Hilgardia
Hilgardia
Hilgardia
University of California
Hilgardia

A mathematical model of diffusion under saturated conditions to assess the pollution potential of herbicides to aquatic systems

Authors

D. L. Corwin
W. J. Farmer

Authors Affiliations

D. L. Corwin was former Graduate Research Assistant in the Department of Soil and Environmental Sciences, University of California, Riverside, is now Soil Scientist with the U.S. Salinity Laboratory, USDA-ARS; W. J. Farmer was Professor of Soil Science and Chemist in the Department of Soil and Environmental Sciences, University of California, Riverside.

Publication Information

Hilgardia 53(3):1-35. DOI:10.3733/hilg.v53n03p035. July 1985.

PDF of full article, Cite this article

Abstract

Abstract

The physicochemical dynamics of a pesticide-sediment-water system were studied utilizing a one-dimensional numerical model of diffusion under saturated conditions, with nonlinear Freundlich/Langmuir adsorption-desorption. Specifically, the model was formulated to assess the pollution potential of pesticides to aquatic systems, based upon their ability to migrate within the aquatic environment.

Initial physical and chemical characterization of eight freshwater sediments, and adsorption studies using two chemically dissimilar herbicides—bromacil and diquat—revealed insightful positive relationships between adsorption coefficients and sediment properties. Bromacil showed a high positive correlation between the Freundlich sorption partition coefficient and the organic carbon content. Diquat adsorption, as characterized by a Langmuir-type adsorption, showed a high positive correlation between the Langmuir affinity constant and the surface area, while the Langmuir adsorption maxima correlated highly with the cation exchange capacity of sediments treated for the removal of organic matter. Apparent heats of adsorption for bromacil at 5° and 25°C were low, indicating a predominantly physical type of adsorption. Temperature change was found to have little or no effect upon the adsorption of diquat over the range of observed temperatures, 5° and 25°C. Rates of adsorption for both bromacil and diquat were very rapid, especially on sediments with small organic matter fractions. In general, diquat took slightly longer than bromacil to attain equilibrium. The slower adsorption rate of diquat on high-organic-matter sediments confirms previous findings indicating a possible redistribution of diquat from adsorption sites on the organic fraction to adsorption sites on the clay surface. Varying the initial solution concentration of either bromacil or diquat did not significantly affect the reaction rates. Desorption studies for bromacil and diquat showed that for each sediment, a unique linear relationship existed between the adsorbate concentration at which desorption began and the slope of the desorption isotherm.

Literature Cited

ALLISON L. E. Organic carbon. American Society of Agronomy Monographs, no. 9 (part 2). Methods of Soil Analysis. 1965. New York: American Press, Inc. p. 1367-78.

BARKLEY J. H. A simple mud sampling device. Bull. Environ. Contam. Toxicol. 1971. 6:313-15. DOI: 10.1007/BF01539996 [CrossRef]

BAVER L. D. The effect of organic matter upon several physical properties of soils. J. Am. Soc. Agron. 1930. 22:703-8.

BOWER C. A., GSCHWEND F. B. Ethylene glycol retention by soils as a measure of surface area and interlayer swelling. Soil Sci. Soc. Am. Proc. 1952. 16:342-45.

BROADBENT F. E. The soil organic fraction. Adv. Agron. 1953. 5:153-83. DOI: 10.1016/S0065-2113(08)60229-1 [CrossRef]

CARSLAW H. S., JAEGER J. C. Linear flow of heat: The infinite and semi-infinite solid. Conduction of Heat in Solids. 1959. 2d ed. Oxford: Oxford Univ. Press. chap. 2

CHAPMAN H. D., PRATT P. F. Soil analysis. Methods of Analysis for Soils, Plants, and Waters. 1961. Berkeley and Los Angeles: Univ. of Calif. Press. p. 28-30. DOI: 10.1097/00010694-196108000-00014 [CrossRef]

COATS G. E., FUNDERBURK H. H. Jr., LAWRENCE J. M., DAVIS D. E. Factors affecting persistence and inactivation of diquat and paraquat. Weed Res. 1966. 6:58-66. DOI: 10.1111/j.1365-3180.1966.tb00867.x [CrossRef]

DIXON J. B., MOORE D. E., AGNIHOTRI N. P., LEWIS D. E. Jr. Exchange of diquat2+ in soil clays, vermiculite, and smectite. Soil Sci. Soc. Am. Proc. 1970. 34:805-8.

FUNDERBURK H. H. Jr., NEGI N. S., LAWRENCE J. M. Photochemical decomposition of diquat and paraquat. Weeds. 1966. 14:240-43. DOI: 10.2307/4040922 [CrossRef]

FURMIDGE C. G., OSGERBY J. M. Persistence of herbicides in soil. J. Sci. Food Agric. 1967. 18:269-73. DOI: 10.1002/jsfa.2740180701 [CrossRef]

GAMAR Y., MUSTAFA M. A. Adsorption and desorption of diquat2+ and paraquat2+ on arid-zone soils. Soil Sci. 1975. 119(4):290-95.

GORING C. A. I. Control of nitrification by 2-chloro-b (trichloromethyl) pyridine. Soil Sci. 1962. 93:211-18.

GORING C. A. I. Physical aspects of soil in relation to the action of soil fungicides. Annu. Rev. Phytopathol. 1967. 5:285-318. DOI: 10.1146/annurev.py.05.090167.001441 [CrossRef]

GRAHAM-BRYCE I. J. Adsorption of disulfoton by soil. J. Sci. Food Agric. 1967. 18:72-77. DOI: 10.1002/jsfa.2740180208 [CrossRef]

HAMAKER J. W., THOMPSON J. M., Goring C. A. I., Hamaker J. W. Adsorption. Organic Chemicals in the Soil Environment. 1972. 1: New York: Marcel Dekker Inc. p. 49-143. DOI: 10.1002/recl.19390581008 [CrossRef]

HAQUE R., LINDSTROM F. T., FREED V. H., SEXTON R. Kinetic study of the sorption of 2,4-D on some clays. Environ. Sci. Technol. 1968. 2(3):207-11. DOI: 10.1021/es60015a002 [CrossRef]

HARTLEY G. S., Audus L. J. Herbicide behavior in soil. The Physiology and Biochemistry of Herbicides. 1964. New York: Academic Press. p. 111-61.

HUNT E. G., BISCHOFF A. I. Inimical effects on wildlife of periodic DDT applications to Clear Lake. Calif. Fish Game. 1960. 46:91-106.

JURY W. A., SPENCER W. F., FARMER W. F. Behavior assessment model for trace organics in soil: I. Model description. J. Environ. Qual. 1983. 12(4):558-64. DOI: 10.2134/jeq1987.00472425001600040027x [CrossRef]

KARICKHOFF S. W. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere. 1981. 10:833-46. DOI: 10.1016/0045-6535(81)90083-7 [CrossRef]

KNIGHT B. A. G., TOMLINSON T. E. The interaction of paraquat (1,1’-dimethyl 4,4’-dipyridylium dichloride) with mineral soils. J. Soil Sci. 1967. 18:233-43.

KNIGHT B. A. G., TOMLINSON T. E. In Sorption and Transport Processes in Soils 1970. p.54. Soc. Chem. Ind. London Chem. Eng. Group Proc

KRAYBILL H. F. Biological effects of pesticides in mammalian systems. Ann. N.Y. Acad. Sci. 1969. 160:1-422.

LAMBERT S. M. Omega (?), a useful index of soil sorption equilibria. J. Agric. Food Chem. 1968. 16(2):340-43.

LAMBERT S. M., PORTER P. E., SCHIEFERSTEIN R. H. Movement and sorption of chemicals applied to the soil. Weeds. 1965. 13:185-90. DOI: 10.2307/4041022 [CrossRef]

LAVY T. L., MESSERSMITH C. G., KNOCHE H. W. Direct liquid scintillation radioassay of 14C-labeled herbicides in soils. Weed Sci. 1972. 20(3):215-19.

MILLINGTON R. J., QUIRK J. P. Permeability of porous solids. Trans. Faraday Soc. 1961. 57:1200-1207. DOI: 10.1039/tf9615701200 [CrossRef]

MORTLAND M. M., KEMPER W. D. Specific surface. American Society of Agronomy Monographs, no. 9 (part 1). Methods of Soil Analysis. 1965. New York: American Press, Inc. p. 532-44.

MRAK E. M. Report of the Secretary’s commission on pesticides and their relationship to environmental health. U.S. Dept. of Health, Education, and Welfare. 1969. Washington, D.C.: Government Printing Office.

OLSEN R. V. Iron. American Society of Agronomy Monographs, no. 9 (part 2), Methods of Soil Analysis. 1965. New York: American Press, Inc. p. 963-73. DOI: 10.1111/j.0954-6820.1972.tb04865.x [CrossRef]

PECK D. E., CORWIN D. L., FARMER W. J. Adsorption-desorption of diuron by freshwater sediments. J. Environ. Qual. 1980. 9(1):101-6.

PETERLE T. J., Gillett J. W. The biological impact of pesticides in the environment. 1970. Corvallis: Environmental Health Services Center, Oregon State Univ.

PHILEN O. D. Jr., WEED S. B., WEBER J. B. Estimation of surface charge density of mica and vermiculite by competitive adsorption of diquat vs. paraquat. Soil Sci. Soc. Am. Proc. 1970. 34:527-31. DOI: 10.2136/sssaj1970.03615995003400030045x [CrossRef]

PICKERING Q. H., HENDERSON C., LEMKE A. E. The toxicity of organic phosphorus insecticides to different species of warm water fishes. Trans. Am. Fish. Soc. 1962. 91(2):175-84.

PIMENTEL D. In Ecological Effects of Pesticides on Non-target Species. 1971. Washington, D.C.: Government Printing Office.

VAN VELZEN A. C., STILES W. B., STICKEL L. F. J. Wildl. Manage. 1972. 36(3):733-39.

WEBER J. B., COBLE H. D. Microbial decomposition of diquat adsorbed on montmorillonite and kaolinite clays. J. Agric. Food Chem. 1968. 16:475-78. DOI: 10.1021/jf60157a023 [CrossRef]

WEBER J. B., MEEK R. C., WEED S. B. The effect of cation-exchange capacity on the retention of diquat2+ and paraquat2+ by three-layer type clay minerals: II. Plant availability of paraquat. Soil Sci. Soc. Am. Proc. 1969. 33:382-85.

WEBER J. B., PERRY P. W., UPCHURCH R. P. The influence of temperature and time on the adsorption of paraquat, diquat, 2,4-D, and prometone by clays, charcoal, and an anion-exchange resin. Soil Sci. Soc. Am. Proc. 1965. 19:679-88.

WEBER J. B., SCOTT D. C. Availability of a cationic herbicide adsorbed on clay minerals to cucumber seedlings. Science. 1966. 152:1400-1402. DOI: 10.1126/science.152.3727.1400 [CrossRef]

WEBER J. B., WARD T. M., WEED S. B. Adsorption and desorption of diquat, paraquat, prometone, and 2,4-D by charcoal and exchange resins. Soil Sci. Soc. Am. Proc. 1968. 32:197-200.

WEBER J. B., WEED S. B. Adsorption and desorption of diquat, paraquat, and prometone by montmorillonite and kaolinite clay minerals. Soil Sci. Soc. Am. Proc. 1968. 32:485-87.

Guenzi W. D. Effects of soil on the biological activity of pesticides. Pesticides in Soil and Water. 1974. Madison: Soil Science Society of America. p. 223-56. DOI: 10.2136/1974.pesticides.c10 [CrossRef]

WEED SCIENCE SOCIETY OF AMERICA. Diquat. Herbicide Handbook of the Weed Science Society of America. 1974. Champaign: Weed Science Society of America. p. 167-72.

WILSON D. C., BOND C. E. Effects of the herbicides diquat and dichlobenil (Casoron) on pond invertebrates: I. Acute toxicity. Trans. Am. Fish. Soc. 1969. 98(3):438-43. DOI: 10.1577/1548-8659(1969)98[438:TEOTHD]2.0.CO;2 [CrossRef]

WOLF D. C., MARTIN J. P. Microbial degradation of 2-carbon-14 bromacil and terbacil. Soil Sci. Soc. Am. Proc. 1974. 38:921-25. DOI: 10.2136/sssaj1974.03615995003800060025x [CrossRef]

Corwin D, Farmer W. 1985. A mathematical model of diffusion under saturated conditions to assess the pollution potential of herbicides to aquatic systems. Hilgardia 53(3):1-35. DOI:10.3733/hilg.v53n03p035
Webmaster Email: sjosterman@ucanr.edu