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INTRODUCTION

The design of a drainage system must be based on sound physical principles.
Information which increases understanding of the drainage process is the
basis for the development of a rational system of drainage design.

The past few years have produced a vast amount of literature on the sub­
ject of drainage. Both theoretical and experimental results have been reported.
Much progress has been made in the development of rational criteria for the
design of drainage systems. However, there is still much to be learned,
especially with regard to the non-steady state situation of a moving water
table.

The present study describes some of the factors that are important during
tile drainage and that affect the shape and the positions of a falling water
table. The study describes successive positions of a falling water table as a
series of steady states and is inspired by an analogous method used by Kirk­
ham and Gaskell (1951).5 The main difference is that here a capillary fringe
and a changing drained porosity are taken into account. The results of the
theoretical analysis are compared with experimental results obtained by
Luthin and Worstell (1.Jlii4-

Evaluations of the potential distribution in the draining soil profile were
obtained with an electrical resistance network. To check theoretical results
with experimental data, the network was set up in the same dimensions as
the sand tank in the experimental study of Luthin and Worstell (1957).
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5 See "Literature Cited" for citations referred to in the text by author and date.
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An exact solution for the case of the falling water table is difficult because of
the non-steady state conditions of this phenomenon. Non-steady state flow
is said to occur when the velocity at any point of a flow system changes with
time. Many investigators, including Spottle (1911), Walker (1952), Visser
(1953) and Glover (Dumm, 1954) attempted to derive analytical solutions.
These solutions are based on simplifying assumptions, and their validity may
be questioned. Recently, Luthin (1959) proposed a non-steady state drainage
formula which is based on empirical assumptions.

Childs (1947) approached the non-steady drainage problem by considering
a series of successive steady-state water table positions. Using an electrical
analogue method, he found each position of the water table by trial and error.
An initial water table shape, ponded or in equilibrium with a steady rainfall,
must first be determined. After cessation of rain the next position of the fall­
ing water table is found. A trial and error procedure is necessary because of
two conditions which must be satisfied: the voltage applied at a point cor­
responding to the upper boundary of the capillary fringe is proportional to
the hydraulic potential; and the current input at the same point is propor­
tional to the water table drop

As reported by Childs (1947), the algebraic expression of the first condition
IS:

v = Ah - C (1)

where V is the electrical potential, h is the height of the point considered
above the drain, and A and C are constants which are the analogues of the
quantities gp and pc in the equation:

q, = gph - pc (2)

Equation (2) is the well known Bernoulli equation in which the velocity
potential is neglected, q, is the hydraulic potential, g the acceleration due to
gravity, p the density of water, and pc the pressure at which the upper limit
of the capillary fringe is defined. The capillary fringe is called the ZORe of
soil just above the water table which is still essentially saturated although
under suction.

The second condition is:
(3)

where i d is the current input in the analogue per unit length of fringe bound­
ary at a horizontal distance d from the drain ordinate, K is a constant, and
I1h d is the' distance the water table falls. The derivation of equation (3) is
straightforward if ilhd is small enough so that dh/dt = ilh/St, and if ilt and
(c. - cu ) , (c. and Cu are the moisture content of the soil in the saturated and
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the unsaturated phase respectively) are constant over the distance of fall D.h
in the following equation:

Vtd = - (c. - cu) (~~) (4)

where Y;d is the fluid flux across the fringe boundary at point d, and dh/dt is
the vertical rate of fall of the water table.

As will be shown later, the assumption that (c, - cu ) is a constant is a
deviation from the true physical phenomenon. It is physically impossible that
the soil drains all its water at once when the upper boundary of the capil­
lary fringe passes a given point. Because of the resistance to flow, the suctions
which cause the water to be removed from the soil increase only gradually as
drainage proceeds.

The shapes of the water tables reported by Childs (1947) show a remark­
able flatness and seem to agree with the experimental data of Luthin and
Worstell (1957). On the other hand, Kirkham and Gaskell (1951), using the
same assumption in a similar numerical method, obtained curvilinear rather
than flat water tables. A possible explanation for this difference in shape is
that Childs had compensating errors in his assumptions and that Kirkham
and Gaskell did not. In Childs' work the assumption that (c, - cu ) is a con­
stant is probably cancelled by the assumption that the distance over which
the capillary fringe falls is proportional to the current input. According to
Kirkham and Gaskell (1951) the latter assumption may be corrected by saying
that the vertical distance of fall is proportional only to the vertical component
of the current at the top of the capillary fringe. The fact that Childs does not
take this refinement into consideration probably results in a horizontal water
table. Even though Childs' assumptions may not be entirely correct, his work
gave a good insight into the non-steady state drainage problem. Until Childs'
work the non-steady case had too often been simplified to one of a steady
state.

As mentioned before, Kirkham and Gaskell (1951) derived the positions
and shapes of a falling water table in essentially the same way as Childs,
namely by a series of steady state flow conditions. The potential distribution
in the soil profile for an initially known water table position is found by a
numerical solution of Laplace's equation based on a relaxation procedure.
The next water table position is then determined, not by trial and error as in
Childs'method, but by a simple formula based on Darcy's law. One weakness
of the method is the assumption that the pores are essentially drained at
once as the water table recedes and, consequently, that no flow occurs above
the water table. This assumption probably accounts for the difference in
shape of the water table positions obtained in the experiments of Luthin and
Worstell (1957) and those calculated by Kirkham and Gaskell.

Since the Kirkham and Gaskell equation is used for further mathematical
derivations, its derivation is now given in detail. In figure 1 an infinitely
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small portion of the water table AB is allowed to fall along the streamlines
AC and BD. Let (J be the slope of the water table and {3 the angle between
the streamlines and the vertical, then it follows that the vertical component
of the distance of water table fall AE is given by:

AE = AC (cos {3 - sin {3 tan (J) (5)

According to Darcy's law the total distance of fall AC during time T is equal
to:

AC = TK acP/as
f

(6)

where K is the hydraulic conductivity, f is the fraction of the soil which is
occupied by drainable water, and (acP/as) is the partial derivative of the
hydraulic potential with respect to path length along AC. Substituting
equation (6) in (5) results in:

AE = Tf (~~) (cos {3 - sin {3 tan 8) (7)

Using

acP acP- cos {3 = - = cP andas ay Y

in equation (7) yields the final equation:

acP . acP
- SIn {3 = - = cPxas ax

TK
AE = f (cPY - cPx tan (J) (8)

The main difference between the above analysis and that of Childs is the
factor (cPy - cPx tan (J) as used in equation (8), and not simply cPs which is
proportional to the factor i d of Childs.

The main objective of the present study is to modify the Kirkham and
Gaskell analysis by introducing a capillary fringe and also a porosity factor
which is dependent upon water table depth. Two additional objectives are:

1. Adaptation of the electrical resistance network to yield the components
of the potential gradient cPy and cPx during water table drawdown, and

2. Comparison of an analysis of the falling water table as a succession of
steady states with experimental results of Luthin and Worstell (1957).

PHYSICAL AND MATHEMATICAL THEORY OF
THE FALLING WATER TABLE

Analysis of the Experimental Study by Luthin and Worstell

Tankand Soil. The experimental results of Luthin and Worstell (1957) will
be compared with the water tables predicted by the physical analysis de­
veloped in this section. The completeness of their experimental results makes
their findings suitable for the comparison.
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The inside dimensions of the tank, as described by Luthin and Worstell,
were 6 feet high, 10 feet long and 2 feet wide. A 3-inch diameter tile drain
was at one end of the tank, 1.5 feet above the bottom. In this way a tile
spacing of 20 feet was simulated with the soil surface approximately 3.75 feet
above the tile line and the impervious layer 1.50 feet below it.

The tank was filled with a fine sand obtained from dunes near Oso Flaco,
California. It has a well defined capillary fringe of about 23 cm or 0.75 foot.
The maximum drainable porosity is about 0.35 cm3/cm3, which can be ob­
served from the moisture characteristic curve A, in figure 2. This curve, which
is obtained from data given by Day and Luthin (1956) and by Luthin and
Worstell (1957) is defined in this study as the soil moisture-suction curve.
The saturated hydraulic conductivity k of Oso Flaco sand is about 48 feet/day
or 0.0334 feet/minute.

Soil Moisture-Water Table Depth Relationship. In a draining soil it is
not clear how the moisture content at a point and the water-table depth are
related. If the suction of the water at this point were equal in magnitude to
the height of the point above the water table, the soil moisture-suction curve
A of figure 2 would represent this relationship.

According to the soil column study by Luthin and Miller (1953) however,
the depth of the water table does not equal the actual suction. They point
out that as soon as the water disappears from the soil surface, the water table
drops almost instantaneously to the bottom of the column. At this time the
soil is still saturated and the tensiometers at all depths read only small values.
These suctions increase with height in the column but always remain lower
than the actual height above the water table. As drainage proceeds the read­
ings become higher. It is only when equilibrium is reached, i.e. when the
column stops draining, that the suction at any point in the column becomes
equal to the height of this point above the water table. Under these static
conditions the moisture profile in the soil and the moisture-suction curve are
equivalent. As the drainage phenomenon in the tank is definitely dynamic,
the drained porosity is not represented by the static moisture-suction curve.
Hence another relationship must be utilized.

The average drained porosity between the (n - l l-th and the n-th position
of the water table is defined as:

fa = W'/(Yn - Yn-I) (9)

where w' is the water drained from the soil between the stable water table
positions (em" of water per em" of soil surface) and where Yn and Yn-l are the
average depths of the water table below the soil surface at the n-th and the
(n - l)-th position, respectively.

If the water table were falling very slowly, as in the case of wide tile spac­
ings, the soil moisture profile above the water table would be given quite
clearly by the moisture suction curve. Under these conditions and for a homo­
geneous soil the drain outflow water w' may be assumed to come from a soil
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portion of thickness Yn - Yn-] having an average water film tension given by
(Yn + Yn-I) /2.

In the model tank with narrow tile spacing, however, the water table falls
relatively fast. It is incorrect to assume that water drains only from a layer
of thickness Yn - Yn-I. Actually, water is being drained from all parts of the
soil profile in response to gradients whose magnitudes are not exactly known
owing to the dynamic situation. Therefore, in this study the porosity factor
defined by the water table depth will be called the "apparent" drained porosity
because the water is assumed to come from a layer thickness u« - Yn-I. Hence
the apparent drained porosity is given by:

(10)

where w is the water drained from the entire soil profile above the water
table when the water table falls from the (n - 1)-th to the n-th position.
An experimental curve relating fa' and water table depth Y can be obtained
by plotting fa' against (Yn + Yn-I)/2.

For example, the total water drained from the experimental tank in the
time interval from 2 to 8 minutes may be calculated by measuring the area
under the curve and between vertical lines at 2 and 8 minutes in figure 4
(16,800 em"). For a tank of 61 cm width and 300 em length the water drained
is equivalent to 0.917 cm of ponded water. During the same time, an apparent
soil volume of 6,450 ems/em tank width has been drained or u; - Yn-l = 6,450
cm2/300 cm or 21.5 cm. This gives then the apparent drained porosity fa' =
0.917 cm/21.5 em or 0.0427. In figure 3 it is also seen that the average depth
of the water table between 2 and 8 minutes is about 40 em (or about 80 em
above the tile drain). In this manner a plot of the apparent drained porosity
as a function of the water table depth was obtained and is shown in figure 5.
From 0 to 23 em (~ foot) an initial horizontal line represents the capillary
fringe. Greater water table depths result in a linear increase in the drained
porosity function. This curve will be referred to hereafter as the soil moisture­
water table depth relationship.

It must be emphasized that the curve of figure 5 holds for only this par­
ticular drainage problem. For example, different tile spacings in the same soil
might give a different soil moisture-water table depth relationship. Consider
the extreme case where the spacing is zero, which is in fact a column as studied
by Luthin and Miller (1953). Here the water table falls almost instantane­
ously and the Y values are initially higher than the suction. In the other ex­
treme case where the spacing is infinite, the water table does not fall at all.
In other words the soil moisture profile is in equilibrium and the moisture
conditions above the water table are equivalent with the moisture-suction
curve. It may therefore be expected that with larger tile spacings the moisture­
water table depth curve will more closely approximate the moisture-suction
curve A in figure 2.
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Mathematical Equations for the Rate of Fall of the Water Table

Effect of the Capillary Fringe. The soil moisture-suction curve A of figure 2
shows that the suction in the soil has to reach a critical value y c before an
appreciable amount of water is drained. Consequently, there is a zone of sub­
stantial thickness above the water table which is nearly saturated. This zone,
defined earlier as the capillary fringe, undoubtedly has a conductivity nearly
as high as the zone below the water table and therefore cannot be neglected
in evaluating moisture flow. Because almost no water drains as long as the
suction is lower than the above-mentioned critical value Ye, a water table
initially at the soil surface may be assumed to fall almost instantaneously
until it reaches a depth for which the suction at the soil surface is approxi­
mately Ye.

In calculating water table drawdown, the position of the upper boundary
of the capillary fringe will be predicted rather than the water table. For con­
venience in subsequent calculations, the ordinate of figure 5 is translated
23 em to the right. The abscissa title is changed accordingly to read "depth
of the upper boundary of the capillary fringe" instead of "depth of the water
table." The apparent drained porosity is then everywhere linearly related to
the depth of the upper capillary fringe boundary with the same slope a as
shown in figure 5. Thusj' is given by equation (11), where y' now represents
the distance from the soil surface to the upper fringe boundary.

j' = ay' (11)

After the position of the upper fringe boundary and the potential distribu­
tion in the soil profile are determined, the position of the water table is easily
ascertained. The water table is represented by the locus of points at atmos­
pheric pressure or the locus of points at which the potential is equal to the
height above the tile line.

Linear Relationship. The drawdown equation of Kirkham and Gaskell (8)
will now be modified for the case when the porosity is linearly related to the
depth of the upper capillary fringe boundary. It is this relation, expressed in
equation (11), which is used to calculate the amount of water drained as a
result of the falling water table. Consider that the upper capillary fringe
boundary falls over an infinitely small distance dy' and that a quantity of
water dw drains from the soil profile above the fringe boundary so that:

dw = j'dy'

Using the linear relationj' of equation (11) in the above equation gives:

dw = ay'dy'

(12)
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By integration between y' n-l and Yn' the total water drained is calculated.

W = !y~ ,d' a ( '2 '2 )ay y = 2 Yn - Yn-l
Y~-l

(13)

If equation (12) is integrated by taking f' as a constant average value fa' be­
tween average positions y'n-l and u-', the equivalent of equation (10) is ob­
tained. The amount of water w that flows out of the drain also passes through
the upper boundary of the capillary fringe, therefore the apparent drained
porosity fa' is the same as the drainable pore space f used by Kirkham and
Gaskell. By replacing f in equation (8) by fa' and substituting AE with (Yn' ­
Y' n-l), the following equation is derived from the equivalent of equation (10):

w = Tk cPc (14)

where cPe represents (cPy - cPx tan 0). Upon substituting equation (14) in (13)
the n-th position of the upper capillary fringe boundary is:

It

, _ (2Tk cPe + '2) 1/2 (15)
Yn - a Yn-l

Equation (15) was used in this study to calculate the drawdown in a drain­
age system with the same dimensions as the tank of Luthin and Worstell.

Transition from Linear Relationship to Constant Drained Porosity. As ex­
plained earlier, the moisture-suction curve may be applicable in the case of
wide tile spacings. Curve A in figure 2 indicates that above 53 cm, the drained
porosity remains approximately constant at 35 per cent by volume. This
means that at a drained porosity of 0.35, drainage virtually ceases. For con­
venience of calculation, curve B of figure 2, which approximates curve A,
has also to be translated. As with figure 5, the ordinate is translated 23 cm
to the right and the abscissa title changed to read "depth of the upper bound­
ary of the capillary fringe below the soil surface" instead of "suction".

Equation (15) is applicable only for the sloping part of this translated
moisture-suction curve. For the example shown in figure 2, the depth of the
upper boundary of the capillary fringe must be smaller than 30 em, namely
(53 - 23) cm. For greater depths, the Kirkham and Gaskell formula can be
used without error because then the drained porosity remains almost con­
stant. For the case, however, where the top of the capillary fringe falls from
y' n-l to Yn' and where y' n-l < 30 em < Yn', a new relation must be found.
After translation of curve B in figure 2, dw = ay' dy' from y' = y'n-l to y' =
Yz' (yz' = 30 em), and dw = f l dy' from y' = yz'to y' = u-', where [i is the
constant drainable pore space 0.35. After integration the volume of drained
water is given by:

w = (~ ay' dy' + r:~ fl dy
]Y~-l s-:
a'2'2 "= "2 (Yl - Yn-I) + fl (Yn - Yl)

(16)
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If the water table depth is equal to the suction, substitution of equation (14)
in (16) gives the n-th position' of the upper capillary fringe boundary:

Tk '2, cPe aYl , a'2
Yn = -jl- - 2jl + Yl + 2jl Yn-l (17)

Broken Line Relationship. It is also possible to approximate the moisture­
tension curve more closely by a series of connected straight lines. An equation
similar to (15) and (17) may then be obtained." However, the numerical com­
plications involved do not seem to justify this refinement.

EXPERIMENTAL PROCEDURE

Adaptation of the Electrical Network to a Specific Drainage Problem

A fast way of solving steady two-dimensional flow problems is to simulate the
flow medium by a network of electrical resistors. This method, proposed by
Luthin (1953) to solve drainage problems, was used in the present study to
find the potential distribution in the soil profile. From the potential distribu­
tion, the gradients at the upper boundary of the capillary fringe needed to
solve equation (15) were obtained.

The network was set up according to the specifications of Worstell and
Luthin (1959). One-fourth watt carbon resistors soldered inside glass car­
tridge type "fuses" were plugged into clips mounted on plastic panels in a
grid pattern to form the network. The network was assembled to simulate
the tank dimensions as reported by Luthin and Worstell (1957). The basic
network resistor was 10 megohms. Because large changes in potential occur
directly above and close to the drain, a finer mesh was used in this region.
Therefore, the first 3 feet away from the drain were simulated by a mesh of
10 megohms per 3 inches. The other 7 feet were simulated by a mesh of 10
megohms per 6 inches. The boundary conditionswere fixed according to the
principles given by Luthin (1953). On the impervious boundaries the resist­
ance of the resistors was 20 megohms.

Two resistors were frequently connected in parallel or series to obtain the
desired values at the top of the capillary fringe. Because the radius of the
tank drain was 1.5 inches the resistance of the adjacent resistors had to be
5 megohms in the horizontal direction and 10 megohms in the vertical direc­
tion on the line' of symmetry through the drain.

An ordinary 24-volt battery served as potential source necessary to operate
the network. The desired voltages at the top of the capillary fringe were ob­
tained with 0.5 megohm rheostats.

With the upper edge of the tile as reference the potential of the capillary
fringe boundary is:

cPe = he - Yc - rd (18)

6 Brutsaert, Wilfried. Unpublished MS thesis, Graduate Division of the University of
California.
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where he is the height of the capillary fringe above the center of the drain,
Ye is the maximum tension at which the soil is still saturated, and rd is the
radius of the drain. One foot of hydraulic potential was represented by n volts
of electrical potential. Written in electrical units, equation (18) becomes:

(19)

where V e is the voltage to be applied at the upper boundary of the capillary
fringe. To have the potential gradients at the top of the capillary fringe, cPy
and cPx in feet per foot, the voltage differences were measured over a finite
distance of 3 inches. The total current outflow was obtained by determining
the voltage across a known resistor in series with the drain electrode. The
electrical current units must be converted to hydraulic rate of flow units.

From Darcy's law,

and from Ohm's law
. 1 av

20 = Roas .
The outflow conversion formula is therefore:

k
R

.
q = - 0 'l

n
(20)

where q is the outflow per unit drain length in cubic feet of water per minute,
n the conversion factor from volts to feet, k the hydraulic conductivity in feet
per minute, Ro the basic network resistance and i the electrical current in
amperes. As n = 4, k = 48 feet/day and Ro = 10 X 106 ohms, equation (20)
becomes:

q = 0.0834 X 106 i (in cfm) (21)

Because the currents in the network were very low, a high resistance vacuum
tube voltmeter was necessary to measure the potentials. The network is
shown in figure 6 for a particular position of the water table.

Because this study is essentially the approximation of a non-steady flow
problem by a series of steady state conditions, an initial position must be
known. The easiest position to determine is the ponded water table, from
which the subsequent positions may be calculated one after the other. The
steps followed in this procedure are:

1. Assembly and adjustment of the network for a particular boundary
condition.

2. Voltage measurements within the network.
3. Computation of the next position of the fringe with equation (15) and

repetition of steps 1 through 3.
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RESULTS AND DISCUSSION

Results. The different positions of the upper fringe boundary and the cor­
responding positions of the water table which were obtained with the method
described in this study are designated by the numbers 0 through 7. Position
orepresents the water table at the surface of the soil (see figure 7). Position 1
represents the completely saturated soil profile when the upper fringe bound­
ary is at the soil surface. The water table is assumed to fall instantaneously
from position 0 to 1. Thus it can be seen from the shapes of the equipotential
lines in figures 9 to 13 that, as the water table falls, the flow changes gradually
from radial to essentially horizontal in direction. So for the low water table
shown in figure 13, the flow pattern approximates the Dupuit-Forchheimer
idealization (Muskat, 1946). When the water table approaches the drain as
shown in figure 13 the potential differences are quite small and cannot be
measured accurately. Therefore position 7 was not set up in the network, but
only calculated from position 6. In the initial positions the capillary fringe is
thicker than for the later positions, especially over the drain. In position 1,
(figure 8) the capillary fringe has a maximum thickness of about 1.25 foot.
As the water table approaches drain depth, the fringe is approximately 0.75
foot (see figure 13).

The vertical and the horizontal components of the potential gradients at
the upper capillary fringe boundary, cPy and cPx are plotted in figures 14 and
15. For initial positions as shown in figure 14, the cPy values are maximum di­
rectly over the drain (x = 0) and minimum at the midpoint between drains
(x = 10 feet). Directly over the drain these values decrease as the water
table recedes until finally (position 6) they become smaller than those at the
midpoint. At the midpoint cPy stays almost constant. The horizontal com­
ponents of the potential gradient at the upper capillary fringe boundary are
given in figure 15 for positions 3 to 6. The first three positions (0, 1,2) are not
considered since cPx is quite small compared with the cPy values. The cPx values
shown in figure 15 are zero immediately above the drain and at the midpoint.
Elsewhere along the fringe boundary they increase with each water table drop
and reach a maximum value for position 6. Figure 16 shows the product cPx
tan 0 for the different positions of the upper capillary fringe boundary. These
values are much smaller than either the cPy and the cPx values. However, their
curves are of the same general shape as those of cPx. The value of cPy and the
product (Px tan () were used in equation (15) for the calculation of the water
table at times corresponding to those at which positions 1 through 7 were
obtained.

Calculated positions of the water table for corresponding times are pre­
sented in figure 17. For initial positions the water table shapes are essentially
flat. The water table of position 4 has the greatest curvature. As the water
table reaches drain depth, its shape is again almost horizontal. The inter­
polated values of the above water table positions are in agreement with those
obtained by Luthin and Worstell (figure 18) with respect to both shape and
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General Discussion

drawdown time. The shapes obtained in the network show slightly greater
curvature than those from the sand tank study. Except for an initial dis­
erepancy at 2 minutes, the times agree quite closely.

In figure 19 the drain outflow rate, as calculated from the electrical resist­
ance network data, is compared with the drain outflow from the tank model.
Under ponded conditions, the network and the tank both indicated a rate of
flow of 4.25 liters per minute. In the network the rate of flow dropped in­
stantaneously to 3.20 liters per minute when the ponded water disappeared
from the soil surface, while in the tank the decrease was not as large. Later
the time lag between the curves was of the order of 2 to 3 minutes or 0.2
liters per minute. This lag became more pronounced at lower rates of flow.

The relationship between the height of the water table at the midpoint and
the drain outflow is seen to be linear in figure 20. It is in agreement with
Luthin's first assumption used in the derivation of his drainage formula
(Luthin 19.59).

It can be seen from figures 7 to 13 that the flow pattern in the soil profile be­
comes nearly horizontal as the water table recedes. This phenomenon is also
indicated by the fact that the cP y values decrease and the cP x values increase
when the water table approaches drain depth. In other words, the potential
gradients become larger in the horizontal direction and smaller in the vertical.
This is largely due to the shallow depth of the impervious layer.

Directly over the drain, the cP y values are maximum because the path to
be followed by a water particle is shorter at this place than further away
from the drain. As cPx tan () is always zero directly above the drain, the factor
(cPy - cPx tan ()) is maximum at x = o. Therefore the water table initially falls
the fastest over the drain. Because of this fast initial rate of fall the hydraulic
head above the drain drops rapidly and even though the path length is still
short the cPy values decrease quite considerably. At the midpoint the cPy
values stay nearly constant because the hydraulic head and the length of the
streamlines decrease in the same proportion. The main effect of decreasing
values of cPy at x = 0 is that the water table assumes a horizontal shape as
it approaches drain depth.

The cPx and the cPx tan () values directly over the drain and at the midpoint
are zero. These conditions exist because no horizontal flow can take place
across the vertical symmetry planes through the center of the drain and at
the midpoint. As the water table falls, the region of flow becomes smaller and
smaller. Therefore the average value cPx increases and the flow becomes more
horizontal in direction. The shapes of the capillary fringe boundary for posi­
tion 0 through 7 do not differ much and consequently, the tan () values also
do not change materially. Therefore the curves of cPx tan () have the same
general shape as those for cPx. The magnitude of cPx tan () remains small com­
pared with cPy. This means that cPy of equation (15) is the main factor in de­
termining the rate of fall of the upper capillary fringe boundary and is almost
equal to cPe (see equation 15) in the beginning.
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The behavior of the capillary fringe during the recession is due to the fact
that the flow conditions change from dynamic in the beginning to nearly
static when the water table approaches the drain. Actually the phenomenon
is closely related to the change in potential gradient at the upper capillary
fringe boundary. As discussed previously, the gradient is maximum in the be­
ginning, especially directly over the drain. Therefore, in accordance with the
theory on page 394, a maximum lag may be expected between the suction and
the height above the water table and hence also between the suction in the
capillary fringe and its thickness. When at the end equilibrium is approached,
the gradients also approach zero and the capillary fringe thickness of the
final positions is equal to its tension, namely 0.75 foot.

The water tables obtained with the network are more curvilinear than
those obtained by Luthin and Worstell. This is due to the fact that finite
steps were taken (6 inches directly over the drain) instead of infinitesimally
small increments. Therefore the cPy value right over the ,drain, which de­
creases from step to step, was used over too great a distance. This caused the
upper capillary fringe boundary at that point to fall deeper, as compared
with the midpoint, than it actually did in the sand tank. Another unknown
but probably small error is introduced by neglect of the flow in the region
above the capillary fringe.

From positions 3 to 7, the drawdown times as determined by the network
and the sand tank agree. This substantiates the validity of the moisture­
water table depth relationship in this range. The deviation in the initial posi­
tions is due to the approximation of the calculated points of the moisture­
water table depth relationship (figure 5) by the simplified broken line curve.
This approximation is based on the assumption that the capillary fringe is
completely saturated. This is apparently not correct when the calculated
points are considered.

The difference between the drain outflow rates obtained from electrical
current data and those from the sand tank may be a result of the simplifying
assumptions on which the present study was based. First of all, from the
assumption that the capillary fringe is completely saturated, it follows directly
that the water table drops instantaneously until the upper capillary fringe
boundary is at the soil surface. The second simplifying assumption already
mentioned above is that the whole drained soil profile was represented by a
network in which the zone of flow above the upper capillary fringe boundary
was neglected.

Discussion of Other Methods

Water Table Depth and Suction. The difference between the water table
depth and the suction has been discussed earlier. It was concluded that both
are identical only under equilibrium conditions or when the tile spacings are
relatively wide, such as in field installations. Therefore in the case of the tank
the moisture-water table depth curve must be used in the drawdown formula
instead of the moisture-suction curve.
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Nevertheless, it is still interesting to investigate what the result would have
been if the moisture-suction curve had been used. This has been done for the
first four positions of the water table. In equation (15) it is only the slope a
of the moisture-suction curve which will be different from the one of the
moisture-water table depth curve. All the other factors remain the same;
therefore, only the time interval T will be affected.

The factor a of the soil moisture-water table depth curve as used in the
procedure discussed above is 0.166 ft-1 (figure 5). The factor a of the soil mois­
ture-suction curve is about 0.356 ft-1 (figure 2). The positions of the upper
capillary fringe boundary which are obtained by using the latter value of a
are exactly the same as before; the times differ, however, proportionally with
the factor a as is seen in the table below.

Times of drainage (minutes)
Position

1 .
2 .
3 .
4 .

a = 0.166 ft-1

o
1.5
6.5

16.15

a = 0.356 ft-1

o
3.23

13.88
29.88

It has been pointed out earlier that as tile spacings become wider, the
moisture-suction curve probably approximates the moisture-water depth
curve. On the other hand it is seen from the comparison in the table that the
'soil moisture-suction curve indicates slower drainage than actually occurs. In
other words, if a field drainage problem is analyzed by using the soil moisture­
suction curve, the obtained time intervals are too long. Hence the calculated
spacings would be too narrow.

Effectof the Capillary Fringe. To determine the effect of the capillary fringe
on water table drawdown, the analysis proposed in this study must be com­
pared with one in which the capillary fringe is omitted. For this purpose the
moisture-suction curve was approximated by a linear relationship C which
starts at the origin as a straight line with a slope of a = 0.152 ft-1 as shown
in figure 2. The potential applied at the upper limit of the network, in this
case the water table, was then:

v = 4 (h; - Td) (22)

where h., is the height of'the water table above the center of the drain, and
Td the radius of the drain. The potential gradients cPu obtained just below the
water table are given in figure 21. As only the initial positions are considered,
the cPx tan () values may be neglected.

The water table positions obtained by omitting the capillary fringe are
shown in figure 22 and compared with those of figure 17. In fact these water
table positions are the positions of the upper capillary fringe boundary of the
figures 7 to 13. This comparison supports the objections that Luthin and Miller
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(1953) made against the Kirkham and Gaskell method. It is seen in figure 22
that, as Luthin and Miller suggest, and as is done in the proposed analysis
of this study, the term "water table" should be replaced by "upper boundary
of the capillary fringe".

Comparison with the Kirkham and Gaskell Analysis. In the Kirkham­
Gaskell equation (8) the drained porosity is assumed to be constant and the
capillary fringe is neglected. In other words the soil at any point is supposedly
drained at once when the water table passes by. The total drainable porosity
of Oso Flaco sand is about 35 per cent by volume. Therefore, assuming that
only a part of this pore space is drained instantaneously the value of f = 0.20
may be used for drawdown calculations with equation (8). Kirkham and
Gaskell also proposed the same value.' It may also be assumed that the po­
tential gradients cPy of figure 21 are applicable in the Kirkham-Gaskell
analysis, so that the network does not have to be assembled again. The cPz:
tan 8 values may again be neglected in the calculations of the initial positions.
The results are shown in figure 23 and compared with the results of the analy­
sis proposed in this study.

Two differences can be observed: The water tables obtained with the Kirk­
ham and Gaskell analysis are more curvilinear and the time intervals are
longer. As already discussed in the previous paragraph and mentioned by
Luthi~ and Miller, the lag between the water table positions obtained by
Kirkham and Gaskell and the experimental ones is due to the omission of the
capillary fringe effect. The main difference between the Kirkham and Gaskell
equation (8) and equation (15) is the square root form of the latter. As a
square root tends to flatten off a function, the water table shapes obtained
with equation (15) are considerably flatter. This square root form comes from
the linear relationship between the depth of the upper capillary fringe and
the apparent drained porosity, which after integration results into the quad­
ratic equation (13) from which equation (15) is derived. Kirkham and Gaskell
did not consider a changing drained porosity and consequently did not ob­
tain this square root form in their derivation.

CONCLUSIONS

1. The assumptions of a completely saturated capillary fringe and of a
linear relationship between the porosity factor and the water table depth
below the soil surface are validated by the close agreement between predicted
and experimental water table drawdown.

2. The Kirkham-Gaskell equation provides a good expression for drawdown
calculations provided that it is modified mathematically according to the
above assumptions.

3. For practical purposes, such as for wide drain spacings, the generally
unknown soil moisture-water table depth relationship can be replaced by the
soil moisture-suction relationship. More experimental work is necessary in
this respect.
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4. The electrical resistance network as described by Worstell and Luthin
(1959) is particularly useful for solving saturated flow problems where the
potential distribution and the total outflow are required.

5. The proposed method is not very practical for design purposes. It opens
new possibilities, however, for further theoretical research. It will serve its
main purpose if it is helpful for the evaluation of more practical equations.
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LIST OF SYMB.OLS

The symbols used in the literature review are the ones as used by the original
authors (Childs, 1947 and Kirkham-Gaskell, 1951). All the other symbols
used in this study are defined in the list below.

a slope of the soil moisture characteristic curve.
f fraction of soil volume which is occupied by drainable water.
fa average fraction of soil which is occupied by drainable water, or the average

drained porosity between t\VO successive positions of the water table.
I' apparent drained porosity.
fa' average apparent drained porosity.
fl the fraction of soil volume drained at field capacity.
he height of the upper capillaryfringe boundary above the center of the drain.
i electrical current through entire network.
i o electrical current per unit cross sectional area
k hydraulic conductivity.
q outflow rate per unit drain length.
rd radius of drain pipe.
Ro basic network resistance or restitivity.
8 distance.
T time interval (~t) between two successive positions of the water table.
v rate of flow per unit cross sectional area of soil.
V electrical potential.
V e potential of the upper capillary fringe boundary in electrical units.
w water drained from the entire soil profile above the water table when the

water table moves from the (n - l)-th to the n-thposition.
w' water drained from the soil when a stable water table falls from the

(n - l)-th to the n-th position.
x horizontal distance from center of drain.
Y vertical distance below soil surface.
Ye suction head in the soil at which the capillary fringe is defined.
Yn, Yn-l the average depth of the n-th and the (n - l)-th position of the

water table below the soil surface.
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y' depth of the upper boundary of the capillary fringe below the soil surface.
Yn', y'n-l depth of the n-th and the (n - l)-th position of the upper boundary

of the capillary fringe below the soil surface.
o the slope angle of the upper capillary fringe boundary.
</> hydraulic potential.
</>c hydraulic potential of the upper capillary fringe boundary.
</>e effective potential gradient defined by </>y - </>x tan O.
</>x horizontal component of the potential gradient obtained just below the

upper capillary fringe boundary.
</>y vertical component of the potential gradient obtained just belo\v the upper

capillary fringe boundary.
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Fig. 1. Sketch for the derivation of the drawdown formula of Kirkham and Gaskell (1951).
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Fig. 8. Illustration of the potential distribution in the soil for position 1 of the water table.
The upper boundary of the capillary fringe is at the soil surface.
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Fig. 10. Illustration of the potential distribution in the soil for position 3 of the water table.
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Fig. 16. Curves showing the increasing values of the product (¢x tan e)
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