 6.1 61 65 38 85 13 38 13 89 13 141 44 141 59 38 15 July 8.9 2.6 101 113† 0.02-0.03 630 114 6 55 3.8 13 141 Aug 11 Aug 11 2.1 61 6.1 55 3.8<	27	9.8	36	09	20	0.0		471	39	4	12	2.6	494	38	6	
8.6 22 44 45 $0.5-1.0$ 373 23 8 8 2.1 377 34 4 June 8.7 3.7 31 54 46 $0.5-1.0$ 378 22 0 9 4.1 447 49 5 July 8.4 2.5 63 774 460 60 1 21 61 65 38 13 33 13 13 131 99 14.1 447 49 5 Duly 50 9 4.1 447 49 5 Duly 50 38 13 33 13 39 13 89 13 141 44 114 6 56 38 38 13 44 40 7 44 40 40 6 55 38 33 13 40 40 80 44 40 60 60 14 40 80 44 40 80<	27	8.5	31	62	29	0.5-1.0	0.02-0.04	468	22	ıc	13	3.2	488	36	27	
8.7 31 54 46 $0.5-1.0$	28	9.8	22	44	45	0.5-1.0	:	373	23	~	œ	2.1	377	34	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	8.7	31	54	46	0.5-1.0	:	378	22	0	6	4.1	447	49	z.	
8.5 25 63 71† 460 60 1 21 6.1 505 38 15 July 8.9 26 101 131† 0.02-0.03 630 114 6 55 3.8 832 32 18 July 8.9 28 49 45 0.0 0.04-0.08 385 34 3 13 40 40 8 July 8.5 25 47 47 0.01-0.02 371 30 3 43 48 0 July 8.2 25 47 47 0.01-0.02 377 27 11 2.1 390 35 12 Sept. 8.2 26 45 0.5-1.0 0.0-0.26 377 27 11 4.9 384 48 0 July 8.2 24 46 45 0.5-1.0 0-0.26 37	28	8.4	53	45	44	0.5-1.0	0.02-0.03	369	83	က	œ		373	33	13	
8.9 26 101 131† 0-0.02 680 114 6 55 3.8 832 32 18 Aug. 8.7 25 91 115† 0.02-0.03 630 92 4 45 5.6 759 34 22 Aug. 8.9 29 49 48 0.0 0.04-0.08 371 30 3 13 40 40 8 July 8.9 29 47 47 0.01-0.02 377 27 11 2.1 390 48 0 July 8.2 24 46 45 0.5-1.0 0.01-0.26 377 27 11 4.9 384 48 0 July 8.2 24 46 45 0.5-1.0 0.0-0.26 377 27 11 4.9 384 33 22 Dec. 8.3 26 62	31	8.5	55	83	714	:		460	9	-	21	6.1	202	38	15	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	8.9	56	101	131	:	0-0.02	089	114	9	55	89. 89.	832	32	18	
8.9 28 49 48 0.0 0.04-0.08 385 34 3 13 3.0 407 40 4 July 8.9 29 45 52 0.0 0.0 375 375 35 0 11 394 48	32	8.7	22	91	115†	:	0.02 - 0.03	630	92	4	45	5.6	129	34	22	
8.9 29 45 52 0.0	33	8.9	28	49	48	0.0	0.04-0.08	385	34	က	13	3.0	407	40	∞	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	8.9	53	45	25	0.0		371	30	က	13	4.1	394	48	•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	8.5	22	47	47	:	0.01 - 0.02	375	35	•	11	2.1	330	35	12	
8.3 26 62 93 0.5-1.0 393 99 5 37 4.1 774 36 16 June	34	8.2	24	46	45	0.5-1.0	0-0.26	377	27	:	=	4.9	384	33	22	
	35	 8.	56	62	83	0.5-1.0		393	66	rc	37	4.1	477	36	16	

39	9.8	38	75	7	0.0	: : : : : : : : : : : : : : : : : : : :	220	71	es	27	27.	602	36	91	July
35	8.7	42	98	80	0.5-1.0	0-0.02	268	88	4	34	6.1	889	37	56	Sept.
36	8.9	24	69	62	0.0	0.04-0.08	418	22	ಣ	56	4.0	479	40	13	July
37	8.1	18	23	22	0.5-1.0	0-0.02	258	38	:	10	:	288	:	0	Aug.
37	8.3	19	23	189	0.5-1.0	0.01-0.02	274	22	:	12	1.7	321	53	7	Oct.
37	9.7	15	22	22	0.5 - 1.0	0.08-0.10	272	22	:	Ξ	5.2	293	30	2	Dec.
38	8.7	56	46	53	0.5 - 1.0	0.04-0.08	373	73	က	12	2.9	399	34	10	July
38.	8.5	24	46	20	:::::::::::::::::::::::::::::::::::::::	0.02-0.04	368	30	2	12	1.8	374	35	13	Sept.
38	6.7	23	44	49	0.5-1.0	0.04 - 0.05	373	82	:	12	4.7	372	34	34	Dec.
39	8.9	34	74	191	:	0.02-0.03	540	29	2	24	2.4	298	38	12	Aug.
40	8.3	56	89	44	0.5-1.0	0-0.05	470	87	-	12	8.8	458	40	16	Aug.
43	9.8	16	9	26	0.0		251	35	0	18	3.0	349	26	0	Aug.
45	9.8	33	118	99	0.0		625	65	136	10	5.6	205	38	16	July
46	8.3	33	68	20	0.0		584	64	∞	22	5.6	899	38	13	June
47	8.3	44	6	34†	:::::::::::::::::::::::::::::::::::::::		544	22	20	30	2.0	732	35	16	July
49	8.5	19	23	96	0.0		387	99	0	32	4.1	495	26	2	June
51	8.4	55	45	20	0.0		368	43	0	56	4.1	436	33	7	June
52	8.2	19	79	86	0.0	0.02-0.03	438	92	0	37	2.7	579	34	18	Aug.
53	8.5	22	51	63	0.5-1.0	:	358	22	0	82	9.9	782	42	က	June
53	8.5	56	22	₩	0.0	0.04-0.08	362	65	-	53	3.0	447	43	∞	July

* Phosphorus (as PO₄---) was less than 1.0 p.p.m. in all samples. Carbonate (as CO₃--) was less than 0.5 p.p.m. for all samples except in the case of well no. 43, which had 6 p.p.m.
† Calculated.

COMPOSITION OF WELL WATERS IN PUTAH CREEK BASIN EXPRESSED IN MILLIEQUIVALENTS PER LITER

W. II.		Cations				Anions				Per cent		
Wen 110.	Ca⁺⁺	Mg++	Na+	HCO3-	³OS	-IO	NO ₃ -	H2AlO3-	Na	Ca	Mg	(1931)
9	1.7	4.0	1.0	5.38	0.45	0.45	0.17	0.08	15	25	09	Aug.
9	1.5	3.7	1.0	5.05	0.48	0.53	:	90.0	16	24	09	Dec.
7	1.7	3.3	8.0	4.77	0.49	0.30	0.03	80.0	14	53	22	Aug.
80	1.9	5.3	1.0	6.31	0.64	0.70	0.24	90.0	12	23	65	Aug.
6	1.9	4.6	1.0	5.87	0.84	0.49	0.13	0.04	13	22	61	Aug.
9	1.6	0.7	2.7	4.40	0.41	0.22	:	0.04	54	32	14	Sept.
171	1.5	1.3	1.8	3.54	0.16	0.51	0.10	90.0	39	33	28	Sept.
	1.7	2.7	2.1	4.16	08.0	1.04	0.05	0.07	32	56	41	Aug.
19.	1.9	3.4	2.1	:	86.0	1.31	0.03	0.02	87	56	46	Sept.
	2.4	5.2	1.8	99.7	0.59	0.58	0.30	0.04	19	56	55	Sept.
2	2.2	4.9	1.7	7.43	0.54	0.56	:	80.0	19	25	26	Dec.
	1.0	2.0	2.0	4.23	0.54	0.54	:	0.04	40	20	40	Sept.
7	1.8	5.6	2.3	7.18	0.62	0.56	80.0	0.07	24	19	28	Aug.
25.	1.7	5.0	2.9	7.80	09.0	0.37	80.0	0.16	30	18	22	July
9	1.2	4.2	2.3	6.44	0.82	0.40	:	90.0	30	16	54	Aug.
7	1.8	5.1	2.3	7.53	0.84	0.37	0.05	0.15	22	20	22	June
7	1.8	5.0	2.2	7.72	0.82	0.34	90.0	0.07	24	20	26	July
7	1.6	5.1	2.6	7.68	0.46	0.37	80.0	80.0	87	17	22	Sept.
	1.1	3.6	2.0	6.12	0.47	0.23	0.05	0.02	30	16	54	June
88	1.6	4.4	2.0	6.20	0.47	0.23	:	0.11	52	20	55	July
8	1.4	3.7	1.9	6.05	0.49	0.23	0.04	60.0	27	20	53	Sept.
1	1.3	5.2	3.1*	7.54	1.24	09.0	0.02	0.16	32	14	54	July
2	1.3	8.3	5.7*	11.15	2.38	1.54	0.10	0.10	37	6	54	Aug.
2a	1.2	7.5	5.0*	10.32	1.91	1.28	90.0	0.15	37	∞	22	Aug.
	1.4	4.1	2.1	6.31	0.71	0.38	0.05	80.0	82	18	54	July
34	1.4	3.7	2.3	80.9	0.63	0.37	0.05	0.11	31	19	20	July
	1.2	8.8	2.0	6.15	0.73	0.31	:	90.0	29	17	54	Sept.
34	1.2	3.8	2.0	6.18	0.56	0.31	:	0.13	53	17	54	Dec.
35.	1.3	5.1	4.0	6.44	2.07	1.00	80.0	0.11	38	13	49	June
22	10	9	3.1	8 50	1 40	92 0	0 02	6	06	-	10	1].:

2	9 ;	31	58	13	17	31	18	22	က	7	-	30	30	30	30	30	7	30	31
Sont	ndag.	July	Aug.	Oct.	Dec.	July	Sept.	Dec.	Aug.	Aug.	Aug.	July	June	July	June	June	Aug.	June	July
92	3	59	36	35	35	51	53	54	55	63	6	89	20	69	46	47	49	22	52
91	2	13	17	18	16	18	17	16	15	15	15	=	16	19	10	14	10	15	16
86	07	28	47	47	49	31	30	30	30	22	92	20	22	13	44	39	41	33	32
91.0	01.0	0.10	::	0.04	0.14	80.0	0.05	0.12	90.0	0.10	80.0	0.15	0.15	0.05	0.11	0.11	0.07	0.15	80.0
90 0	0.0	0.02	:	:	:	0.02	0.03	:	80.0	0.03	:	2.19	0.13	0.32	:	:	00.00	:	0.02
90 0	06.0	0.73	0.28	0.34	0.31	0.34	0.34	0.34	89.0	0.34	0.51	0.28	0.76	0.85	06.0	0.73	1.04	0.79	0.82
60	70.1	1.08	08.0	0.52	0.51	1.52	0.63	0.58	1.41	0.58	0.73	1.36	1.34	1.60	1.34	0.90	1.92	1.20	1.35
16 0	9.91	98.9	4.23	4.50	4.46	6.12	6.04	6.12	8.85	7.70	4.12	10.20	9.57	8.92	6.34	6.03	7.18	5.87	5.94
, c	o.0	2.7	2.5	2.6*	2.5	2.3	2.2	2.1	3.3*	1.9	4.2	2.9	3.1	1.5*	4.2	3.1	4.3	2.7	2.6*
t	T: /	5.7	1.9	1.9	1.8	8.8	8.8	3.7	6.1	5.6	0.5	7.6	7.3	8.0	4.4	3.7	5.1	4.2	4.3
	7.7	1.2	6.0	1.0	8.0	1.3	1.2	1.1	1.7	1.3	8.0	1.6	2.0	2.2	6.0	1.1	1.0	1.2	1.3
	35	36	37.	37.	37	တ္ထ	000	op on	30	40		45	46	47.	49	10	522	53.	53

* Calculated.

Variation in Composition of Well Waters from Putah Creek Basin with Depth of Well and Depth of Perforation* (Composition expressed in parts per million) TABLE 4

	(1931)	180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 1
	3 <u>e</u>	Aug. Sept., July July July July July July July July	Aug.
ess, as O3	Non- carbon- ates	22,40 2200000000000000000000000000000000	0 5
Hardness, a	Total	2555 2555 2555 2555 2555 2555 2555 255	65
[]	SiOz	.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	56
Total	solids, at 105° C	455 455 455 455 455 455 455 455	340
	Alas H2AlO3-	るちひみちらちひろちろちのはまさまらまるまままま : 15138079100000000000 10000000000000000000000000	3.0
	NO ₂ - or NO ₃ -	11 12 12 12 12 12 12 12 12 12 12 12 12 1	0
Anions	ci-	20422222222222222222222222222222222222	. 18
	[†] 08	E84848488847788888888888888888888888888	35
	HCO3-	255 254 254 254 254 254 255 255 255 255	251
	Fe ⁺⁺	0.01-0.02 0.01-0.03 0.02-0.04 0.04-0.08 0.04-0.08 0.04-0.08 0.04-0.08 0.04-0.08 0.04-0.08 0.04-0.08 0.04-0.08 0.04-0.08 0.04-0.08 0.04-0.08 0.04-0.08 0.04-0.08	0.0
Cations	Κţ	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0
Sg.	Na+	88886688888888888888888888888888888888	26
	Mg ⁺⁺	\$\frac{\pi}{2}\fra	9
	Ca+	888888888888888888888888888888888888888	16
	no.	237377777888888888888777777788888888888	43
Denth of	perforation, feet	35- 69 80- 90 81- 101 100-120 1100-120	030 { 767 - 776 6 97 0.0 0.0 251 35 18 0 3.0 349 56 65 0 Aug. 1 6 0.0
Denth	of well,	70 100 100 100 100 100 100 100 1	1,030

45, showed 136 p.p.m. of N calculated as NO₃-, or nitrate nitrogen. A sample from this well was tested by Dr. C. S. Mudge and the *Bacillus coli* group of organisms was not isolated.

Fig. 2.—Relation between depth of water-bearing formation and the amount of sodium of the well waters. "Per cent of sodium" refers to the ratio between the number of milliequivalents per liter of sodium ions and the total number of equivalents of positive ions in the solution expressed as percentage. The solid bars indicate the range in depths of performations.

Table 4 shows the results of tabulating the wells of this area with respect to depth and chemical constituents. The range of depth is from 35 feet to 1,030 feet, and with the exception of well no. 43, involves only wells perforated at one stratum. It is clearly evident that the ratio of calcium and magnesium to sodium is lower in the water from deep wells

⁶ Associate Professor of Dairy Industry and Dairy Bacteriologist in the Experiment Station.

 ${\tt TABLE \ 5}$ Boron Content of Well Waters in Putah Creek Basin

	boron p.p.m.	well depth, feet	Perforation depth, feet	Date (1932)	Well no.	Boron, p.p.m.	Well depth, feet	Perforation depth, feet	Date (1932)
1	0.83	:		Sept. 18	30	0.74			
2	20.0	:	:		33.	0.37	330	:	
3	0.17	:	:	Sept. 18	34	0.52	369	311-323	Sept. 14
4	0.41	:	:		35.	1.04	322	Several strata	
5	00.00	:			37.	0.28	552	430-450	
9	00.0	:			38.	0.34	:	312-324	
7	0.16	:	:		39	0.57	:	:	
8	0.09	02	35-69		40	0.22	226	212-220	
9.	0.46	170	:		41.	69.0	125	:	
10.	0.20	:	:		42	0.34	125		
11	0.14	:						546- 557	
12.	0.04	:	:					653- 666	
13	0.46	:	:		67	5	1 000) 222 - 292	81 18
14	0.56	:	:	Sept. 24	49	1.03	1,030	803-813	Sept. 10
15	0.24	:	:					016 -868	
16	0.04	:	:					(1,004-1,020)	
17	00.00	:	:		45	1.12	08		
18	0.15	96	06 -08		46	0.49	105	81-101	Sept. 15
20	0.32	138	:	Sept. 24	48	0.50	:	:	
21	0.36	:	:		49	98.0	:	:	Sept. 15
22	20.0	:	:		50	2.02	:	:	
23	0.11	:	466-511		51	96.0	240	204-240	
24	0.04	100	70- 77		52	0.94	:	:	Sept. 18
25.	0.30	120	100-120		53	0.30	:	146-180	Sept. 16
26	0.48	420	400-420						
27	0.65	137	126-137						
28	0.44	268	262-268	Sept. 15					
29	0.49	123	107-120						

than that from shallow wells. This is clearly shown in figure 2, which was constructed from data of analyses of waters from a few wells of various depths located near the channel of Putah Creek. The average depth of water-bearing strata varied from 50 to 770 feet below the ground surface. Percentage of sodium refers to the ratio between the number of milliequivalents per liter of sodium ions and the total number of equivalents of positive ions in the solution expressed as percentage. The graph indicates that the sodium percentage increases with increases in depth of water-bearing strata, the variation being from 12 per cent for the shallow aquifers to 76 per cent for the deepest water-bearing stratum.

The boron content of the well waters is given in table 5. From the data obtained it appears that the area of highest boron content is east of Davis several miles. The wells having the lowest boron content are in the vicinity of Dixon and Winters. It was not possible to correlate depth of perforation with boron content.

CONCLUSIONS

Within the period of time covered by these studies, water from wells perforated at one stratum only, but of various depths, is remarkably constant with respect to chemical composition. Wells perforated at more than one strata show a variable salt content.

In general, the ground waters of Putah Creek basin are of good quality for irrigation. The total salt content is relatively low as is the sodium percentage. Some well waters, however, contain sufficient boron to cause injury to many crop plants.

The well waters of this area are characterized by a relatively high bicarbonate content. The sodium percentage increases with depth of water-bearing formation. The boron content varied between 0 and 2.02 parts per million.

ACKNOWLEDGMENTS

The authors wish to express their appreciation to those who aided in the preparation of this publication, especially to Messrs. J. C. Christiansen, C. V. Givan, and W. Dye.

LITERATURE CITED

- 1. EATON, FRANK M.
 - 1935. Boron in soils and irrigation waters and its effect on plants. U. S. Dept. Agr. Tech. Bul. 448:1-131.
- EATON, FRANK M., and L. V. WILCOX.
 1939. The behavior of boron in soils. U. S. Dept. Agr. Tech. Bul. 696:1-57.
- 3. Huberty, Martin R., and C. N. Johnston.
 - 1941. Hydrologic studies of the Putah Creek area in the Sacramento Valley, California. Hilgardia 14(3):119-46.
- 4. Kelley, W. P., and S. M. Brown.
 - 1928. Boron in the soils and irrigation waters of southern California and its relation to citrus and walnut culture. Hilgardia 3(16):445-58.