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ABSTRACTS

I. Analysis of Property Variation and Spatial Structure
with Statistical Models

This review presents and examines relevant information from exist
ing spatial variability studies of soil water and solute transport proper
ties. Although most of the information available allowed only a
conventional statistical analysis (mean and variance) of the pertinent
properties, the field studies of Nielsen, Biggar, and Erh (1973) and
Russo and Bresler (1981) were also suitable for spatial structure analy
sis. Detailed structural analysis of the saturated hydraulic conduc
tivity (Ks ) of these two fields demonstrated how this type of analysis
may reveal field characteristics that are not apparent from conven
tional statistical analysis.

Using the Akaike Information Criterion for model discrimination,
the three-dimensional spatial distributions of InKs of both fields were
shown to be described best by a spherical covariance function and a
linear drift function. The Hamra field of Russo and Bresler (1981) had
a much larger deterministic drift component and a smaller stochastic

Continued inside back cover.
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The Spatial Variability of Water and Solute
Transport Properties in Unsaturated Soil!

I. Analysis of Property Variation and
Spatial Structure with Statistical Models

INTRODUCTION

THE INHERENT TEXTURAL and structural variabilities in field soils and hydrogeologic
formations are widely recognized as dominant factors influencing mass transport
through the subsurface zone (Beckett and Webster 1971; Freeze 1975; Hoeksema and
Kitanidis 1985; Warrick and Nielsen 1980). Because of this spatial variability, the
transport and retention properties of a field-scale soil or aquifer unit also exhibit spatial
variation in response to such inputs as irrigation, rain, natural or artificial recharge,
and discharge from waste disposal sites. Pronounced lateral and vertical variations in
the water or chemical transport properties of the vadose and groundwater zones
seriously limit the applicability of the traditional, column-scale deterministic approaches
generally used to analyze water and solute flow processes (Bear 1972; Nielsen, Biggar,
and Erh 1973). This problem has led to the development of stochastic models to
describe solute movement in groundwater (Dagan 1982, 1984; Gelhar and Axness
1983; Gelhar, Gutjahr, and Naff 1979; Smith and Schwartz 1980) and in the un
saturated zone (Amoozegar-Fard, Nielsen, and Warrick 1982; Bresler and Dagan 1979,
1981, 1983; Dagan and Bresler 1979, 1983; Jury 1982; Russo 1984b; Simmons
1982). Although the underlying physics is similar, groundwater transport and transport
through the unsaturated zone do differ with respect to scale, flow regime, and the
direction of the principal velocity component relative to the direction of the principal
variation in porous medium properties.

Studies describing groundwater transport deal with a system in which the vertical
dimension is relatively small in scale compared with the horizontal dimension, which
may be on the order of a kilometer or more. Because the medium is saturated,
water-flow characterization requires only a knowledge of the saturated hydraulic con
ductivity (or transmissivity) and the storage capacity of the aquifer; solute-flow charac
terization requires a knowledge of the components of the dispersion tensor as well.
Often, researchers will assume that this tensor reduces to three principal components
representing longitudinal and transverse dispersion. A common approach in modeling
water and solute transport through groundwater is to average the transport properties
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over depth, producing an equivalent system viewed as two-dimensional in the horizon
tal plane. Given that the water flux is horizontal, groundwater transport takes place in
the direction of heterogeneity in the medium.

Studies describing transport through unsaturated soil are also concerned with a
system in which the vertical plane is small in scale compared with the horizontal plane
that defines a field area, which may be measured in the tens or hundreds of meters. In
most cases, water input to the soil is time dependent and the soil remains unsaturated,
so transport and retention functions that depend on the water content are used to
characterize the soil; solute flow characterization requires in addition a knowledge of
the components of the dispersion tensor, which also will depend on the degree of
saturation of the medium. A common approach employed in describing field-scale
water and solute movement is to view the transport process locally as a vertical,
one-dimensional flow. According to this perspective, the system is visualized as a
collection of one-dimensional, noninteracting soil columns having different properties
(Dagan and Bresler 1979). In contrast to the situation in groundwater, a transport
process through the vadose zone usually takes place in a direction perpendicular to any
layering in the medium.

Stochastic transport models share the common assumption that the porous medium
may be considered as a single realization of a random field. The application of these
models, therefore, relies on a quantification of the spatial variability of the random
field that is assumed to represent the pertinent transport properties. A complete
characterization of the random field for a given property would require specification of
the joint probability density function (PDF) for the property at established coordinate
points throughout the system. This, unfortunately, is generally impossible. An al
ternative approach involves the quantification of field spatial variability in terms of
the first and second statistical moments. Even this approach, however, has formidable
data requirements. In the last decade only a few experimental studies have been
designed to characterize the spatial variability of soil water and solute transport
properties. With respect to groundwater hydrology, the studies of Freeze (1975) and
Delhomme (1979), and the recent extensive survey of various aquifers by Hoeksema
and Kitanidis (1985) give the most comprehensive information available on the spatial
variability of aquifer transmissivity and storage capacity; limited information on the
spatial variability of longitudinal dispersivity is summarized by Gelhar (1986). With
respect to the vadose zone, pioneering work was done by Nielsen, Biggar, and Erh
(1973) on spatial variations in the hydraulic conductivity and water retention func
tions, followed by the study of Biggar and Nielsen (1976) examining spatial variability
in the solute velocity and longitudinal dispersion coefficient. Other studies that give
information about spatial variation in the hydraulic conductivity or soil water retention
functions are those of Babalola (1978), Cameron (1978), Russo and Bresler (1981),
Jones and Wagenet (1984), Russo (1983, 1984b), and Greminger, Sud, and Nielsen
(1985). A recent study by Russo (1984b) has provided additional information on the
spatial distribution of the longitudinal dispersivity.

The objectives of the present study are first to examine existing spatial variability
studies of soil water and solute transport properties with respect to trends in variation,
and second to review experimental evidence in support of the different statistical
models used to characterize spatial variability.
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CONCEPTS AND DEFINITIONS

Basic Assumptions

3

The porous medium is regarded as a macroscopic continuum whose properties are
continuous functions of the space coordinates. The point-value of a property u(x) is
viewed as the value measured on an element of the medium centered at the point x.
Because u(x) may vary in a highly irregular fashion in space, a set of its measured
values is interpreted as a realization U(xJWI) of a spatial stochastic function U(xJw)
for which the probability distribution function has to be inferred. Here w is a
parameter denoting a random function whose values (w 1, etc.) denote sample realiza
tions (Doob 1953).

Strictly, U(xJ w) should be regarded as a three-dimensional, anisotropic stochastic
function. The paucity of experimental data available from a given field site, however,
usually limits the detection of spatial anisotropies. In most unsaturated-zone studies,
the horizontal plane is much larger in scale than the vertical plane, and it is therefore
common to neglect property variations with depth in favor of depth-averaged values, so
that U(xJ w) is interpreted as a two-dimensional, isotropic stochastic function in the
horizontal plane (Russo and Bresler 1981).

The Ergodic Hypothesis

Conceptually, U(XJ w) may be considered an ensemble of realizations that share the
same statistical properties. The ensemble concept is convenient for defining the
statistical properties of U(xJ w). Physically, the ensemble mean can be understood as
the arithmetic average of repeated measurements of a property at a given spatial point,
under the same external conditions. In practice, however, only one realization of
U(X J w) will be available and the ergodic hypothesis (Lumley and Panosfky 1964;
Sposito, Jury, and Gupta 1986) must be invoked. This hypothesis states that inferences
about the statistical structure of U(xJ w) may be based on estimates of the ensemble
averages gained from spatial averages obtained from a single realization of U(xJ w).

Second-Order Stationarity

A complete statistical description of U(xJ w) requires specification of the joint PDF
at all points in space. To simplify matters in compliance with available data sets, the
quantification of U(xJ w) is restricted to its first and second statistical moments.
Furthermore, it is assumed that U(xJ w) can be described by the general model
(Delfiner 1976)

U(XJW) == M(x) + Z(xJw), [1]

where M(x) is a prior mean or drift function, and Z(xJw)is a zero-mean stochastic
function characterized completely by a covariance function, Cz- Usually Z(xJ w) is
assumed to be a second-order stationary random function, which means that its first
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two statistical moments are invariant under spatial translation (Doob 1953). The
expectation of Z(xJ w) is thus

[2]

and the covariance of Z(xJ w) between any two points, Xl and X2, does not depend
individually on Xl and X2 but only on the lag vector, h = Xl - X2:

[3]

In particular, the variance of Z(xJ w) is independent of x:

[4]

In the general case described by equation 1, the first moment of U(xJw) is E[U(xJw)] =
M(x), and the second central moment is E[U(x+ b,w) U(xJw)] - M(x)M(x + h) =
Cu(hJx). When drift is present, the first two moments of U(xJw) are functions of XJ
hence U(xJ w)is not second-order stationary. When M(x) is a constant (denoted by m),

however, E[U(xJw)] = m, Cu(h) = Cz(h) == C(h), and Uix.co ; is second-order
stationary. For a second-order stationary function, two equivalent functions for char
acterizing the spatial structure of U(xJ w) may be defined as

Ei [U(xJw) - m] [U(x + hJw) - m]t = C(h) = p(h),

Ei[U(xJw) - m]2 t C(O)

where p (h) is the correlogram or autocorrelation function, and

EHU(x + h,U;) - U(x,wlF~ = C(O) - C(h) = y(h),

where y(h) is the semivariogram.

The Intrinsic Hypothesis

[5]

[6]

Instead of assuming second-order stationarity, we can assume a weaker hypothesis,
the intrinsic hypothesis (Delhomme 1978), which requires stationarity only for incre
ments of Utx.co t. For an intrinsic stochastic function Utx.co), the increment [U(x +
b,w) - U(xJ W )] has zero expectation,

[7]

and a uniform variance,

[8]

Second-order stationarity implies the intrinsic hypothesis, but the intrinsic hypothesis
does not imply second-order stationarity.

Correlation Scale

When U(xJ w) is a second-order stationary function, we can define a characteristic
length (correlation) scale in terms of the integral scale (Russo and Bresler 1981):
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00

] == J p(h)dh.
o

5

[9]

For a second-order stationary function, p ~ 0 as h ~ 00, and the integral scale can
be interpreted as the largest average distance over which U(x 1,w) and Uix2,W )

correlate.
The semivariogram 'Y and the autocorrelation function p are cornerstones of geo

statistical interpolation and estimation procedures (Journel and Huijbregts 1978) and
stochastic continuum transport modeling (Bakr et al. 1978; Gelhar and Axness 1983),
but the estimation of these functions along with their associated correlation scales may
be very complicated. Briefly, three main sources of error may affect the estimates:
(1) only one realization of the property is available from which all statistical estimates
of the population must be inferred; (2) the number and location of the sampling points
may not be sufficient to encompass the scale of the field variability, or to make an
accurate determination of the spatial structure; and (3) the presence of an undetected
drift component may affect semivariogram estimates.

With respect to item 1, the statistical inference of any of the properties of U(x, w) is
affected by the finite size of the available realization. Russo and Bresler (1982) used the
ergodic hypothesis to derive relationships of the error in estimating the ensemble mean
of U(x,w) that is caused by finite size to the size of the field area that should be
sampled for two-dimensional stationary functions.

With respect to item 2, most experienced geostatisticans would concede that many
samples (100 or more) are required for the accurate estimation of the semivariogram.
In practice, however, this requirement has been difficult to satisfy, especially for
transport properties, which are difficult to measure. Bresler and Green (1982) and
Russo (1984a) considered the case of a relatively small sample size and formulated the
problem of semivariogram estimation in terms of the design of the sampling network.
Cressie and Hawkins (1980), Cressie (1984), and Dowd (1984) have introduced robust
and resistant methods for the estimation of the semivariogram. Estimation methods
that involve a selection of parametric models for the covariance and drift functions and
the estimation of their properties were introduced by Kitanidis (1983). Usually, a
successful application of these methods requires that the data (or a transformation of
data) follow a joint Gaussian distribution, and that the sample size be large enough for
application of the asymptotic theory.

With respect to item 3, the presence of drift produces a non stationary, random field,
and any attempt to estimate the semivariogram, the correlogram, or the associated
correlation scale requires the prior estimation of M(x). In principle, parametric estima
tion methods (Kitanidis 1983) may be used to estimate the parameters of both M(x)
and Cz(h). Some of the spatial variability of Z(x,w) may be fitted by the model used
for M(x), but this may produce considerable overestimation of the parameters of Cz(h)
(Russo and Jury 1987b).

Because stochastic processes (Panchev 1971) or regionalized variables (Matheron
1971) have been introduced only recently to soil physics and groundwater hydrology,
many attempts to quantify the spatial variability of a porous medium have been based
on a conventional statistical approach (e.g., Cameron 1978; Freeze 1975; Jones and
Wagenet 1984; Nielsen, Biggar, and Erh 1973; Rogowski 1972). In this approach, the
observations of a given property are assumed to be statistically independent, regardless
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of their spatial positions, and are used to estimate a PDF for the property. Subsequent
statistical analyses such as linear regression (Nielsen, Biggar, and Erh 1973) or an
analysis of the relationships between the error of estimation and the sample size
(Keisling et al. 1977) also require that the observations be distributed normally.

For most natural porous media, spatial variations are not completely disordered but
instead possess a structure of a typical size characterized by an integral scale, ]. By
neglecting this structure, researchers may come up with an incomplete statistical
description of the medium and biased estimates of the PDF for the pertinent property,
since no account is taken of the correlation between neighboring observations. On the
one hand, unbiased estimates of the parameters of the PDF may be obtained if the
distance between any pair of observation points is arranged to be much larger than the
integral scale of the observed property. On the other hand, such a sampling network
design will not reveal the correlation structure of the property.

The Lognormal Distribution

Transport properties measured near the soil surface have often been found to be
skew-distributed-their sample frequency distributions are not well represented by a
Gaussian distribution. Although the distribution of a given property cannot be inferred
solely on theoretical grounds, the lognormal distribution (Aitcheson and Brown 1976;
Hald 1952)

[10]

has been found to describe adequately the distribution of skewed properties. In general,
the lognormal distribution will provide a representation superior to the normal distri
bution for properties that (1) are positive definite (u ~ 0), (2) have a large coefficient of
variation (CV), and (3) have a positively skewed PDF (i.e., the sample mean is larger
than the mode and median). In addition, as the sample CV approaches the value 0.1,
the lognormal distribution approaches symmetry and can adequately represent the
normal distribution.

There are several advantages to using a lognormal distribution to represent the
sample frequency. First, the parameter 0 2 describing the variance of the log-transformed
property becomes a useful index of variability with which to compare different parame
ters and to study the influence of different characteristics like soil texture on the
variability of a given property. Second, the lognormal distribution has the property that,
if u is lognormally distributed with E[lnu] = J.1 and var [lnu] = 0 2, then y = au b also is
lognormally distributed with E[lnyJ = Ina + bJ.1 and var[lnyJ = b 2 0 2 (Aitcheson and
Brown 1976). This property will allow a variety of different experimental results to be
analyzed in a common manner. For example, if an experiment showed a lognormal
distribution of solute travel times from the soil surface to a depth I of observation, then
it may be inferred from the relation V = II t between the travel time and the vertical
velocity that var[lnt] = var[ln VJ and that V is also lognormally distributed.

Transport properties measured in the field have been found to be described better by a
lognormal distribution than by a normal distribution (Biggar and Nielsen 1976; Freeze
1975; Hoeksema and Kitanidis 1985; Jury, Stolzy, and Shouse 1982; Nielsen, Biggar,
and Erh 1973). The analytical techniques for parameter estimation applied in such
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studies, however, except the study of Hoeksema and Kitanidis (1985 ), did not take into
account correlations between neighboring observations. Hoeksema and Kitanidis gave
a procedure for transforming correlated measurement values into correlated residuals,
which in turn were transformed into uncorrelated residuals by using the estimated
covariance function of Z (xJ w) and a transformation matrix proposed by Kitanidis
(1983). Standard statistical methods (Haan 1977) may be used to analyze the distribu
tion of these uncorrelated residuals and to validate the assumed statistical model for the
spatial variability of a soil property.

ANALYSIS OF THE SPATIAL DISTRIBUTION
OF TRANSPORT PROPERTIES

Water Transport Properties

Field studies of a given water transport property are difficult to compare because
methodology frequently differs from one investigation to another and transport proper
ties are usually estimated indirectly by assuming the validity of a specific physical model
for the transport process (e.g., the one-dimensional Richards equation). Furthermore,
transport functions such as unsaturated hydraulic conductivity are sometimes assumed
to have a specific mathematical form (e.g., exponential) that may not be accurate for all
soils. Finally, the number of samples used and the volume of soil sensed by a given
sampling device may influence the measured variability, making comparisons between
different studies difficult (Wagenet 1985).

The data in table 1 summarize the mean and coefficient of variation of the saturated
hydraulic conductivity as measured in vadose-zone field studies, together with the
parameter 0 InKs, the standard deviation of InKs. The first three studies mentioned
contain data from several depths as well as from different sites, so part of the data may
be highly correlated and for that reason the statistical moments may not be accurate.

Although the studies in table 1 cover a variety of soil textures, no apparent relation
ship is present between the standard deviation parameter OInKs and soil type. The
values of 0 range between 0.5 and 1.6, and in only two of the studies did values exceed
1.2. The highest values (1.6 and 1.4) represented the variability among replicates of a
series of coarse-textured soils (Willardson and Hurst 1965) and a large 150 ha field that
ranged in texture from a loam to a silty clay loam (Nielsen, Biggar, and Erh 1973).
With the exception of these studies, the values of 0 span a relatively narrow range,
with no apparent dependence on field size or sampling depth.

Table 2 contains a summary of studies on surface infiltration rates i measured in the
field. With the exception of the study by Nielsen, Biggar, and Erh (1973), in which
water was ponded to produce steady-state infiltration over 20 different large plot areas
(6.2 X 6.2 m) located over 150 ha, all studies mentioned in our report sampled only
small volumes of soil, either with ring infiltrometers or with inverse auger holes. For
the most part, the standard deviation parameter Olni is smaller than OInKs (table 1),
both under steady-state and transient conditions.

The three values of infiltration rate parameters (table 2) reported by Sisson and
Wierenga (1981) are notable because they represent measurements of i on the same
6.2 X 6.2 m field plot as determined with infiltrometer rings of differing sizes. For
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example, one study consisted of five rows containing 125 adjacent 5 em diameter rings,
whereas the other two used five rows containing 25 adjacent 25 em diameter rings,
respectively, all of which sampled the same underlying soil. It is notable that the
variance of lni is approximately five times larger in the second Sisson and Wierenga
study than in the third, but that it increases by a factor of only 1.5 between the second
study and the first, suggesting that these last two measurements were correlated. This
suggestion is consistent with their findings; they reported a correlation length of
approximately 13 em for the measurements made with the small rings.

A final point of note from this study is that the coefficient of infiltration rate variability
for the small (6.2 X 6.2 m) study area is comparable to the rate observed in other
studies on much larger fields, implying that much of the variability is present within a
small structural unit. This conclusion was also drawn by Beckett and Webster (1971 )
in their summary of the spatial variation of solid-phase structural parameters and
chemical nutrient concentrations,

In table 3, data summarize the variability of unsaturated hydraulic conductivity. In
the studies reported, the hydraulic conductivity-water content function at each site was
assumed to follow the exponential model

[11 ]

(Libardi et al. 1980; Nielsen, Biggar, and Erh 1973), where K 0' fJ, and ()0 are fitted
parameters not necessarily equal to the saturated values. Spatial variability in this
function is manifest in the measured variability of the model parameters, K 0' fJ, and
() 0' the first two of which are given in table 3 for each study. The first four lines of table
3 are taken from the field study of Nielsen, Biggar, and Erh (1973). The first and third
rows report the result of measuring K({)) during redistribution at depths of 30 and 180
em, respectively, by using the instantaneous profile method of Rose, Stern, and
Drummand (1965). The second and fourth rows represent the result of a reanalysis of
the same data set using the unit gradient method to measure K (()) (Libardi et al. 1980).
In both cases, the values of K 0 and fJ were estimated from linear regression analysis of
the log-transform of equation 11. This field measurement of K ({)) is notable because of
the large variability of the K; parameter (CV equal to 343 percent) as compared to that
in the remaining studies and as compared to the variability of K s measured on the
same plots (CV equal to 243 percent, table 1). In contrast, the rest of the studies
report a K; variability comparable to the K, variability summarized in table 1. Some
of the large K; variance found in the study by Nielsen, Biggar, and Erh (1973) could
have resulted from poor agreement of the data with the model in equation 11.

Solute Transport Parameters

In discussing vertical solute transport through unsaturated soil, a distinction must be
made between local-scale (i.e., field-plot) studies and field-scale studies (in which a
description is sought of the area-averaged solute concentration at a given depth and
time). In the former studies, the one-dimensional convection-dispersion equation

~=D a2c _ V~
at aZ2 az

[12]

is assumed to be valid locally, where C is the dissolved solute concentration, V is the
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solute velocity, and D is the local longitudinal dispersion coefficient (Biggar and
Nielsen 1976; Miller, Biggar, and Nielsen 1965; Warrick, Biggar, and Nielsen 1971).
Application of equation 12 to different plots over a field (Biggar and Nielsen 1976), or
to the effluent concentrations measured in a network of solution samplers (Jury, Stolzy,
and Shouse 1982; Van De Pol, Wierenga, and Nielsen 1977) or soil cores (Jury, Elabd,
and Collins 1983) after a pulse or front of solute has been added to the field, generates a
set of V and D values that characterizes the lateral variability of one-dimensional solute
transport. In field-scale solute transport, however, it is not evident that equation 12 is
the correct physical law for describing area-averaged solute transport, either in unsatur
ated soil (Dagan and Bresler 1979; Jury 1983) or in groundwater (Gelhar, Gutjahr,
and Naff 1979; Matheron and deMarsily 1980).

Field-scale solute transport in unsaturated soil has been conceptualized in two
different ways: either as a set of parallel, noninteracting vertical soil columns each
obeying equation 12 with its own D and V (Amoozegar-Fard, Nielsen, and Warrick
1982; Dagan and Bresler, 1979) or a transfer-function approach that regards the entire
field as a single transport unit with entry and exit surfaces (Jury 1982; Jury, Sposito,
and White 1986). In the latter approach, solute transport through the entire volume of
soil between the soil surface and a given depth of observation is characterized by a PDF
for solute travel times from the soil surface to the observation depth. In either
approach, local differences in vertical velocity or travel time dominate the area-averaged
longitudinal spreading of the solute as it moves downward, and the local dispersion
coefficient values at a given site have essentially no influence (Amoozegar-Fard,
Nielsen, and Warrick 1982; Dagan and Bresler 1979).

The few field-scale experiments that have replicated the downward movement of a
surface-applied solute pulse or front of a chemical can give information about the
distribution of vertical solute velocities (or travel times) to a reference depth, if solution
samplers are used at the reference depth. Similarly, if deep soil cores are taken some
time after the uniform surface application of a solute pulse, the distribution of depths
reached by solute may be related to the variations in travel time or solute velocity. In
virtually all cases where the solute velocity has been determined, the frequency
distribution of parameters representing the velocity (or travel time) has been skewed,
and can be represented better by a lognormal than a normal probability distribution.
For a lognormal distribution of velocities or travel times to a reference depth, the
variance of the logarithm of travel time and solute velocity should be equal. If the
process of the solute moving downward is dominated by differences in local convection
that are not diminished by lateral mixing, then the logarithm of the distribution of
depths reached by the individual pulses also should have the same variance as the log
travel time or log velocity. Thus, log variance parameters are suitable standardized
variables for comparing the variability of downward solute transport.

The data presented in table 4 summarize the results of seven experiments in which
enough measurements were taken to allow a determination of log variance parameters.
The standard deviation parameters are relatively similar in all but two of the studies,
the study of Biggar and Nielsen (1976), who measured solute movement under surface
ponding conditions, and the study of Richter (1984), who measured solute in drainage
from 36 small undisturbed lysimeters placed in two fields. Under ponded water
application, the amount of water entering the soil at different locations is controlled by
the saturated hydraulic conductivity, so the variance of solute travel time should be
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much higher. A high log variance, therefore, should not be considered a property of the
field, but of the field and the water application method combined (Jury 1982). In
Richter's lysimeter study, the soil was dry at the time of solute application and
substantial early breakthrough was noted in alllysimeters even though the surface was
not ponded.

If the travel time or velocity distributions are truly lognormal, the coefficient of
variation of the distribution is given by the equation

CV = [exp(a2 ) - 1]Y2 [13]

(Aitcheson and Brown 1976). Equation 13 was used to calculate the coefficients of
variation given in table 4 when the sample CV was not reported. However, as pointed
out by Aitcheson and Brown (1976), equation 13 will produce a value that generally
exceeds the sample CV of the data set from which it is calculated. The studies of Jury
and coworkers (Jury, Elabd, and'Collins 1983; Jury, Stolzy, and Shouse 1982) were
conducted on the same field. The 1983 study involved soil coring and was conducted
under relatively uniform sprinkler irrigation, whereas the earlier study was conducted
under transient conditions, with moving solution intercepted by porous cup samplers
during a winter of highly variable rainfall events. For that reason the coefficient of
variation of the net applied water might be greater than the coefficient of variation of
the drainage past the point of observation, which was not measured during the
experiment.

INFLUENCE OF CORRELATION ON VARIANCE

The analytical methods used to estimate the mean values and variances presented in
tables 1 to 4 did not take into account correlation between nearby measurements, but
instead considered the measurements as spatially independent and uncorrelated. Disre
gard of the spatial structure of the medium may lead to biased estimates of the
moments of the assumed PDF. The spatial structure of the medium should be identi
fied and quantified prior to the estimation of the moments of the assumed PDF.

Generally, the procedure for selecting the most appropriate statistical model to
describe the spatial structure of the medium is iterative (Kitanidis and Vomvoris
1983). According to Schweppe (1973), the use of measurements to develop a mathe
matical model involves four steps: (1) hypothesize the structure of the model; (2)
estimate the parameters of the model; (3 ) test the validity of the model; and (4) if a test
for validity fails, diagnose and correct the error, and then repeat steps 1, 2, and 3. As
pointed out by Kitanidis and Vomvoris (1983), the problem of selecting the most
appropriate model remains to some extent in the realm of engineering judgment. In
practice, attention is usually restricted to certain classes of model, which are chosen for
their practicality and versatility as well as for their performance in past applications.
Within these classes the simplest or the lowest-order model in agreement with the
available data usually is selected. Selection of the final model from the candidates in
each class should be carried out by a systematic model discrimination procedure, such
as selecting the model that minimizes the Akaike Information Criterion (AIC) (Hippel
1981).

Given the structure of a model, estimation of the parameters of the model from the
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available data is a well-defined algorithmic problem. The most advanced parametric
estimation methods are the maximum likelihood (ML), restricted maximum likelihood
(RML), minimum-variance unbiased quadratic (MVUQ), and weighted least squares
(WLS) procedures. Each of these estimation procedures was presented and evaluated by
Kitanidis (1983) for the estimation of the parameters of a generalized polynomial
covariance function using rainfall data, and by Kitanidis and Lane (1985) and Hoek
sema and Kitanidis (1985) for the estimation of the parameters of an exponential
covariance function and a linear drift function using data on the hydraulic properties of
selected aquifers.

Once the parameters of a model have been obtained, the validity of the model should be
tested. One possible validation test involves first transforming the residual measure
ment vector, z(x) = u(x) - m(x), into a vector of uncorrelated residuals,y(x), and then
analyzing the statistical properties of y(x). According to Kitanidis and Vomvoris
(1983), when the covariance function Cz of z(x) is fitted, it can be decomposed into a
product of a matrix C and its transpose CT such that

This implies that

CCT = Cz. [14]

1= C-ICZ(C-l)T, [15]

where I is the identity matrix. Theny =y(x) is defined by the equation

y = C':! z. [16]

From equations 14 and 15, the first two moments of yare

E[y] = Cr ! E[z] = 0

and

[17]

[18]

Thus the transformation in equation 15 creates a set of uncorrelated, unit-variance
residuals, y (x).

Under the assumption that z(x) is distributed normally, y(x) will be distributed
normally. Under the hypothesis that the model is valid (i.e., that z[x] is second-order
stationary), the elements of y(x) are independent standard normal variates. Thus, a
statistical analysis of y(x) will reveal the validity of the assumptions about z(x).

Kitanidis and Vomvoris (1983) discuss a procedure for determining whether a candi
date sety(xi) of transformed data meets these criteria. According to their analysis, two
conditions ony(xi) should be satisfied in order for the selected model to be valid: (1)
normality, requiring that each y(Xi) is a zero normal variate at the 95 percent signifi
cance level,

-2<y(Xi)< 2 [19]

for all Xi; and (2) no correlation between variates, requirmg that the product
y(Xi) 'y(Xj), where i is unequal to jJ has zero mean and unit variance at the 95 percent
significance level,

[20]
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for all x, and Xj where i is unequal toj. Finally, it is necessary to test whether they(xj)
values taken as a whole appear to conform to the hypothesized y(x) unit normal
distribution. The sum of squares (SSR) should follow a chi-square distribution with
m == n - p degrees of freedom,

n
SSR == L y(Xj)2 ~ x 2(n - p),

i== 1
[21]

[22]

[23]

where n is the sample size of z(x) and p is the number of the parameters of the drift
function fitted from the data. The normality of the y(Xj) residuals may be tested also
by the chi-square test or by the Kolmogorov-Smirnov (KS) test (Haan 1977).

Another possible model validation procedure is the cross-validation test coupled with
the kriging technique, sometimes called "jackknifing" (Gambolati and Volpi 1979;
Russo and Jury 1987a). The test is performed by suppressing each of the n observation
points one at a time and producing an estimate U * at that point using the remaining
n - 1 data points and the kriging technique. The validity of the model is tested by
analyzing the error [Uj(x) - u*(x)j], where i == 1, n. Two conditions must satisfied for
the selected model to be consistent theoretically: (1) there must be no systematic error
(i.e., the mean ME of the reduced error RE vector, RE(xj) == [u*(Xj) - u(Xj)]/
var[u*(xj) - u(Xj)]~, is zero)

1 n
ME == - L RE(xj) ~ 0;

n i==1

and (2) the kriging variance, var[u*(xj) - u(Xj)], is consistent with the corresponding
error [u*(Xj) - u(Xj)]. Thus, the mean square reduced error (MRE) must be unity:

n
MRE == [! L RE(xj)2]~ ~ 1.

n i==1

In addition, an overall effective measure of the accuracy of the model is provided by
the mean-square error (MSE),

1 n
MSE == i n L [u*(Xj) - u(Xj)]2 ~~,

i== 1
[24]

which should be close to zero if the model is accurate. Under the assumption that the
reduced error RE(xj) is distributed normally (Journel and Huijbregts 1978), at-test
may be performed to test the significance of ME == 0 and MRE == 1. A chi-square
test or a KS test may be used to examine the assumption of a normal distribution for
RE(xj).
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APPLICATIONS TO FIELD DATA
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Although the field investigations summarized in tables 1 to 4 characterize the
frequency distribution properties of the sample sets measured in each study, few
generalizations can be drawn by comparing different studies and their corresponding
soil characteristics. To illustrate the additional information which may appear from a
more comprehensive analysis, we will now concentrate on contrasting the characteris
tics of two different comprehensive field studies in which sufficient quantities of data
were collected to permit an analysis of spatial structure.

The field studies of Nielsen, Biggar, and Erh (1973) and Russo and Bresler (1981)
provide large sets of measurements of saturated hydraulic conductivity K, for two
field soils different in texture and in sampling area. The spatial distribution of u ==
InKs will be analyzed at each soil depth, first by viewing the InKsdata as a realization
of a two-dimensional, isotropic random function, and then by viewing the data as a
realization of a three-dimensional, isotropic random function.

In the following analyses, two different models are used for the covariance function
of u == InKs: (1) an exponential model with a nugget effect,

Cu(b ij) == Cno ij + Coexp( -bij/a);

and (2) a spherical model with a nugget effect,

C (b··) == Co" + C [1 - ~ (b ij) +! (b ij )3]
u tJ n t) 0 2 a 2 a '

[25a]

[25b]

where Oij == 1 if i == j, and Oij == 0 if i =1= to j, and Cn + Co == C(O) is the variance of
InKs. For the deterministic component of u == InKs, the general drift function model

K-1

m(x) == ~ !,(x) fJ,
1=0

[26]

is used, where !,(x) for I == 1 to I == K - 1 are known polynomial functions of the
spatial coordinates, K == (p + 1)(p + 2)/2 (p being the order of the polynomial),
!o(x) == 1, and fJ, for I == 0 to I == K - 1 are the unknown drift parameters. Only two
cases will be considered: zero order (p == 0 and K == 1) and first order (p == 1 and
K == 3) polynomials. These are known as the constant and linear drift models, respec
tively. For simplicity, models fitted with an exponential covariance will be denoted E,
and those fitted with a spherical covariance will be denoted S. A model fitted with a
constant drift will be denoted C, and one fitted with a linear drift will be denoted L.
Thus, for example, S + L represents a spherical model with linear drift.

The method used to estimate the three parameters of the covariance function Cu

(equation 25) is the restricted maximum likelihood (RML) estimation procedure
described by Kitanidis and Lane (1985). When the data follow a joint Gaussian
distribution, RML estimates are known to be asymptotically unbiased, minimally
variant, consistent, and normally distributed, with a covariance matrix given by the
inverse of the information matrix (Kendall and Stuart 1979). For data that are not
normal, the procedure can be viewed as a fitting based on a weighted sum of squares of
prediction errors (Kitanidis 1985). The covariance parameters are estimated by maxi
mizing the likelihood of generalized increments, independently of the unknown mean,
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which is filtered by a transformation method suggested by Kitanidis (1983). Given the
fitted covariance of U(X), CU , the drift parameters, f3/ (for 1= 0 to I =K - 1) equation
26 may be estimated using a weighted least squares (WLS) procedure. If f3 is the vector
of the drift parameters such that E[u(x)] = X f3, then it can be estimated as

~ = (XT Cu X)-l XT c;-1 u, [27]

where X is the spatial coordinate matrix used in standard linear regression.
Validation of the fitted models is carried out by cross-validation tests and analyses of

the uncorrelated residuals Y(Xj) (equation 16). These tests indicate whether a given
model provides an adequate fit to a given set of u = InKs. In addition, the Akaike
Information Criterion

\ AIC = 2(£ + P) [28]

is used for model discrimination tests, where £ is the negative log-likelihood for a fitted
model and P is the total number of independently adjusted parameters within the
model. The "best" model is the one that minimizes the AIC (Schweppe 1973).

Hamra Field

Using the air-entry permeameter method of Bouwer (1966), Russo and Bresler
(1981) measured the saturated hydraulic conductivity K s at 30 different sites and 4
different depths in a 0.8 ha plot of Hamra Red Mediterranean soil. According to their
analysis, the values of K, at a given soil depth appear to correlate spatially with an
integral scale] (equation 9) ranging from 14 to 34 m.

Two-dimensional analyses

The data in table 5 summarize conventional statistical properties of InKs for each
depth, estimated from a sample size of n = 30. As is customary in making such
estimates, all calculations assume that the observations are spatially independent and
uncorrelated. The KS normality test and the chi-square test were applied to evaluate

TABLE 5. ESTIMATES OF THE MEAN u , VARIANCE o>, SKEW COEFFICIENT ksk,
AND COEFFICIENT OF KURTOSIS kc , THE CALCULATED VALUES OF X 2

(FOR 3 DEGREES OF FREEDOM), AND THE KS TEST STATISTIC D, FOR u = InKs,
AT FOUR DEPTHS (HAMRA FIELD)·

Depth {L a2 ksk kc X 2 (d f ) D

m

0.0-0.3 1.9403 0.3637 -1.932 7.084 5.6 (3) 0.1759

0.3-0.6 1.6793 0.1668 -0.572 2.253 10.4t (3) 0.1524

0.6-0.9 0.7193 0.8408 -0.928 3.084 7.6 (3) 0.1858

0.9-1.2 0.4613 1.2050 -0.851 2.859 15.2t (3) 0.1931

·Values of K, are in J..l m per second.

tNull (normal) hypothesis is rejected at the 0.05 level of significance.
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the hypothesis that the observations of u = InKs were drawn from a population with
the normal distribution, N(j.L,a 2 ) . In table 5, the calculated values of chi-square and
the KS statistic D = max ICDF t - CDF o I are given, where CDF is the cumulative
distribution function and the subscripts t and 0 denote theoretical and observed,
respectively. Generally, the mean value of InKs, the skew coefficient ksk' and the
kurtosis coefficient kc decreased with depth, whereas the variance of InKs increased
with depth. The chi-square test rejected the null (normal) hypothesis for the 0.3 to
0.6 m and the 0.9 to 1.2 m depths. However, the chi-square test is quite sensitive to the
tails of the assumed distribution. The KS test does not reject the null hypothesis for
any given depth.

Estimated parameters of the covariance functions modeling the field spatial struc
ture are given in table 6. In general, for a given soil depth the fitted parameters depend
on the model assumed. In a number of instances, the estimation procedures returned
minimum or maximum permitted values of en or a.

Results of validation tests of the models in table 6 are summarized in table 7. For a
given soil depth, all four models generally appear to be consistent with the data as
indicated by the values of MRE ~ 1 and ME ~ 0 (cross-validation test), the calculated
chi-square statistic, and the sum of squares of residuals (SSR, the analysis of the
uncorrelated residuals). Only for four cases-the E + L model (0 to 0.3 m depth), and

TABLE 6. RESTRICTED MAXIMUM LIKELIHOOD ESTIMATES OF THE PARAMETERS
OF THE COVARIANCE FUNCTION (EQUATION 25), ASSUMING SPHERICAL S
OR EXPONENTIAL E COVARIANCE MODEL, AND CONSTANT .C OR LINEAR L

DRIFT MODEL FOR THE FOUR DIFFERENT SOIL DEPTHS (HAMRA FIELD)*

Depth Model Cn Co 0-

m

0.0-0.3 E+C ot (-) 0.5420 (0.477) 37.8 (38.9)
S+C ot (-) 0.4588 (0.109) 54.7 ( 9.2)
E+L ot (-) 0.2893 (0.179) 16.6 (15.1 )
S+L ot (-) 0.3385 (0.098) 43.4 ( 8.7)

0.3-0.6 E+C 0.0658 (0.059) 0.2234 (0.633) 150.0* (-)

S+C 0.0619 (0.031) 0.1619 (0.150) 150.0* (-)

E+L 0.0010 (0.374) 0.0877 (0.374) 0.10S (-)

S+L 0.0807 (0.036) 0.0098 (0.041) 42.7 (116.3)

0.6-0.9 E+C 0.0356 (0.105) 3.767 (1.93) 150.0* (-)

S+C 0.0483 (0.105) 1.655 (1.33) 135.1 (81.6)
E+L 0.0634 (0.113) 2.4000 (1.49) 150.0* (-)

S+L 0.0099 (0.139) 0.4599 (0.233) 32.1 (10.4)

0.9-1.2 E+C ot (-) 1.956 (2.19) 50.9 (64.0)
S+C ot (-) 1.233 (0.598) 48.6 (15.6)
E+L ot (-) 3.249 (8.27) 84.8 (218)
S+L ot (-) 0.962 (0.348) 43.7 (11.3)

*Values in parentheses are the standard error of estimation (SE). If the value is zero, there is no
standard error.

t A

Here c; = Cnmin'

*Here a= am ax '

SHere a= amino No SE value was calculated.



T
A

B
L

E
7.

E
S

T
IM

A
T

E
S

O
F

C
R

O
S

S
-V

A
L

ID
A

T
IO

N
T

E
S

T
S

·,
A

N
A

L
Y

S
IS

O
F

U
N

C
O

R
R

E
L

A
T

E
D

R
E

S
ID

U
A

L
S

t,
A

N
D

T
H

E
A

K
A

IK
E

IN
F

O
R

M
A

T
IO

N
C

R
IT

E
R

IO
N

A
IC

FO
R

T
H

E
M

O
D

E
L

S
L

IS
T

E
D

IN
T

A
B

L
E

6

C
ro

ss
v

al
id

at
io

n
A

n
al

y
si

s
of

u
n

co
rr

el
at

ed
re

si
d

u
al

s

D
ep

th
M

o
d

el
M

E
M

S
E

M
R

E
j1

0
2

X
2

(d
f)

S
S

R
A

IC

m

0.
0-

0.
3

E
+

C
0

.0
1

1
8

0
.4

3
3

2
1

.0
2

9
-0

.0
9

4
2

0
.9

9
1

7.
6

(3
)

29
.0

1
22

7.
6

S
+

C
0

.0
3

9
9

0
.4

3
6

2
1

.0
8

0
-0

.1
0

9
7

1.
00

1
5.

5
(3

)
2

9
.4

0
22

7.
1

E
+

L
0

.0
2

0
4

0
.4

5
1

9
1

.1
7

7
-0

.0
8

8
1

0
.9

9
3

26
;1

(3
):1

:
27

.0
0

2
2

6
.1

S
+

L
-0

.0
0

2
8

0
.4

3
5

4
1

.0
3

9
-0

.0
8

2
3

0
.9

6
8

7.
6

(3
)

26
.3

1
2

2
4

.6

0
.3

-0
.6

E
+

C
0

.0
2

1
3

0
.3

4
9

9
1

.2
0

9
0

.0
7

1
7

1
.0

1
3

3
2

.0
(3

):1
:

2
9

.5
3

1
9

0
.6

S
+

C
0

.0
2

4
1

0
.3

4
5

3
1

.2
4

1
0

.0
8

3
8

0
.9

9
4

37
.0

(3
):1

:
2

9
.0

0
1

8
9

.6
E

+
L

-0
.0

1
4

9
0

.3
5

0
1

1
.3

5
3

-0
.1

2
3

7
0

.9
8

5
7.

9
(3

):1
:

27
.0

0
1

8
4

.2
S

+
L

0
.0

1
0

5
0

.3
6

9
5

1
.2

6
8

0
.1

1
2

3
0

.9
9

4
5.

7
(3

)
27

.1
7

1
8

3
.5

0
.6

-0
.9

E
+

C
0

.0
1

9
7

0
.5

1
1

0
1

.0
0

5
-0

.0
3

1
2

0
.9

9
2

3.
1

(3
)

2
9

.0
0

1
7

4
.0

S
+

C
0

.0
2

4
6

0
.5

0
8

1
0

.9
8

4
0

.2
6

6
2

0
.8

7
7

1.
8

(3
)

27
.5

1
1

7
1

.7
E

+
L

0
.0

2
9

6
0

.5
1

8
2

1
.0

3
2

0
.1

2
8

5
0

.9
8

3
7.

4
(3

)
27

.0
0

1
7

3
.5

S
+

L
-0

.0
1

9
2

0
.5

3
2

3
0

.9
7

7
0

.1
7

9
6

0
.9

6
8

6
.5

(3
)

27
.0

1
1

6
8

.7

0.
9-

1.
2

E
+

C
0

.0
2

8
1

0
.6

2
9

9
0

.9
1

7
0

.1
8

4
0

0
.9

6
6

3
.9

(3
)

2
9

.0
0

1
7

0
.3

S
+

C
-0

.0
0

8
3

0
.5

8
6

1
0

.9
4

9
0

.1
6

0
8

1
.0

1
3

2
.2

(3
)

3
0

.1
0

16
7.

2
E

+
L

0
.0

4
3

6
0

.6
7

7
1

0
.9

5
7

0
.0

3
5

7
0

.9
8

8
3

.4
(3

)
2

6
.7

2
1

7
4

.3
S

+
L

0
.0

3
2

2
0

.6
5

6
0

1
.0

3
5

0
.0

6
1

0
0

.9
9

8
0

.8
(3

)
27

.0
6

2
1

2
.4

·M
ea

n
er

ro
r

M
E

,
m

ea
n

sq
ua

re
er

ro
r

M
S

E
,

m
ea

n
re

du
ce

d
er

ro
r

M
R

E
.

tM
ea

n
u

,v
ar

ia
nc

e
0

2
,
X

2
,

su
m

of
sq

ua
re

s
of

re
si

du
al

s
SS

R
.

:l:
N

ul
l(

no
rm

al
)

hy
po

th
es

is
is

re
je

ct
ed

at
th

e
0

.0
5

le
ve

l
of

si
gn

if
ic

an
ce

.



HILGARDIA • Vol. 55 • No.4· July 1987 21

the E + C, S + C, and E + L models (0.3 to 0.6 m depth)-do the results of the
chi-square test suggest rejection of the null hypothesis. Out of the models that pass the
cross-validation test and the analysis of uncorrelated residuals (table 7) for a given soil
depth, the AIC values are used to select the most appropriate model. The models that
minimize the value of AIC (table 7) are the S + L model for the three upper layers and
the S + C model for the 0.9 to 1.2 m soil depth.

The results in tables 6 and 7 demonstrate the necessity of using several estimation
and validation procedures together with the AIC to discriminate between models that
pass all other tests. Had the analysis used only the E + C model and the cross-validation
test, the final estimates of a, Co, and en would have been significantly different from
those actually chosen.

The parameters of the covariance and the drift functions describing the variability of
InKs are summarized in table 8. The parameter C(O) = Cn + Co is an estimate of the
stochastic high-frequency variation (HFV) of InKs. At the 0.3 to 0.6 m depth, about
90 percent of the HFV stems from variability at a scale smaller than the smallest
separation distance in the horizontal plane of the field (~ 2 m), which appears as
"white noise" or a "nugget effect," Cn. There appears to be no nugget effect at the 0 to
0.3 m and the 0.9 to 1.2 m depths and a small nugget effect, c, = 0.02 C(O), at the
0.6 to 0.9 m depth. On the other hand, the value of CD given by the equation

n
CD = L [m(Xi) - Jiu]2/n

i=1
[29]

is an estimate of the deterministic low-frequency variation (LFV) of InKs. The magni
tude of the LFV is about one-third the magnitude of the HFV at the 0 to 0.3 m

TABLE 8. ESTIMATES OF STOCHASTIC PARAMETERS"" AND DRIFT PARAMETERSt
OF THE MODELS DESCRIBING TWO-DIMENSIONAL SPATIAL VARIABILITY

OF InKs (HAMRA FIELD)

Stochastic parameters Drift parameters

Depth Cn Co C(O) Ii ~o ~1 ~2 CD

m

0.0-0.3 0 0.3385 0.3385 43.4 2.8311 -0.0110 -0.0073 0.1223

R2:t: = 0.902, SE S = 1.012

0.3-0.6 0.0807 0.0098 0.0905 42.7 2.2867 -0.0101 1.37 X 10-5 0.083

R2 = 0.986, SE = 1.039

0.6-0.9 0.0099 0.4599 0.4698 32.1 2.3268 -0.0132 -0.0246 0.4165

R2 = 0.8167, SE = 0.801

0.9-1.2 0 1.064 1.233 48.6 0.4153

""Nugget variance Cn, covariance Co, total stochastic variance C(O), shape factor a; see equa-
tion 25.

tPolynomial coefficients /30, /3 1, /32, and drift variance CD·

:t:R2 refers to the regression of the drift function on the data.

SSE, standard error, refers to the regression of the drift function on the data.
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depth, but is of the same order of magnitude as the HFV at the 0.3 to 0.6 m and 0.6
to 0.9 m soil depths. For a given soil depth, the total variance of fJ2 of InKs is

[30]

The values of fJ 2 calculated for each of the soil depths are higher than the correspond
ing values calculated using conventional statistical methods (table 5) because the
conventional analysis ignores spatial correlations and treats all observations as
independent.

Three-dimensional analyses

The spatial variability of InKshas been analyzed in the horizontal plane by viewing
it as a realization of a two-dimensional, isotropic stochastic function, considering
different horizontal layers to be noninteracting. In this section, we will take InKs to
be a realization of a three-dimensional, isotropic stochastic function, with all four
depths used simultaneously to estimate the parameters of the covariance and the drift
functions of InKs.

The data presented in table 9 summarize the results of conventional statistical
analysis, structural analysis, and model-validation tests (cross-validation test and anal
ysis of the uncorrelated residuals). Both the KS test and the chi-square test reject the
null (normal) hypothesis for InKs. The structural analysis results (table 9b) show
that, by considering the depth variations of InKs, the estimated correlation scale of
InKsbecomes much smaller (J = 0.7 m) than that estimated by considering only the
lateral variations of InKsat a given soil depth (J = 18 m). The characteristic vertical
length of the sampling domain, however, is 1 m, as compared to a lateral length of
100 m. The cross-validation test results (table 9c) suggest that both the E + C and
the S + C models are accurate and consistent with the data. The analysis of the
uncorrelated residuals (table 9d) shows that the null hypothesis should be rejected for
the E + C model. Conversely, the KS normality test for the uncorrelated residuals,
calculated by using the S + C model, accepts the null hypothesis. Based on these
results, we select the S + C model, which minimizes AIC, as the model of choice
for the three-dimensional spatial distribution of InKs.

Thus far, a constant drift has been assumed. To examine the possibility that linear
drift is present, 60 observation points (n) were selected randomly from the four
depths, with the resultant three-dimensional random network permitting the use of a
transformation matrix (Hoeksema and Kitanidis 1985) in the three-dimensional coor
dinate system. Table 10 contains a summary of the results of conventional statistical
analysis, structural analysis, cross-validation tests, and analysis of the uncorrelated
residuals for this case. In contrast to the results given in table 9 for all 120 points,
both the KS and chi-square tests now accept the null hypothesis for InKs. The
structural analysis results show that the estimated parameters of the covariance func
tion are quite sensitive to the model selected for describing the spatial variability of
InKs. For a given covariance model, linear drift considerably increases the estimated
correlation scale relative to the case where a constant drift was assumed. Results of
the cross-validation test and of the analysis of the uncorrelated residuals provide no
reason to doubt the validity and adequacy of any of the four models.

According to Russo and Jury (1987a), values of MRE in excess of unity imply that
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the estimated correlation scale a is larger than the theoretical one. Although the E +
Land S + L models in table 1 have MRE > 1, the value of MRE is only required to
lie within an acceptable range (e.g., within 95 percent confidence limits, CL.95) of its
theoretical value of unity. Since all of the values are within that range, the AIC
criterion can be used to make the final model selection. Thus, the S + L model,
which had the lowest value for AIC, was chosen to describe the three-dimensional
distribution of InKs. The corresponding drift parameters are /30 = 4.343, /31 = 1.045
X 10-2, ,82 = -1.137 X 10-2, and,83 = -1.865, where R2 = 0.85 and SE = 1.02.
A significant vertical drift component (/3 3) has been removed with this model. The
values CD = 0.5480 and C(O) = 0.4805 are the resultant estimates for the LFV and
the HFV of InKs in the three-dimensional domain, and the total variance 0'2= 1.0285.
According to this model, about 40 percent of the HFV is generated from variations
occurring at a scale smaller than the smallest lag distance in the sampling network
(0.3 m). The integral scale of InKs over the three-dimensional domain (J = V(I75)a =
14.5 m) is about 78 percent of the average integral scale (J = 18.6 m) derived from
the two-dimensional distributions of InKs at each of the four different soil layers
(table 8).

TABLE 9. ESTIMATES OF THE VARIABILITY OF u = InKs
USING VARIOUS ANALYTICAL AND TESTING METHODS,

USING JOINTLY ALL FOUR DEPTHS OF THE HAMRA FIELD (n = 120)""

a. Conventional statistical analysist

{1 0 2 ksk X 2 (df ) D

1.2003 1.0331 -1.224 4.206 23.1 (3)*

b. Structural analysis

Model Cn Co Ii Ale

E+C 0(-) 1.095 (.178) 0.667 (.142) 848.1
S+C 0(-) 1.043 (.167) 1.135 (.198) 841.9

c. Cross validation

Mean Mean Mean
Model error square error reduced error

E+C -0.00342 0.6711 1.019
S+C 0.01047 0.6247 0.976

d. Analysis of the uncorrelated residuals
Model {1 0 2 ksk X 2 (df) D SSR

E+C
S+C

0.1872 0.8915
0.1274 0.9270

-0.997
-1.07

3.995
4.159

18.3(3)*
15.8(3)*

0.1131 S
0.1081

118.2
119.0

""Symbols are defined in tables 5, 7, and 8. Values in parentheses are the standard error of
estimation (SE). If the value is zero, there is no standard error.

tValues of K, are in J1 m per second.

*Null (normal) hypothesis is rejected at the 0.05 level of significance.

SNull (normal) hypothesis is rejected at the 0.10 level of significance.
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TABLE 10. ESTIMATES OF THE VARIABILITY OF u = InKs USING VARIOUS
ANALYTICAL AND TESTING METHODS, USING n = 60 RANDOMLY SELECTED

VALUES OF u FROM THE FOUR DEPTHS OF THE HAMRA FIELD·

a. Conventional statistical analysist

{L a2 ksk D

1.213 0.9364 -1.166 4.243 6.4 (3) 0.1180

b. Structural analysis

Model c; Ale

E+C
S+C
E+L
S + L

c. Cross validation

o (-) 1.007 (.209)
o (-) 0.971 (.202)
0.1864 (.051) /' 0.384 (.296)
0.1955 (.050) 0.285 (.140)

0.655 (.278)
1.298 (.353)

19.74 (23.6)
32.51 (13.7)

432.9
429.6
388.2
386.1

Model

E+C
S+C
E+L
S+L

Mean Mean Mean
error square error reduced error

0.0115 0.892 1.108
0.0126 0.838 1.059
0.0444 0.613 1.236
0.0326 0.612 1.229

d. Analysis of the uncorrelated residuals
Model (L a2 ksk X 2 (df ) D SSR

E+C
S+C
E+L
S+L

-0.0396
-0.0453
-0.0357
-0.0356

0.9963
0.9971
0.9984
0.9985

-1.020
-1.108
-0.550
-0.560

4.290
4.417
3.574
3.599

4.7 (3)

5.1 (3)
3.1 (3)
1.0 (3)

0.1076
0.1110
0.0736
0.0781

58.86
58.95
55.98
55.99

*Symbols are defined in tables 5, 7, and 8. Values in parentheses are the standard error of
estimation (SE). If the value is zero, there is no standard error.

tValues of K, are in J.1 m per second.

Panoche Field

Nielsen, Biggar, and Erh (1973) measured the saturated hydraulic conductivity K,
under steady-state ponded infiltration conditions at 20 different. sites and 6 different
depths in a 150 ha clay loam field on an alluvial fan of the Panoche soil series. A
ponded 6.2 X 6.2 m plot was used to measure the steady-state vertical flux, with the
average value of duplicate tensiometers located in the center 2 m2 of the plot at
different soil depths used to estimate the vertical hydraulic gradient. Since at a given
depth only 20 measurements of K, are available, the spatial distribution of u = InKs
was analyzed in the entire field domain by viewing u = InKs as a realization of a
three-dimensional, isotropic random function.

In table 11, the data summarize the results of conventional statistical analysis,
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structural analysis, the cross-validation test, and analysis of the uncorrelated residuals
of InKs. With the conventional statistical analysis, the chi-square test rejects the null
hypothesis for InKs, whereas the KS test accepts it. The structural analysis (using only
the E + C model) produced a relatively small correlation scale (J = V2 Ii = 9.65 m) as
compared with the field horizontal dimensions (1,000 m and 1,500 m in the N-S and
the E-W directions, respectively) and a variance of C(O) = Cn + Co = 2.212, which is
larger than the variance 0 2 = 1.932 of the samples analyzed by conventional methods.
About 5 percent of the variability of InKsoccurs at a scale smaller than the smallest lag
distance of the sampling network (0.3 m). The results of the cross-validation test and
the analysis of the uncorrelated residuals suggest that the E + C structural model is
accurate and consistent with the data. Results of both the chi-square test and the KS
test suggest that as opposed to the sample values of InKs, the uncorrelated residuals
of InKsare distributed normally (table l Id),

As in the case of the Hamra field, the most appropriate model for the three
dimensional spatial distribution of InKswas selected by randomly choosing 60 observa
tion points (n) from the six depths. The data in table 12 summarize the results of both
conventional and structural analysis, as well as model validation and discrimination
for this case. Results of both the chi-square test and KS test accept the null hypothesis
for InKs (table 12a). The structural analysis results demonstrate the sensitivity of the

TABLE 11. ESTIMATES OF THE VARIABILITY OF u = InKs
USING VARIOUS ANALYTICAL AND TESTING METHODS,

USING JOINTLY ALL SIX DEPTHS OF THE PANOCHE FIELD·

a. Conventional statistical analysist

p &2 'd D

0.120 1.932 -0.571 3.202 0.0744

b. Structural analysis

Model c;

E + C 0.1135 (0.047)

c. Cross validation

2.099 (.613) 6.823 (3.373)

Model

E+C

Mean
error

-0.0245

Mean
square error

0.537

Mean
reduced error

1.113

d. Analysis of the uncorrelated residuals
Model p &2 'sk D SSR

E+C -0.147 1.016 -0.167 3.663 4.5 (3) 0.0665 119.0

·Values in parentheses are the standard error of estimation (SE). Symbols are defined in tables
5,7, and 8.

tValues of K, are in J.i m per second.

:J:Null (normal) hypothesis is rejected at the 0.05 level of significance.
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estimated parameters of the covariance function to the type of model used to describe
the spatial variability of InKs. As was the case for the Hamra field, inclusion of linear
drift in the structural model considerably increased the estimated correlation scale of
the stochastic component, relative to the case where a constant drift was assumed. The
chi-square test of the uncorrelated residuals rejected the null hypothesis only for the
E + L model. The KS test results and the values of SSR (equation 21), however,
accepted the null hypothesis for the uncorrelated residuals associated with each of the
four models. The cross-validation test suggested that only the E + C model could be
considered as accurate and consistent with the data. The S + L model minimized the
value of Ale. The value of MRE > 1 associated with the S + L model suggests that the
size of the estimated correlation scale might bereduced. Therefore, awas reduced until
the value of MRE (equation 23) within the allowable range of variability. The value of

TABLE 12. ESTIMATES OF THE VARIABILITY OF u == InKs USING VARIOUS
ANALYTICAL AND TESTING METHODS, USING n == 60 RANDOMLY SELECTED

VALUES OF u FROM THE SIX DEPTHS OF THE PANOCHE FIELD·

a. Conventional statistical analysis t

~ &2 'd D

0.193 2.140 -0.821 3.635 7.2 (3) 0.1108

b. Structural analysis

Model Cn Co Ii Ale

E+C 0.0414 (0.092) 2.012 (0.609) 4.033 (2.32) 441.7
S+C 0.0721 (0.078) 2.005 (0.621) 7.583 (3.88) 442.1
E+L 0.2291 (0.053) 1.772 (1.03) 249.5 (243.6) 431.5
S+L 0.2162 (0.080) 1.475 (0.55) 86.6 (242.3) 431.4

c. Cross validation

Mean Mean Mean
Model error square error reduced error

E+C -0.0113 0.7284 1.220
S+C -0.0145 0.7534 1.263*
E+L -0.1018 0.7282 1.427*
S+L -0.0814 0.6962 1.415*

d. Analysis of the uncorrelated residuals
Model ~ &2 'sk kc X 2 (df ) D SSR

E+C 0.0528 0.9970 -0.435 2.388 2.9 (3) 0.073 58.99
S+C 0.0528 0.9972 -0.421 2.380 2.9 (3) 0.065 59.00
E+L -0.0104 0.9992 -0.508 3.671 9.6S (3) 0.126 56.00
S+L 0.0088 0.9999 -0.502 3.104 7.2 (3) 0.097 55.95

·Symbols are defined in tables 5, 7, and 8. Values in parentheses are the standard error of
estimation (SE).

tValues of K s are in J.l m per second.

*Value of statistic is out of the allowable range of variability.

SNuB (normal) hypothesis is rejected at the 0.05 level of significance.
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a= 18.1 m (and J = 8.10 m) produced a mean and variance of the kriging-reduced
error, RE(Xi), in the allowable range of variability: -0.37 < J1 < 0.27 and 0.975 < 0 2

< 2.09. The resultant drift parameters are ~o = 0.767, ~1 = 1.27 X 10-3, ~2 =
-1.83 X 10-4, and ~3 = 0.595, where R2 = 0.65 and SE = 0.79. The values of
C(O) = 1.692 and CD = 0.3879 are the resultant estimates for the HFV and the LFV
of InKs in the three-dimensional domain. The resultant value of the AIC (433.3) is
only slightly higher than the minimum value of AIC associated with the RML estimate
of a = 86.6 m. However, this value is still considerably smaller than the values of
AIC associated with the constant drift models. The statistical analysis of the resultant
uncorrelated residuals, (x 2[3] = 3.6, D = 0.121, and SSR = 48.3) suggested that the
revised model (with J = 8.1 and total variance of 0 2 = 2.08) would produce normally
distributed uncorrelated residuals at the 95 percent significance level (-0.22 < J1
< 0.27,0.54 < 0 2 < 1.19, and X~025 = 37 < SSR = 48.3 < X~.975 = 78), and
thus may be considered to be accurate and consistent with the data.

One may conclude from the above analyses that u = InKsin the Hamra and Panoche
fields may be regarded as realizations of three-dimensional, isotropic, stochastic func
tions whose distribution is N[M(x), Cu(h)]; that is, the functions are distributed
normally with a spatially varying mean and stationary covariance. The RML procedure
was used to estimate the parameters of Cu(h), and a WLS procedure (equation 27) was
used to estimate the parameters of M(x). The most appropriate model to describe the
spatial variability of U(x,w) from among those meeting all other criteria was selected
as the one that minimized the AIC. A spherical covariance function (equation 25a)
with linear drift (equation 26, with K = 3) was selected for both fields by this
procedure. The three-dimensional spatial correlation of InKs for the Hamra field is
characterized by an integral scale of J = 14.5 m. The LFV accounted for more than 50
percent of the total variability of InKs (0 2 = 1.028), and about 40 percent of the
HFV stems from variations at a scale less than 0.3 m. The three-dimensional spatial
correlation of InKs for the Panoche field is characterized by an integral scale of
J = 8.1 m. The LFV accounted for only 18 percent of the total variability of InKs
(0 2 = 2.08), and about 13 percent of the HFV stems from variations at a scale less
than 0.3 m.

The contrast between the two fields is interesting, showing that an integral scale of
the same order may represent the spatial structure of InKs for soils of different textures
and sampling areas. Despite the similar integral scale, however, the two fields have
markedly different drift contributions, nugget variances, and total variances.

SUMMARY AND CONCLUSIONS

The preceding analysis has demonstrated how a statistical study of spatial structure
may reveal field properties that are not apparent from a simple calculation of the
statistical moments of the set of parameter measurements. Cases in point are the
studies of Nielsen, Biggar, and Erh (1973) and Russo and Bresler (1981), both of
which were best described by three-dimensional spherical covariance values with linear
three-dimensional drift functions when judged by objective model validation criteria.
The saturated hydraulic conductivity values had comparable integral scales for their
underlying stochastic components (8.1 m and 14.5 m, respectively), but the Hamra
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field of Russo and Bresler had a much larger deterministic drift component than did the
Panoche field of Nielsen and coworkers. Furthermore, the residual stochastic compo
nent of the Hamra field possessed a large nugget variance (40 percent of total), whereas
that of the Panoche field was small (13 percent of total).

This study has demonstrated the extreme sensitivity of the estimate of the integral
scale parameter to the type of model used for the semivariogram, to the assumption of
drift, and to the type of validation test used to confirm the estimation procedure.
Failure to subject a data set to a comprehensive analysis such as that carried out in this
study may result in the selection of integral scale values that have little meaning. It is
notable that none of the early studies reviewed by Jury (1985) that reported integral
scale values used any statistical validation procedures, relying instead only on simple
semivariogram or autocorrelation model estimates of the field structural parameters.
For this reason, the correlation noted by Jury (1985) between sample spacing and
integral scale may be an artifact of estimation procedures that failed to analyze the real
structure of the fields where such values were reported.

It is clear from this study that greater care must be taken in future studies of spatial
structure, both to utilize more sophisticated estimation procedures and to analyze for
drift components. In this study only the spatial distribution of the saturated hydraulic
conductivity from two different fields was analyzed in detail. Stochastic analysis of
water or solute transport in the unsaturated zone requires knowledge of the spatial
distribution of soil hydraulic properties (soil hydraulic conductivity and water con
tent-water potential functions) as well as the spatial distribution of the components of
the dispersion tensor. This formidable task may be eased by the introduction of the
scaling factor concept, which involves viewing a scaling factor as a stochastic variable
so that the spatial variability of soil hydraulic properties may be described by a
univariate parameter distribution instead of a multivariate parameter distribution. In
part II of this paper, we analyze the spatial distribution of a scaling factor derived from
the theory of microscopic similitude (Miller and Miller 1956).
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component than the Panoche field of Nielsen, Biggar, and Erh (1973).
The stochastic component of InKs in the Bet-Dagan field possessed a
large nugget variance (40 percent of total) and was characterized by an
integral scale of J = 14.5 m, as compared with J =8.1 m and a small
nugget variance (13 percent of total) in the Panoche field.

II. Scaling Models of Water Transport

In this paper, we examine the possibility of introducing a single sto
chastic scaling factor a, derived from macroscopic Miller similitude, to
describe the spatial variability of soil hydraulic properties. Most of the
information available allowed only a conventional statistical analysis
of the scaling factors derived from different soil properties. The field
studies of Nielsen, Biggar, and Erh (1973) and Russo and Bresler (1981)
were suitable also for more detailed structural analyses. Results of
these analyses suggested that the spatial structure of the a-set derived
from the hydraulic conductivity function K(O) is different from that of
the a-set derived from the water retentivity function h(O), reflecting
the different spatial structures of the K (0) and the h(0) functions.
Consequently, the statistical relationship between the uncorrelated
residuals of the two a-sets was rather weak. For the Hamra field of
Russo and Bresler (1981), the use of relative hydraulic properties to
estimate the scaling factor sets considerably improved the correlation
between the a-sets, which had essentially the same spatial structure
but slightly different variances.

In this study, where the soil hydraulic properties are assumed to be
described by the model of Brooks and Corey (1964), analytical ex
pressions for the variances of the two different a-sets indicated that
(1) both a-sets are dependent on the range of water saturation that is
used to estimate them, (2) the correlation between the two sets will
improve in media with a wide pore-size distribution, and (3) the two
sets will be identical if and only if the relative hydraulic conductivity
function Kr(hr) is described by a deterministic function, Kr(hr) = b;-2.

This result suggested that, in general, a second scaling factor for K; is
required for media that are not characterized by this single determin
istic relationship.

A more general Kr(hr) relation, defined by K; = b,"", was intro
duced using " as a second stochastic variable. In this representation,
the a scaling factor for K; is defined by Kr/Kr* = a" instead of a 2 as in
macroscopic Miller similitude. For the Hamra field, the resultant new
a-set was identical to the a-set derived from the relative retentivity
function. For the Panoche field, using the values of " to estimate the
scaling factor from the relative hydraulic conductivity function con
siderably improved the correlation and the similarity between the two
a-sets, but did not render them identical. The results of our analysis
suggest that, for transient water flow, describing the spatial variability
of K(O) and h(O) requires at least three stochastic variates: K s' a, and n,
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