HILGARDIA

A Journal of Agricultural Science PUBLISHED BY THE California Agricultural Experiment Station

VOLUME I

MAY, 1925 TO JUNE, 1926

With 11 Plates and 143 Text Figures

UNIVERSITY OF CALIFORNIA PRINTING OFFICE BERKELEY, CALIFORNIA 1926

EDITORIAL BOARD

E. D. MERRILL, Sc.D.

- J. T. BARRETT, Ph.D. Plant Pathology
- F. T. BIOLETTI, M.S. Viticulture
- W. H. CHANDLER, Ph.D. Pomology
- R. E. CLAUSEN, Ph.D. Genetics
- H. E. ERDMAN, Ph.D. Agricultural Economics
- H. M. EVANS, M.D. Nutrition
- G. H. HART, M.D., D.V.M. Veterinary Science
- D. R. HOAGLAND, M.S. Plant Nutrition
- A. H. HOFFMAN, E.E. Agricultural Engineering

- W. L. HOWARD, Ph.D. Pomology
- H. A. Jones, Ph.D. Truck Crops
- W. P. KELLEY, Ph.D. Chemistry
- W. A. LIPPINCOTT, Ph.D. Poultry Husbandry
- C. S. MUDGE, Ph.D. Bacteriology
- H. J. QUAYLE, M.S. Entomology
- H. S. REED, Ph.D. Plant Physiology
- W. W. ROBBINS, Ph.D. Botany
- F. J. VEIHMEYER, C.E. Irrigation

CONTENTS

No. 1, MAY, 1925	PAGE
MERRILL, E. D. Explanatory note	1
TUFTS, W. P. and MORROW, E. B. Fruit-bud differentiation in deciduous fruits. (Eleven plates.)	3
No. 2, MAY, 1925	
Goss, HAROLD. The antiscorbutic value of commercially concentrated orange juice. (Fourteen text figures.)	15
No. 3, MAY, 1925	
KNIGHT, HUGH. Factors affecting efficiency in fumigation with hydrocyanic acid. (Ten text figures.)	35
No. 4, MAY, 1925	
TURNBOW, G. D. and TITUS, C. M. An accurate method of calculating ice cream mixes	57
No. 5, JUNE, 1925	
PROEBSTING, E. L. The relation of stored food to cambial activity in the apple. (Seven text figures.)	81
No. 6, JUNE, 1925	
WINKLER, A. J. and JACOB, H. E. The utilization of sulfur dioxide in the marketing of grapes. (Four text figures.)	107
No. 7, JUNE, 1925	
WEIR, WALTER W. Ground water fluctuations at Kearney Park, California. (Five text figures.)	133
No. 8, October, 1925	
BEACH, J. R. The effect of feeding cultures of <i>Bacillus acidophilus</i> , lactose, dry skim-milk or whole milk on the hydrogen ion concentration of the contents of the ceca of chickens	145
BEACH, J. R. and DAVIS, D. E. The influence of feeding lacrose or dry skim- milk on artificial infection of chicks with <i>Eimeria avium</i>	167
No. 9, November, 1925	
ROBBINS, W. W. and JONES, H. A. Secondary sex characters in Asparagus officinalis L. (Six text figures.)	183

No. 10, NOVEMBER, 1925	PAGE
HART, GEORGE H. and WOODS, GLADYS M. The location and longevity in calves	l
of Bacterium abortum ingested in milk and its effect on the aggluti-	
nation titre of their blood	203
No. 11 November 1095	
INO. 11, NOVEMBER, 1920	007
HOAGLAND, D. R. Physiological aspects of solition investigations	
No. 12, November, 1925	
Rosa, J. T. Sex expression in spinach. (Six text figures.)	259
No. 13, DECEMBER, 1925	
CRUESS, W. V., FONG, W. Y., and LIU, T. C. The rôle of acidity in vegetable	
canning. (Two text figures.)	275
No. 14. April. 1926	
HALMA, F. F. Factors governing the initiation of sprout growth in citrus	
shoots. (Eleven text figures.)	295
No. 15, April, 1926	
SHAW, CHARLES F. The effect of a paper mulch on soil temperature. (Six-	
teen text figures.)	341
No. 16. May. 1926	
FROST. HOWARD B. Polvembryony, heterozygosis, and chimeras in citrus.	
(Seven text figures.)	365
No. 17, MAY, 1926	
SMITH, RALPH H. The efficacy of lead arsenate in controlling the codling	
moth. (Nineteen text figures.)	403
No. 18 May 1926	
Coopy Smarry W Hilistica of the sails in the Cilman section (The	
text figures)	455
0010 Igu 001/	. 100
No. 19, JUNE, 1926	
HENDRICKSON, ARTHUR H. Certain water relations of the genus Prunus.	
(Nineteen text figures.)	479
No. 20, JUNE, 1926	
WINKLER, A. J. Some responses of Vitus vinifera to pruning. (Six text	t
figures.)	. 525

MAY, 1925

VOL. 1

A Journal of Agricultural Science

PUBLISHED BY THE

California Agricultural Experiment Station

CONTENTS

PAGE

NO. 1

Explanatory note - - - - - - - - - 1 E. D. MERRILL

Fruit-bud differentiation in deciduous fruits - 3 W. P. TUFTS AND E. B. MORROW

UNIVERSITY OF CALIFORNIA PRINTING OFFICE BERKELEY, CALIFÓRNIA

EDITORIAL BOARD

E. D. MERRILL, M.S.

J. T. Barrett, Ph.D. W. L. Howard, Ph.D. Plant Pathology H. A. Jones, Ph. D. F. T. Bioletti, M.S. Viticulture W. H. Chandler, Ph.D. W. P. Kelley, Ph.D. Pomology R. E. Clausen, Ph.D. Genetics H. E. Erdman, Ph.D. Agricultural Economics H. M. Evans, A.B., M.D. Nutrition G. H. Hart, M.D., D.V.M. Veterinary Science D. R. Hoagland, M.S. **Plant** Nutrition A. H. Hoffman, E.E. F. J. Veihmeyer, C. E. Agricultural Engineering

Chemistry W. A. Lippincott, Ph.D. Poultry Husbandry C. S. Mudge, Ph.D. Bacteriology H. J. Quayle, M.S. Entomology H. S. Reed, Ph.D. Plant Physiology W. W. Robbins, Ph.D. Botany

Pomology

Irrigation

Truck Crops

HILGARDIA

A JOURNAL OF AGRICULTURAL SCIENCE

PUBLISHED BY THE

CALIFORNIA AGRICULTURAL EXPERIMENT STATION

Vol. 1

MAY, 1925

No. 1

FRUIT-BUD DIFFERENTIATION IN DECIDUOUS FRUITS

BY

WARREN P. TUFTS AND E. B. MORROW

Fruit-bud formation, upon which fruit production is dependent, is undoubtedly influenced by such orchard practices as pruning, irrigation, and cultivation. For a successful study of the influence of these various practices upon fruit-bud formation, therefore, an intimate knowledge of the time of differentiation must be available. This paper is the report of studies which have been made under different California conditions over a period of nine years.

TIME OF FRUIT-BUD DIFFERENTIATION

It had been known in a general way that the flowers producing fruit in any year were formed some time during the preceding growing season, but it remained for Goff⁶ to recognize definitely the initial stages of flower-bud formation in deciduous orchard fruits. He determined by morphological studies the time when differentiation into flower-buds first occurs and traced the successive stages of development until the unfolding of the blossoms in the spring.

Differences amounting to several days or weeks have been found to occur in the date of the initiation of fruit-bud formation with regard to both elimatic influences, and to varieties and types of fruit.

Goff,⁶ in a comparison of apple varieties, found a variation of as much as five weeks in the time of flower-bud formation.

Kramer¹⁰ worked with several varieties each of the apple, pear, and cherry and found marked varietal differences, especially in the apple and pear. Little or no variation occurred in the cherry varieties studied. Kramer's work was conducted at Oppenheim, Germany.

Hilgardia

Bradford,¹ working in Oregon, found that some varieties differed both in the date of differentiation and in subsequent stages of summer and fall development. Rather wide differences, depending upon the position of buds on the tree, were found to occur in the time of fruitbud inception. In the Yellow Newtown, buds borne on spurs that had previously fruited, differentiated fully a month ahead of those borne terminally on one-year wood.

Magness¹² found that the initial stages in axillary buds of the apple occurred about one month later than in spur-buds on the same tree. He concluded that the difference between spur-buds and axillary buds seemed to be in degree of development and not in method.

Walker,¹⁵ working under the direction of the senior author of this paper, found that, in 1915, apricot spur-buds differentiated about twenty to twenty-four days earlier than buds on shoots which were largely vegetative in character. During the summer of 1916, however, the difference in the time of differentiation was only from six to eight days.

Wiggans,¹⁶ working also in California, determined the time of differentiation of the Bartlett pear and Royal apricot fruit-buds under the influence of three different sets of conditions, as follows:

- 1. Regional differences—a comparison of :
 - a. Coastal valleys--mild equable climate; average rainfall, thirty inches; elevation, a little above sea level.
 - b. Interior valleys—hot dry summers of low humidity; somewhat colder in winter than coastal valleys; average rainfall, about sixteen inches; elevation, a little above sea level.
 - c. Foothills—mild climate; summer temperature about the same as coastal valleys; winter temperature somewhat colder than interior valleys; rainfall, about forty inches; elevation, 3000 feet.
- 2. Heavy vs. light pruning.
- 3. Irrigation vs. no irrigation.

Wiggans' results are presented in a graphic way in plates 1 and 2; his conclusions from the one season's work were as follows:

"1. Pear fruit-buds begin to differentiate at approximately the same date under coastal valley, interior valley, and foothill conditions.

"2. Apricot fruit-buds begin to differentiate at approximately the same date under coastal valley, interior valley, and foothill conditions.

"3. The high altitude of the foothills seems to have a retarding influence on fruit-bud development until the middle of September, when development becomes quite rapid.

"4. The humid coastal influence apparently stimulates rapid development of pear buds after differentiation. This is not the case with apricots until October, when development becomes extremely rapid and the buds go into the winter at a more advanced stage than is found under either interior valley or foothill conditions.

"5. The dry hot interior valley appears to induce a steady, uniform development of both pear and apricot fruit-buds; however, these have not reached the advanced stage of development by early winter that buds from the coastal valley and foothills have attained.

"6. The inception of fruit-bud differentiation seemingly is not influenced to any extent by either heavy or light dormant pruning. Light pruning perhaps tends to induce a slightly more rapid development for six to eight weeks after fruit-bud differentiation of the pear.

"7. Irrigation shows a tendency to retard fruit-bud differentiation and development.

"8. Environmental conditions during the winter, as found in the principal fruit growing districts of California, apparently do not exert a checking influence upon fruit-bud development of the pear and apricot."

Plates 1 and 2 present the above facts in graphic form.

Methods Used in this Investigation

Collection and Preservation of Material.—For the sake of brevity, no attempt is made at this time to describe the collection of materials which was made each season from 1915 to 1923, inclusive, except to say that with minor variations, these collections were identical with those which are here recorded for the 1923 season.

During 1923, all the material studied was collected on the University Farm at Davis, California. Probably various differences in soil, climate, and cultural treatments bring about minor differences in the time of differentiation; however, the work done by Wiggans tends to show that, at least for California and for the varieties studied, the results obtained from materials collected at the University Farm can be taken as generally applicable to the leading deciduous fruit sections of the state.

Hilgardia

Material for study was secured at intervals of approximately ten days from May 18, up to the middle of August, 1923. From then until early November, collections were made every two weeks and subsequently at somewhat wider intervals until December 22. Collections were made from the following fruits and varieties:

Fruit	Species	Variety
Almond	Prunus amygdalus	Nonpareil
Apple	Pyrus malus	Gravenstein
Cherry (sour)	Prunus cerasus	Early Richmond
Cherry (sweet)	Prunus avium	Napoleon (Royal Ann)
Peach	Prunus persica	Elberta
Pear	Pyrus communis	Bartlett
Plum (European)	Prunus domestica	French (prune)
Plum (Japanese)	$Prunus\ salicina\ imes$	Wickson
	Prunus simonii	

Only spur-buds were collected from the almond, apple, apricot, cherry, pear, and plum, while from the peach, buds were collected from the current season's shoots only. At each collection approximately forty buds, well distributed throughout the tree, were taken and immediately put into the formalin-alcohol killing and fixing solution* in which they were preserved until sectioning could be accomplished.

Sectioning.—With the apricot, cherry, plum, and peach, the paraffin method of embedding as outlined by Chamberlain² was found reasonably satisfactory as a means of preparing the buds for sectioning. With the apple and pear, however, the paraffin method proved unsatisfactory because of the extremely hairy nature of the material. Even with the careful trimming off of the bud scales or other woody portions and the removal of a large number of hairs under the dissecting microscope, infiltration was difficult and the sections broke on the microtome blade.

Much time was spent in an effort to find a satisfactory method of sectioning this refractory material. Chloroform was tried as a clearing agent, but buds cleared in chloroform sectioned little better than those cleared in xylol. Buds were also soaked in hydrofluoric acid for a period of ten days to two weeks before being embedded in paraffin, but this too gave only indifferent results.

4

A considerable amount of effort was spent in trying to adapt a combination of the paraffin and celloidin methods to the material in hand. The first method tried was that reported by Kornhauser,⁹ but the infiltration process is long, and the results secured in sectioning were not satisfactory. An attempt was made to shorten the celloidin infiltration by using Gilson's⁵ "Rapid Process" method, but few successful sections were thus obtained. An abridgment of the Kornhauser method by de Zeeuw³ of Michigan gave reasonably satisfactory results. By this method the material was infiltrated in medium celloidin and then dropped directly into chloroform. In preparation for the paraffin infiltration and embedding, Apathay's oil mixture was omitted and chloroform was substituted for benzol.

De Zeeuw's method is short and convenient to use, and offers many of the advantages of the celloidin and paraffin methods with few of the disadvantages of either. He reports that with ordinary fixatives the sections sometimes wash off the slides when the celloidin is removed; he recommends, therefore, Szomobathy's gelatin fixative wherever this difficulty is experienced. However, in the present investigation, no trouble of this kind arose while using an albumenglycerine fixative, when the paraffin was dissolved in xylol and the celloidin in ethyl alcohol.

Staining.—A combination stain of safranin and Delafield's haemotoxylin gave the most satisfactory results. The sections were overstained in safranin and de-stained in acid alcohol; then over-stained in haemotoxylin and reduced by placing in water to which had been added a few drops of concentrated hydrochloric acid.

PRESENTATION OF RESULTS

Goff⁶ considered that slight irregularities in the growing point or erown of the bud were the first evidences that differentiation had taken place. He found that in the individual flower-bud, the calyx was first to be formed, and concluded that "in the normal order of development the corolla originates next after the calyx, and is followed in turn by the stamens and pistil."

Drinkard⁴ also considered that corrugations on the crown of the bud were the first morphological evidences that a differentiation into flower-buds had taken place.

Hilgardia

Kraus,¹¹ in a study of the gross morphology of the apple, has the following to say with regard to the first indications of a change into a flower-bud: "From a study of many sections and dissections, it is found that the first observable indication of the flower is the more or less thickening of the axis. Minute bracts, in the axils of which are formed blunt protuberances, arise from it in a very close spiral. The tip of the axis never loses its identity, but on the contrary enlarges considerably and always develops slightly in advance of the protuberances immediately below it. Later, these protuberances develop into definite individual flowers."

Bradford,¹ in writing of the apple, says that "the first evidence of fruit-bud formation lies in the rapid elevation of the crown into a narrow conical form, rounded at the apex, with the fibro-vascular connections and pith areas advancing concurrently. In the axils of the young leaves, already noted in connection with the differentiated bud, appear other protuberances which soon become blunt at the tip, while at the same time other leaf protuberances appear in their axils. The apical protuberance is differentiated last, but when it does take shape it is already larger than those previously laid down, apparently appropriating a larger mass of tissue in its formation."

In this investigation the authors have considered the definite broadening and thickening of the floral axis as evidence of the first differentiation of the floral parts. The formation of slight proturberances which eventually become calyx, corolla, stamens, and pistil follows almost immediately, varying somewhat in detail, of course, with the different species. The detailed comments on the specific fruits apply particularly to the 1923 season unless otherwise mentioned.

Almond.—The Nonpareil almond showed no signs of differentiation until September 1 (pl. 3, fig. 3). Several buds from this collection showed elongated crowns, flattened on top, indicating that differentiation had already occurred. In the case of buds from the collection made on September 15 the crown had thickened considerably, and the sepal primordia had begun to push up from the sides. Salinger,¹³ working in California during the 1915 season, found that differentiation had occurred in the I.X.L. variety of almond on August 18. Apple.—In the Gravenstein apple some of the buds from the collection made on June 11 had already begun to develop into flowerbuds (pl. 4, fig. 1). By June 20, the apical flower had enlarged considerably and was showing prominent sepal primordia, and the adjacent flowers were clearly visible. Growth was rapid during the next few days and the petal primordia had appeared on July 11. Buds collected on August 17 showed stamen primordia, and by October 13 the early stages of pistil formation were plainly visible. Later growth was apparently somewhat slower, few changes occurring from November 10 to December 22.

Apricot.—The Royal apricot showed first signs of differentiation on August 10 (pl. 5, fig. 1). At this time the axis of the crown was considerably thickened, and the sepal primordia were beginning to arise from the sides. Walker¹⁵ observed the initial stage on August 4, 1915, and August 10, 1916, and Wiggans¹⁶ on August 10, 1922. The gradual development of the flower-bud is shown (pl. 5, figs. 2–8).

Cherry.—The first collection of Early Richmond cherry (Prunus cerasus) was made on July 12. At this time the earlier stages of the individual flower-buds had appeared in the form of prominent protuberances (pl. 6, fig. 1). By August 10, both sepal and petal primordia were plainly visible, and buds from the collection of September 1 showed the earlier stages of stamen and pistil formation. All flower parts had very nearly assumed their final form by September 29, and the ovarian cavity had appeared on October 13. Growth was relatively slow from early November until December 22.

In the Napoleon (Royal Ann) cherry (*Prunus avium*), the first clear evidences of differentiation appeared on July 3 (pl. 7, fig. 1). By July 30 the sepal protuberances were beginning to push up from the sides of the buds, and on August 17 both petal and stamen primordia had appeared, and the pistil was beginning to grow from the base of the flower-cup. All flower parts had assumed their final form by late September, little development occurring from this time until late in the dormant season.

Peach.—In the Elberta peach, differentiation had taken place by July 30 (pl. 8, fig. 2). On August 10 the sepal primordia were beginning to appear and by August 17 the earlier stages of petal formation were clearly visible.

Hilgardia

Pear (pl. 9).—In collections from the Bartlett pear made on June 21, some of the buds showed the earlier stages of fruit-bud formation. By July 3 the axial flower-buds had appeared. Growth was gradual from this time until the latter part of November; few gross changes took place from November 30 until early spring. The results here reported complete three seasons observations in California of fruitbuds of the Bartlett pear. In 1915 Henderson⁸ found first evidences of differentiation on July 3, and Wiggans¹⁶ working during the 1922 season, found that differentiation had occurred on July 4. Although some of the buds from the collection of June 21, 1923, showed evidences of flower-bud formation, it is quite probable that the percentage of buds differentiated at this time is very small, and fruitbud differentiation in the Bartlett pear under California conditions may be said to begin during early July.

Plum (pl. 10).—Buds from the French prune (*Prunus domestica*) collected on August 10 showed no signs of differentiation, but those collected on August 17 showed individual flower-buds. Generally speaking, the stages of growth were somewhat variable on the same date. This may be partly accounted for by the fact that the tree from which the buds were collected was practically defoliated in August by a severe infestation of red spider. It is of interest to note that Hartwell⁷ found the first observable stages of differentiation in the French prune to occur six weeks earlier during 1920 than was the case in 1923.

Bud specimens taken on August 10 (pl. 11, fig. 1) from the Wickson plum (*Prunus salicina* × *Prunus simonii*), showed the bud scales still arising from the sides of the crown; no evidences of differentiation were found. By September 1 the individual flower-buds had appeared and the sepal primordia were pushing up from the sides of the bud. In the collection of October 13, the earlier stages of petal, stamen, and pistil formation were visible, and by December 22 all flower parts had assumed final form. Trunk¹⁴ found that the Wickson plum showed first evidences of differentiation on July 31 during the 1915 season.

Table 1 gives in condensed form the findings of various investigators, including those reported here, as to initiation of flower-bud formation in deciduous fruits.

TABLE 1

Fruit	Variety	Differentiation first noted	Locality	Investigator
Almond	I. X. L.	August 18, 1915	California	Salinger
	Nonpareil	September 9, 1923	California	Tufts and Morrow
Apple	Hoadley	June 30, 1899	Wisconsin	Goff
	Oldenburg	June 30, 1909	Virginia	Drinkard
	Yellow Newtown	Early July, 1912	Oregon	Bradford
	Gravenstein	June 11, 1923	California	Tufts and Morrow
Apricot	Royal	August 4, 1915	California	Walker
	Royal	August 10, 1916	California	Walker
	Royal	August 11, 1922	California	Wiggans
	Royal	August 10, 1923	California	Tufts and Morrow
Blackberry	Snyder	Late August, 1915	New York	MacDaniels
Cherry	King's Amarelle	July 11, 1899	Wisconsin	Goff
	King's Amarelle	July 5, 1900	Wisconsin	Goff
	Louis Phillippe	July 1, 1909	Virginia	Drinkard
	(No variety named)	Before end of July, 1922	Germany	Kramer
	Early Richmond	July 12, 1923	California	Tufts and Morrow
	Napoleon(Royal Ann).	July 3, 1923	California	Tufts and Morrow
Cranberry	(No variety named)	September 16, 1900	Wisconsin	Goff
Currant	Pomona	July 8, 1900	Wisconsin	Goff
	Black Victoria	August 3, 1900	Wisconsin	Goff
	Cherry Red	Early August, 1915	New York	MacDaniels
Filbert	(No variety named)	Catkins—June 10, 1894 Pistillate flowers— Early September	Germany	Albert
Gooseberry	Downing	August 30, 1900	Wisconsin	Goff
	Houghton	Early August, 1915	New York	MacDaniels
Grape	(No variety named)	Mid-June, 1898	Germany	Behrens
Peach	Bokhara	September 21, 1900	Wisconsin	Goff
	Luster	July 7, 1909	Virginia	Drinkard
	Deming's September	June 14, 1900	Georgia	Quaintance
	Elberta	June 30, 1923	California	Tufts and Morrow
Pear	Wilder Early	July 21, 1899	Wisconsin	Goff
	Wilder Early	September 6, 1900	Wisconsin	Goff
	Kieffer	July 15, 1909	Virginia	Drinkard
	Bartlett	July 3, 1915	California	Henderson
	Bartlett	July 4, 1922	California	Wiggans
	Bartlett	June 21, 1923	California	Tufts and Morrow
Plum	Rollingstone	July 8, 1899	Wisconsin	Goff
	Rollingstone	July 5, 1900	Wisconsin	Goff
	Whitaker (Wild Goose).	September 1, 1909	Virginia	Drinkard
	Japanese	July 14, 1909	Virginia	Drinkard
	Wickson	July 31, 1915	California	Trunk
	Wickson	Mid-August, 1923	California	Tufts and Morrow
Prune	French	June 29, 1920	California	Hartwell
	French	Mid-August, 1923	California	Tufts and Morrow
Raspberry	Cumberland (Black)	October 6, 1915	New York	MacDaniels
	Herbert (Red)	January 11, 1916	New York	MacDaniels
Strawberry	Clyde	September 20, 1900	Wisconsin	Goff

SUMMARY

A study has been made, using approved laboratory methods, of the date of fruit-bud differentiation in some of the principal fruits of temperate climates produced in California. The approximate dates of differentiation are briefly summarized in the following table:

Fruit	Variety	Date of Differentiation
Almond	Nonpareil	Late August—Early September
Apple	Gravenstein	Mid-June
Apricot	Royal	Early August
Cherry (Sour)	Early Richmond	Early July
Cherry (Sweet)	Napoleon (Royal Ann)	Late June-Early July
Peach	Elberta	Late July
Pear	Bartlett	Late June—Early July
Plum (European)	French	Late July—Early August
Plum (Japanese)	Wickson	Late July—Early August

TABLE 2

The following conclusion seems justified :

The date of differentiation may vary somewhat in widely separated regions within any one species, although it seems that under most conditions in California little variation occurs.

ACKNOWLEDGMENTS

The writers wish to express their appreciation to the following:

To the several advanced undergraduates and graduate students, mentioned specifically in the text, without whose aid in the collection, preparation, and study of a large amount of the material it would have been impossible to complete the work here reported.

To Miss Edna Russ for her untiring assistance in the preparation of the photographs used as illustrations.

To Drs. W. L. Howard, E. J. Kraus, and W. W. Robbins for suggestions and criticisms.

LITERATURE CITED

¹ BRADFORD, F. C. 1915. Fruit-bud development of the apple. Oregon Agr. Exp. Bull. 129: 1-16, pls. I-VI. ² CHAMBERLAIN, C. J. 1915. Methods of plant histology, pp. 1-307, figs. 1-107. ³ DE ZEEUW, RICHARD 1923. The value of double infiltration in botanical microtechnique. Papers Michigan Acad. Sci. 1:83-84. 4 DRINKARD, A. W. 1910. Fruit-bud formation and development. Virginia Agr. Exp. Sta. Rept. 1909-1910:159-205, figs. 63-168. ⁵ GILSON. 1905. Quoted by Lee in the "Microtomist's Vade-Mecum," p. 131. ⁶ Goff, E. S. 1899. Wisconsin Agr. Exp. Sta. Rept. 1889:289-303, figs. 55-77. 1900. Wisconsin Agr. Exp. Sta. Rept. 1900:266-285, figs. 40-72. 1903. Wisconsin Agr. Exp. Sta. Rept. 1903:360-362. 7HARTWELL, RUTH S. 1921. The differentiation and development of the fruit-buds of the French prune. Unpublished thesis, Univ. of California, pp. 1-12, pls. I-VI. 8 HENDERSON, W. 1916. The differentiation and early development of the flower-buds of the Bartlett pear. Unpublished thesis, Univ. of California, pp. 1-30, pls. I-XII. 9 KORNHAUSER, S. I. 1916. Celloidin-paraffin method. Science, n.s., 44:57. 10 KRAMER, O. 1923. Flower-buds and the time of their formation. Exp. Sta. Record 48:443. ¹¹ KRAUS, E. J. 1913. Gross morphology of the apple. Oregon Sta. Research Bull. 1:1-12, pls. I-VII. ¹² MAGNESS, J. R. 1916. Pruning investigations. Oregon Sta. Bull. 139:46-78, pls. X-XIX. 13 SALINGER. R. 1916. Formation and development of the fruit-buds of the almond. Unpublished thesis, Univ. of California, pp. 1-26, pls. I-VIII. 14 TRUNK, HAROLD F. 1916. A study of the formation and development of the fruit-buds of Wickson plum. Unpublished thesis, Univ. of California, pp. 1-11, pls. I-XIV.

¹⁵ WALKER, R. M.

1917. The formation and development of the fruit-buds of the Royal apricot. Unpublished thesis, Univ. of California, pp. 1-51, pls. I-XX.

16 WIGGANS, C. B.

1923. A study of the influence of certain environmental and cultural conditions on fruit-bud formation of pear and apricot. Unpublished thesis, Univ. of California, pp. 1-29, pl. I-XIX.

EXPLANATION OF THE PLATES

PLATE 1

Outline drawings of longitudinal sections through Bartlett pear fruit-buds showing the average stages of development at different dates under various climatic environments, soil moistures, and pruning treatments. (From thesis by Wiggans.)

PLATE 2

Outline drawings of longitudinal sections through Royal apricot fruit-buds showing the average stages of development at different dates, under various climatic environments, soil moistures, and pruning treatments. (From thesis by Wiggans.)

PLATE 3

Photomicrographs of longitudinal sections through fruit-buds of the Nonpareil almond (\times 40).

Fig. 1. July 30, 1923.
Fig. 2. August 17, 1923.
Fig. 3. September 1, 1923.
Fig. 4. September 15, 1923.

PLATE 4

Photomicrographs of longitudinal sections through fruit-buds of the Gravenstein apple (\times 40).

Fig. 1. June 11, 1923.
Fig. 2. July 11, 1923.
Fig. 3. October 13, 1923.
Fig. 4. December 22, 1923.

PLATE 5

Photomicrographs of longitudinal sections through fruit-buds of the Royal apricot (\times 40).

 Fig. 1.
 August 10, 1923.

 Fig. 2.
 September 1, 1923.

 Fig. 3.
 October 5, 1915.

 Fig. 4.
 October 30, 1922.

PLATE 5—(Continued)

Photomicrographs of longitudinal sections through fruit-buds of the Royal apricot (\times 40).

Fig. 5. November 22, 1915.
Fig. 6. January 13, 1916.
Fig. 7. February 10, 1916.
Fig. 8. February 17, 1916.

Hilgardia

PLATE 6

Photomicrographs of longitudinal sections through fruit-buds of the Early Richmond cherry (\times 40).

- Fig. 1. July 12, 1923.
- Fig. 2. August 17, 1923.

Fig. 3. September 15, 1923.

Fig. 4. November 30, 1923.

PLATE 7

Photomicrographs of longitudinal sections through fruit-buds of the Napoleon cherry $(\times 40)$.

Fig. 1. July 3, 1923.
Fig. 2. July 30, 1923.
Fig. 3. August 17, 1923.
Fig. 4. November 20, 1923.

PLATE 8

Photomicrographs of longitudinal sections through fruit-buds of the Elberta peach $(\times 40)$.

 Fig. 1.
 July 20, 1923.

 Fig. 2.
 July 30, 1923.

 Fig. 3.
 August 10, 1923.

 Fig. 4.
 August 17, 1923.

PLATE 9

Photomicrographs of longitudinal sections through fruit-buds of the Bartlett pear (\times 40).

Fig. 1.	July 21, 1923.
Fig. 2.	July 31, 1922.
Fig. 3.	November 30, 1923.
Fig. 4.	February 28, 1923.

PLATE 10

Photomicrographs of longitudinal sections through fruit-buds of the French prune (\times 40).

- Fig. 1. August 17, 1920.
- Fig. 2. September 15, 1920.
- Fig. 3. December 7, 1920.
- Fig. 4. February 2, 1921.

PLATE 11

Photomicrographs of longitudinal sections through fruit-buds of the Wickson plum (\times 40).

- Fig. 1. August 10, 1923.
- Fig. 2. September 1, 1923.
- Fig. 3. October 13, 1923.
- Fig. 4. December 22, 1923.

Royal Apricot Fruit Buds by Conditions Indicated in 1922-23 os Influenced Seasonal Development of

NONPAREIL ALMOND

Fig. 1

Fig. 4

HILGARDIA, VOL. 1, NO. 1

GRAVENSTEIN APPLE

Fig. 3

Fig. 4

ROYAL APRICOT

Fig. 1

Fig. 3

Fig. 4

ROYAL APRICOT

Fig. 6

Fig. 7

Fig. 8

EARLY RICHMOND CHERRY

Fig. 1

NAPOLEON CHERRY

Fig. 1

Fig. 3

Fig. 4

ELBERTA PEACH

Fig. 2

Fig. 3

BARTLETT PEAR

Fig. 1

Fig. 2

Fig. 3

Fig. 4

FRENCH PRUNE

Fig. 3

WICKSON PLUM

Fig. 1

Fig. 2

The titles of the Technical Papers of the California Agricultural Experiment Station, Nos. 1 to 20, which HILGARDIA replaces, and copies of which may be had on application to the Publication Secretary, Agricultural Experiment Station, Berkeley, are as follows:

- 1. The Removal of Sodium Carbonate from Soils, by Walter P. Kelley and Edward E. Thomas. January, 1923.
- The Formation of Sodium Carbonate in Soils, by Arthur B. Cummins and Walter P. Kelley. March, 1923.
- Effect of Sodium Chlorid and Calcium Chlorid upon the Growth and Composition of Young Orange Trees, by H. S. Reed and A. R. C. Haas. April, 1923.
- Citrus Blast and Black Pit, by H. S. Fawcett, W. T. Horne, and A. F. Camp. May, 1923.
- 6. A Study of Deciduous Fruit Tree Rootstocks with Special Reference to Their Identification, by Myer J. Heppner. June, 1923.
- 7. A Study of the Darkening of Apple Tissue, by E. I. Overholser and W. V. Cruess. June, 1923.
- Effect of Salts on the Intake of Inorganic Elements and on the Buffer System of the Plant, by D. R. Hoagland and J. C. Martin. July, 1923.
- 9. Experiments on the Reclamation of Alkali Soils by Leaching with Water and Gypsum, by P. L. Hibbard. August, 1923.
- The Seasonal Variation of the Soil Moisture in a Walnut Grove in Relation to Hygroscopic Coefficient, by L. D. Batchelor and H. S. Reed. September, 1923.
- 11. Studies on the Effects of Sodium, Potassium, and Calcium on Young Orange Trees, by H. S. Reed and A. R. C. Haas. October, 1923.
- 12. The Effect of the Plant on the Reaction of the Culture Solution, by D. R. Hoagland. November, 1923.
- Some Mutual Effects on Soil and Plant Induced by Added Solutes, by John S. Burd and J. C. Martin. December, 1923.
- 14. The Respiration of Potato Tubers in Relation to the Occurrence of Blackheart, by J. P. Bennett and E. T. Bartholomew. January, 1924.
- Beplaceable Bases in Soils, by Walter P. Kelley and S. Melvin Brown. February, 1924.
- 16. The Moisture Equivalent as Influenced by the Amount of Soil Used in its Determination, by F. J. Veihmeyer, O. W. Israelson and J. P. Conrad. September, 1924.
- Nutrient and Toxic Effects of Certain Ions on Citrus and Walnut Trees with Especial Reference to the Concentration and Ph of the Medium, by H. S. Reed and A. R. C. Haas. October, 1924.
- Factors Influencing the Eate of Germination of Seed of Asparagus officinalis, by H. A. Borthwick. March, 1925.
- 19. The Belation of the Subcutaneous Administration of Living Bacterium abortum to the Immunity and Carrier Problem of Bovine Infectious Abortion, by George H. Hart and Jacob Traum. April, 1925.
- 20. A Study of the Conductive Tissues in Shoots of the Bartlett Pear and the Relationship of Food Movement to Dominance of the Apical Buds, by Frank E. Gardner. April, 1925.