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COMPUTER GENERATION OF POINTS ON A PLANE

A statistical model for the generation of random, contagious, and
uniform spatial patterns is developed. Points are located on the
plane one at a time with each point modifying the probability
matrix for the next point. For random patterns no change is made
in the probabilities. For contagious patterns, location of a point
increases the probability of locating another point near it. How­
ever, for uniform patterns the probability of locating another point
near previously established points is reduced.

TREATMENT OF BOUNDARY LINE OVERLAP
IN A FOREST·SAMPLING SIMULATOR

A procedure is given for treating boundary line overlap in com­
puter simulated sampling. This procedure, referred to as algo­
rithm EDGE, insures that each point in the rectangular population
has the same probability of being included in the sample, thereby
eliminating possible edge-effect bias. The effectiveness of EDGE in
producing a more realistic variance/plot size relationship is dem­
onstrated by comparing the variance functions with uncorrected
samples and samples corrected using a previously reported weight­
ingscheme.

THE AUTHOR:

Lee C. Wensel is Associate Professor of Forestry, Department of
Forestry and Conservation, College of Natural Resources, Univer­
sity of California, Berkeley, California 94720.



Lee C. Wensel 

Computer Generation of Points on a Plane1 

INTRODUCTION 
AN INCREASING NUMBER of researchers 
have been using mapped and artificially 
generated spatial populations as basic 
data for simulation models of various 
types. O 'Regan and Palley ( 1965 ) Kulow 
(1966), Wensel and John (1969), Ek 
(1971), Aldred (1971) and others have 
used mapped stands to study the prop­
erties of various sampling estimators. 
Payandeh (1970) and Payandeh and 
Paine (1971) used both mapped stands 
and "computer redistributed" stands to 
examine the effect of differences in spa­
tial pattern on the relative precision of 
systematic versus random sampling. 
Payandeh (1970) also used these 
mapped and computer redistributed 
stands to compare measures of stand 
contagion. 

In order to simulate the operation of 
pulpwood harvesting machinery, Newn-
ham (1968) has developed a general 
program for generating artificial popu­
lations of points on a plane. This pro­
gram enables the user to generate, 
through trial and error, any one of a 
number of spatial patterns from clumped 
(contagious) through random to uni­
form. Uniform stands are generated by 
locating trees within grid squares, the 
exact location being stochastic and de­
pending upon the degree of uniformity 
desired. Contagious populations of 
points are generated by first locating 
a number of clump centers. Then X and 
Y coordinates are randomly selected for 
each point to be located and the distance 
to its nearest clump center is reduced, 

1 Submitted for publication October 26,1973. 

thus yielding a new set of coordinates 
closer to the clump center in question. 

For use in an even-aged forest man­
agement simulator, Dress (1970) gen­
erated randomly distributed artificial 
forest populations using a combined 
Poisson arrival (birth) and binomial re­
moval (death) process for grid cells of 
equal areas. The actual coordinates of 
the tree within the cells were based upon 
randomly selected azimuths and dis­
tances from the center of the cell. 

Of the methods of generating artifi­
cial populations of points on a plane, the 
method given by Newnham (1968) ap­
pears to be the more general. It is espe­
cially good for generating special dis­
tributions, such as those characterizing 
plantations of stands with infection cen­
ters (e.g., seed trees) or density gradi­
ents. Dress (1970) treats only even-aged 
stands which characteristically give 
either uniform or random spatial pat­
terns. Payandeh's (1970) method re­
quires data from previously mapped 
stands and thus is not as flexible as the 
others. 

The present study develops a stochas­
tic method for generating artificial 
populations of points in a plane that can 
be used to study the effects of the degree 
of contagion, randomness, or uniformity 
(over-dispersion) on the sampling effi­
ciency of a number of sampling designs. 
Thus, the method of generating popula­
tions must make it possible to vary the 
degree of non-randomness in a continu­
ous fashion. The generator should also 

[131] 
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be able to generate populations that are 
free from edge effect.2 Because only rela­
tively small (area) populations can be 
used in computer sampling simulators, 
possible edge effect bias may be signifi­
cant (Wensel and John 1969). 

This paper is followed by a paper 

(starting on page 143) that describes a 
procedure for eliminating bias from 
either boundary-line overlap or edge-
effect. 

An Appendix containing computer 
programs relative to both papers begins 
on page 147. 

THE GENERATION PROCESS 
Establi sh initial 

cumulative probability 
matrix on grid 

Generate 
uniform random 

number R 

Locate grid point 
i such that 

p._,<R-cp 

Modify probability matrix 
based upon type and degree 

of spatial pattern 

Compute 
contagion 

coeffi cients 

Print 
|di stri but ion 

summary 

Figure 1 is an abbreviated flow chart 
of the process used to generate various 
spatial patterns. The principle used here 
is to start with a uniform grid of points, 
each of which could be the location on 
the grid of any one of the individuals 
in the pattern. Initially, each point has 
the same probability of being chosen as 
the location for an individual. However, 
as each individual in the pattern is lo­
cated, the probability of selecting each 
remaining point on the next draw is 
modified to reflect the effect that the pre­
vious point had on the pattern. This 
process is repeated until all the individ­
ual points in the pattern have been 
located. 

Fig. 1. Flow chart for spatial pattern 
generator STAND. 

* As used here edge effect is the result of a population having different properties near the edge 
or border than it does in the interior. 
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INITIAL PROBABILITY MATRIX; 
RANDOM NUMBER GENERATOR 

An initial cumulative probability 
matrix P is generated so that the prob­
ability of locating the first individual 
at any point is the same for all points. 
The initial values of the matrix P are 
given by 

P . = - i= 1,2, . . . , n 
i n ' ' ' xy 

xy 

where flxy I S the total number of points 
on the population grid. 

In order to locate individuals on the 
probability grid, a uniform pseudo-ran­
dom number R on the unit interval 
(0 ^ R ^ 1) is generated using the func­
tion RANDOM. (Computer routines re­
ferred to here in upper case letters are 
given in the Appendix, starting on page 
147.) This routine uses the multiplica­
tive congruent method described by Hil-
lier and Lieberman (1968) ; it has been 
tested by some authors (cf. Aldred 1971 

Subroutine LOCATE uses a search pro­
cedure to select the coordinate point k so 

that P <R <P where 1 <k<nxy 
k~ 1 k 

and Uzy is the total number of points on 
the grid. The initial appoximation given 
by k = Rrixy was increased or decreased 

After each individual is located on the 
grid, the probability mass for all points 
within a specified radius (defined be­
low) of the point just selected is redis­
tributed over these points. This redis­
tribution of probability mass reflects the 
relative probability of observing an in­
dividual at the respective coordinate 
points in populations of the type being 
generated. For contagious populations, 
grid points near the point just selected 

TABLE 1 
SEEDS FOE EANDOM NUMBER 

GENERATOR RANDOM 

Number 
1 
2 
3 
4 

Seed (octal) 

17164312635650214531 
17166110231614303311 
17175445572764662267 
17161717553070425125 

and Kourtz 1970), but it does not work 
uniformly well for all seeds (starting 
values). Table 1 gives the four seeds 
used in the examples that follow. Stan­
dard tests of randomness were applied 
to numbers generated from these se­
quences and they failed to show any 
significant departures from randomness. 
Further, tests of randomness for spatial 
patterns resulting from these numbers 
failed to show significant departures 
from randomness (see below). 

sucessively by 8, 4, 2 and 1 until the 
proper value of k was found. The use of 
this initial approximation (exact for 
random spatial patterns) reduced the 
total search time over the often-used bi­
nary search. Search time increases as P 
is modified by successive iterations. 

would have their selection probabilities 
increased at the expense of points re­
moved from the point. For uniform 
populations the reverse is true. The ac­
tual probabality modification is accom­
plished by multiplying the individual 
selection probabilities by a function that 
is greater than 1 or less than 1, depend­
ing upon whether the probability is to 
be increased or decreased, respectively. 

Boundary line "slopover" bias is elim-

LOCATION OF SELECTED GRID POINTS 

MODIFICATION OF PROBABILITY MATRIX 
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inated by projecting opposite sides of 
the population onto one another (sub­
routine LOCATE, Appendix) using the 

Wensel : Computer Generation ofPomts 

concepts embodied in the paper which 
follows (Wensel 1975). 

FUNCTIONS FOR REDISTRIBUTING 
PROBABILITY MASS 

The principle used here is that the 
modification procedure must not alter 
the total probability mass of the area 
affected. Thus the decrease in prob­
ability mass in one area must be offset 
by an equal increase in probability mass 
in another area. The functions used here 
are based upon a measure of the scaled 
distance, X, between the individual and 
the grid point being modified. The type 
of non-random pattern generated is de­
termined by the modification function 
chosen and the degree of non-random­
ness is controlled by the parameters used 
in that function. 

Regular spatial patterns 
Most even-aged coniferous forest pop­

ulations tend to be distributed in a uni­
form, regular or over-dispersed pattern. 
To generate these types of spatial pat­
terns, consider the maximum value of 
the probability modification function 
(fig. 2) to be at the point (1.0, Hm) with 
the function equal to 1.0 (no modifica­
tion) at X-Xo and at X-{2.0-xo). 
Here Hm represents the maximum mod­
ification and (x0, 1.0) represents the 
point at which the probability modifica­
tion changes from being less than 1.0, 
thus decreasing the probability, to being 
greater than 1.0, which increases the 
probability of the respective grid point 
being selected. 

We now must find the equation of a 
line (fig. 2) that goes through the points 
(0, 0), (x0, 1), (1, Hm), and (2-z0, 1) 
as well as satisfying the condition that 
the total probability mass within the 
area affected is not changed. Equating 
the decrease in probability within the 

radius x0 to the increase in probability 
over the "donut" area from x0 to (2-x0) 
we have 

(1) 
2τ X0 7Γ 1 

/ / [ ! - / (*) ] dx = / / [ / ( * ) - 1 ] dx + 
0 0 o x0 

2ττ 2-χ0 

f J[/(2-*)-l] dx. 
0 1 

The functional form 

f(x) = kxb(l-e~ax) 
can be made to satisfy the above condi­
tions. 

/ , Hm 1.25 

0.25 0.50 

scaled distance from point x 

Fig. 2. Probability modification function 
for uniform patterns. 
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Using the points through which we 
know the curve must pass (above), we 
express k and b in terms of a as follows: 

fc = / / m / ( l - 0 
-ax 

b = - (log fc + log (l-e *)) / log x0 

Given Hm an iterative procedure8 is 
then used to find values of a and x0 that 
make the absolute value of the difference 
between the left- and right-hand sides of 
equation (1) less than c, where c is a 
small positive quality (10~5 as used 
here). Table 2 gives values of x0, a, 6, 
and k for selected values of Hm. The set 
of constants is not unique for each £Tm, 
but within practical limits any two sets 
of constants that satisfy the above con­
straints will define the same line. Thus 
the degree of uniformity produced by 
the model is controlled by the value of 
Hm used (see below). Figure 2 illus­
trates the form of probability modifica­
tions functions for the set of constants 
given in table 2. 

TABLE 2 
COEFFICIENTS FOR PROBABILITY 

MODIFICATION FUNCTION 
f(x)=h xb (l-e-**) 

Hm 

1.25 
1.50 
1.75 
2.00 

Xo 
0.725 
0.750 
0.775 
0.800 

a 

1.50 
2.00 
2.00 
2.00 

b 

0.20 
1.04 
1.83 
2.75 

k 

1.61 
1.73 
2.02 
2.31 

Contagious spatial patterns 
The function used to modify the prob­

abilities for contagious patterns cause 
the probabilities to increase for grid 
points within a distance of x0 and de­
crease for distances x0 to xx as shown in 
figure 3. The constants alf blf a2, and b2 
for the two linear functions 

/ N (ai + b\X o < x < 1 
{a2 + o2 x 1 < x < x 

are obtained in a similar manner as was 
used in (a) above. Here the constants 
öi, &i, a2, and b2 are expressed in terms 
of Hm, Xo, and xx based upon the points 
that the lines must pass through. These 
points are (0, Hm), (x0f 1), and (xlf 1). 
Then given Hm and xlf x0 can be ob­
tained by iteration so that the gain in 

0.85 1.00 
scaled distance from point x 

Fig. 3. Probability modification function 
for contagious patterns. 

TABLE 3 
PAEAMETERS FOR CONTAGIOUS PROBABILITY MODIFICATION FUNCTION 

hm 

1.25 
1.50 
1.75 
2.00 

xo 

0.85 
0.85 
0.85 
0.85 

Xl 

2.00 
2.00 
2.00 
2.00 

ai 

1.25 
1.50 
1.75 
2.00 

bi 

-0.29412 
-0.58824 
-0.88235 
-1.17647 

a2 

0.91176 
0.82353 
0.73529 
0.64706 

b2 

0.04412 
0.08824 
0.13258 
0.17647 

•A short computer program (VOLDIF) designed to solve this problem is available from the 
author. 
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probability from a radius of 0 to x0 is 
approximately equal to the loss in prob­
ability for the radius x0 to xx\ Table 3 
gives values of these constants for the 
functions plotted in figure 3. 

For the example used here setting Hm 
= 2.0, z0 = .85, and £i=2.0 yielded the 
equations 

- 1.176s 0 < x <> 1 
L647 + 0.176* 1 < x <> xl * » - & 

SCALING 
The scale, 8, of the grid used to repre­

sent the physical area A is given by 

S \ n 

This scale is to be interpreted as the 
physical distance "on the ground" repre­
sented by the "distance" between grid 
points in the computer, where n^ is the 
total number of grid points used. In 
order to conserve computer time it is 
better to choose S as large as possible 
without destroying the relationship be­
ing generated. In general, contagious 
patterns are more sensitive to increases 
in 8 (because their individuals tend to 
be grouped closer together) than are uni­
form patterns. I t is suggested that sev­
eral scales be tried to choose the opti­
mum scale for a particular application. 

The average number of grid points per 
individual is given by the ratio ( τ ^ ) , 

where N is the number of individuals 
generated. Because the area to be modi­
fied is circular, the radius (number of 
grid points) of the maximum modifica­
tion, W, is given by 

W 14 U*v 

For W given, the number of individuals 
in the population is thus 

4 n*v 

The radius of probability modifica­
tion, in terms of the number of compu­
ter grid points, for regular and conta­
gious patterns is W(2-x0) and Wxlf re­
spectively, where W, x0, and xx are de­
fined above. Multiplying these radii by 
the scale factor 8 we have the "on the 
ground" radius R defined as: 

R λ S W (2 - xo) contagion pattern 
S W X\ regular pattern 

Example: 
Let an area of A = 10 acres be repre­

sented in the computer by 71^ = 6400 
points. This gives the scale factor 8 as 

8 -4 (10 acres) (43,560 sq. ft./acre) 
6400 points 

-Ψ 168.0625 ft.Vpoint 

= 8.25 feet/point 

For W = 7 points, we compute N, the 
number of individuals in the population 
to be generated, as 

N--= (i) f6400\ = 
\ 72 / 

166 individuals 

Letting Xo = 0.75 (X1 = l -X 0 = l-25) 
for regular patterns and Χχ = 2.00 for 
contagious patterns we have R, the radii 
of probability modification defined as 

f (8.25) (7) (1.25) =72.2feet 
(regular) 

(8.25) (7) (2.00) =115.5 feet 
(contagious) 

Rzz 

*A short computer program (CONTDIF) designed to obtain the quantities x0, xlf <hf olf a2, and b2 
is available from the author. 
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MEASURES OF SPATIAL PATTERN 
Three measures of spatial pattern 

(Pielou, 1969) will be used here based 
upon (1) the distance from a randomly 
located point to the nearest individual 

a = D 7 
n-1 

(2) the distance from a random indi­
vidual to its nearest neighbor 

fl = 2VZ)S<i, 
n 

and (3) Hopkins' measure of aggrega­
tion 

where dx is the distance from a random 
point to the nearest individual, d2 is the 
distance from a random individual to its 
nearest neighbor, D is the average num­
ber of individuals per unit area, and n 
is the number of samples taken. The 
measures a, R, and A are commonly re­
ferred to as the point-to-plant, plant-to-
plant, and Hopkins' measures, respec­
tively. 

Table 4 gives the expected values of a, 
R, and A for contagious, random and 
regular patterns. 

In comparing the measures a and R, 
Pielou (1969, p. 119) states that R is 
. . . "possibly the best if one wishes to 
measure pattern intensity." In tests on 
actual and computer-redistributed pop-

From an examination of the patterns 
that were generated it is quite evident 
that the generator was able to generate 
spatial patterns with increasing intens­
ities of regularity and contagion. Thus 
this objective has been met and the gen­
erator can now be used to study the ef­
fect of spatial pattern on sampling ef-

ulations, Payandeh (1970) found that 
a and R accurately detect departures 
from randomness but only a was sensi­
tive to the degree and direction of this 
departure. Also, Payandeh found Hop­
kins' coefficient of aggregation, A, to be 
quite inaccurate. 

TABLE 4 
EXPECTED VALUES OF SPATIAL 

PATTERN MEASURES 

Measure 

a 

R 

A 

Type of pattern 

Contagious 

> 1 

< 1 

> 1 

Random 

1 

1 

1 

Uniform 

< 1 

> 1 

< 1 

In the present study, Hopkins' mea­
sure of aggregation was found to be 
more accurate and more sensitive than 
either a or R. This is due to special char­
acteristics of computer sampling which 
make it possible to take large samples. 
In addition, the usual sampling difficul­
ties associated with these distance mea­
sures are not a problem when dealing 
with computer-generated populations. 
Both a and R require that the popula­
tion density, D, be known. While addi­
tional (quadrat) sampling may be used 
to estimate the density in actual pop­
ulations, the density of computer-gen­
erated populations is known. Further, 
randomly selecting individuals from the 
populations for measures R and A, 
while extremely expensive in field situ­
ations, is quite simple in the computer. 

ficiency and other management oper­
ations. 

Random spatial patterns 
For random spatial patterns, no prob­

ability modification is made and hence, 
there is no limit to the number of indi­
viduals that can be generated, theoret-

GENERATION RESULTS 
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ΓΤ-. i —■ ·■ .· * 

seed2,hm = 1.00 

fe . · · -
seed 2, hm = 1.50 

_ i _ j 

seed 2, hm = 2.00 
Fig. 4. Patterns with increasing degrees 

of uniformity, seed 2. 
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seed2,hm = 1.25 

seed 2, h m = 1.75 

ically at least. For comparative pur­
poses, however, random patterns were 
generated with the same number of in­
dividuals used in the uniform spatial 
patterns. For nxy = 6400 points, and N = 
166 individuals (see example above), 
the four seeds shown in table 1 were 
used to generate random patterns (no 
modification). The following values of 
A, Hopkins' measure of aggregation, 
were calculated for these populations: 
0.926, 1.003, 0.818, and 1.088 with an 
average of 0.984. Using the transforma­
tion „ _ A 

X- 1 + A 
Pielou (1969, p. 116) has shown that, 
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ε 0.8 J 

^ 
1.00 1.25 1.50 1.75 2.00 

Hm 

Fig. 5. Randomness indices for uniform 
spatial patterns. 

for random populations, x is asymptoti­
cally normally distributed with E [x] = 

1/2 and Var (x) = 4 ( 2 n + i ) > where n is 
the number of samples taken. For n = 
166 we have 

F a r ^ = Ï 3 3 2 
and V Var (x) =0.027. 
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For the values of A given above, we have 
the following values of x: 0.481, 0.501, 
0.450, and 0.521. None of these values 
is significantly different from E [x] = % 
at the 95 per cent level of confidence and 
thus none of the four patterns with 
Hm - 1.00 departs significantly from be­
ing random. 

Regular spatial patterns 
Figure 4 shows the spatial patterns 

that were generated by increasing the 
intensity of the probability modification 
for seed 2 (table 1 ) and using data given 
in the example above. Figure 5 shows 
averages of the three measures of spatial 
pattern for the four seeds used. Of the 
three measures of pattern used here, 
only Hopkins' measure is consistent in 
reflecting the increasing regularity of 
the patterns for individual seeds and be­
tween patterns generated with different 
seeds and different intensities. 

Contagious spatial patterns 
Using the same generation parameters 

as above, but changing to the con­
tagious probability modification func­
tion, contagious patterns were generated 
for each of the four seeds. Figure 6 
shows the patterns generated for seed 2. 
The increase in the contagion with in­
creasing Hm is evident in both the pat-

0 0« 0 0 0 • I. · · 

000 ill ( I l · 

seed2, hm = 1.00 
Fig. 6. (See next page for description.) 

seed 2, h m = 1.25 
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seed 2, h m - 1.75 

seed 2, hm = 2.00 
Fig. 6. (Continued from page 139.) Patterns 

with increasing degrees of contagion, seed 2. 

terns shown in figure 6 for seed 2 and in 
the average measures of spatial pattern 
plotted in figure 7 for all four seeds. 

As with regular patterns, Hopkins' 
measure of aggregation, A appears to 
more accurately reflect changes in the between seeds for the various levels of 
intensity of the pattern both within and intensity of the pattern. 

100 1.25 1.50 1.75 2.00 
Hm 

Fig. 7. (Immediately above.) Randomness in­
dices for contagious spatial patterns. 

OPERATION OF THE GENERATOR 
Four control cards are necessary to 

set up the program STAND to generate 
a particular spatial pattern. Table 5 

for these cards, together with sample 
data cards. The variables listed in table 
5 are defined as follows (with the sample 

gives the READ and FORMAT statements values given in parentheses) : 
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Gard l 
NAMEFILE is an 80-character label 

used to identify the program out­
put. (POPULATION 1, CONTAGIOUS) 

Card 2 
N is the number of individuals to be 

generated. If N is given as zero, 
a value is calculated using equa­
tion 10 above. (166) 

NX, NY, and NXY are the number 
of grid points in the X and Y 
directions and the total number 
of grid points, respectively. (80, 
80, 6400) 

W is the scale used for the probabil­
ity modification function. The 
radius of modification is given by 
W # X1, where XI is defined on 
card 4. (7) 

A is the physical area in square 
units (square feet, square meters, 
etc.) represented by the NXY 
grid points. (6400) 

Card 3 
NITER is the number of populations 

to be generated on this run. For 
each such population the same 
value of SEEDI is used but an 

additional parameter card, card 
4, is supplied for each popula­
tion. (1) 

SEEDI is the starting seed for the 
pseudo-random number genera­
tor RANDOM. It is given as a 20-
digit octal number. 
(17164312635650214531) 

Card 4 
ID is the code that indicates the 

type of pattern to be generated. 
The pattern is contagious, ran­
dom, or uniform, depending upon 
whether ID is negative, zero, or 
positive, respectively. ( -1) 

HM is the maximum probability 
modification. (1.25) 

X0 and XI are the points (scaled) 
where the probability modifica­
tion function is equal to 1.0. 
(0.725, 1.275) 

BA, BB, BK, and B2 are the values 
a, b, k, and 0.0 for LD = - 1 (uniform) 
and Oi, hly a2, and b2 if ID = +1 (conta­
gious), (1.50, 0.2008, 1.609, 0.0). This 
card can be blank when generating ran­
dom spatial patterns. 

To generate additional populations 

TABLEO 
STAND: FORTRAN INPUT SPECIFICATIONS WITH EXAMPLES 

Read statements 
READ 916, NAMFILE 
READ 905, N, NX, NY, NXY, W, A 
READ 910, NITER, SEEDI 
READ 906, ID, HM, XO, XI, BA, BB, BK, B2 

Format specifications 
916 F0RMAT (8A10) 
905 F0RMAT (4110, 2F10.0) 
910 F0RMAT (13, 2X, 020) 
906 F0RMAT (110, 7F10.0) 

Example input 

0 1 2 3 
1 0 0 0 

POPULATION 1, REGULAR WITH HM 
100 80 80 

1 17164312635650214531 
- 1 1.25 0.725 

4 
0 

= 1.25, W = 7, 
6400 

1.275 

5 
0 

AND 
7 

1.50 

6 
0 

N = 166 
6400 

0.2008 

7 
0 

1.609 

8 
0 

0.0 



142 Wensel : Computer Generation of Points 

with all parameters the same except for ing the same parameters but with dif-
those given on card 4, NITER is in- f erent seeds. 
creased and additional card 4's are sup- All programs and subroutines neces-
plied. Alternatively, the order of the sary to operate STAND are listed in the 
READ statements may be changed in Appendix and are available from the 
the program to gain further flexibility author, with the exception of the sort 
in stacking problems. For example, in- program TSORTR. This routine is avail-
terchanging the order of cards 3 and 4 able in COMPASS for use on Control Data 
and their respective READ statements computers. For other computers, the 
will permit the user to generate, on usor may substitute another sort rou-
a single run, several populations hav- tine. 
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