CONTENTS

VIRUSES THAT INDUCE BREAKING IN COLOR OF FLOWER PETALS IN PANSIES AND VIOLAS
HENRY H. P. SEVERIN

APHIDS FEEDING ON VIOLACEOUS PLANTS IN CALIFORNIA
E. O. ESSIG
APHIDS FEEDING ON VIOLACEOUS PLANTS
IN CALIFORNIA

E. O. ESSIG

Reprinted from

HILGARDIA

A Journal of Agricultural Science Published by
the California Agricultural Experiment Station

Volume 17 : Number 18 : November, 1947
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The pea aphid</td>
<td>597</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>599</td>
</tr>
<tr>
<td>Distribution</td>
<td>599</td>
</tr>
<tr>
<td>Host plants</td>
<td>599</td>
</tr>
<tr>
<td>The cotton or melon aphid</td>
<td>600</td>
</tr>
<tr>
<td>Distribution</td>
<td>601</td>
</tr>
<tr>
<td>Host plants</td>
<td>602</td>
</tr>
<tr>
<td>The lily aphid</td>
<td>605</td>
</tr>
<tr>
<td>Distribution</td>
<td>605</td>
</tr>
<tr>
<td>Host plants</td>
<td>605</td>
</tr>
<tr>
<td>The foxglove aphid</td>
<td>607</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>608</td>
</tr>
<tr>
<td>Distribution</td>
<td>609</td>
</tr>
<tr>
<td>Host plants</td>
<td>609</td>
</tr>
<tr>
<td>The ornate aphid</td>
<td>611</td>
</tr>
<tr>
<td>Distribution</td>
<td>611</td>
</tr>
<tr>
<td>Host plants</td>
<td>611</td>
</tr>
<tr>
<td>The violet aphid</td>
<td>613</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>613</td>
</tr>
<tr>
<td>Distribution</td>
<td>613</td>
</tr>
<tr>
<td>Host plants</td>
<td>613</td>
</tr>
<tr>
<td>Other species of aphids reported as feeding on violets and pansies</td>
<td>614</td>
</tr>
<tr>
<td>Pertinent literature</td>
<td>615</td>
</tr>
</tbody>
</table>

[596]
PANSIES (Viola tricolor var. hortensis) and violas, or tufted pansies (V. cornuta) in California are subject to two virus diseases, celery calico and western cucumber mosaic. These diseases are treated in a companion article (Severin, 1947). The vectors are aphids, or plant lice. Celery calico was first investigated (Severin and Freitag, 1938) as a disease of celery. There are no less than ten aphid species feeding on celery in California. Other species which ordinarily do not feed and propagate on this host may also transmit the celery-calico virus under experimental conditions.

The only species apparently restricted to violaceous plants in this state and in other parts of North America is the common violet aphid, Micromyzus violae (Pergande). Nine additional species have been recorded as feeding on Viola spp. (Patch, 1938) in various parts of the world.

The purpose of this paper is to furnish those interested in the virus diseases of plants, particularly of ornamental violas and pansies, pertinent information concerning the aphid vectors of these diseases. Certain of these aphids have previously been discussed in relation to celery calico as a disease of celery in California (Essig, 1938a); and therefore the treatment of these particular aphid species excludes detailed descriptions and emphasizes more particularly synonymy, host plants, distribution, and bibliography.

It is expected that the illustrations may enable those interested in this problem to identify the aphids responsible for the dissemination of the celery-calico and western-cucumber-mosaic viruses.

THE PEA APHID

Macrosiphum pisi (Kaltenbach)
Aphis pisi Kaltenbach (1843, p. 23-24)
Aphis ulmariæ Schrank (1801, p. 116-17)
Aphis onobrychis B. de Fonscolombe (1841, p. 61)
Adactynus pisi (Kaltenbach) (Rafinesque 1819, p. 18)
Siphonophora corydalis Oestlund (1886, p. 25-26)
Nectarophora destructor Johnson (1900, p. 58-59)
Macrosiphum trifolii Pergande (1904, p. 21-23, fig. 4)
Illinoia pisi Wilson (1910 b, p. 318)
Acyrthosiphon onobrychis (B. de Fonscolombe)

The pea aphid is one of the largest and most conspicuous economic aphids. Its all-green color and its propensities for leguminous plants make it easily recognized. In common with many other aphids, this species drops to the ground when the host plants are disturbed, a habit that often enables the individuals to conceal themselves under clods of earth and debris and thus escape

1 Received for publication April 24, 1947.
2 Professor of Entomology and Entomologist in the Experiment Station.
3 See “Pertinent Literature,” at the end of this paper, for complete citations, referred to in text by author and date.
Fig. 1.—The pea aphid, *Macrosiphum pisi* (Kaltenbach): alate and apterous females with enlargements of the antennae, caudas, cornicles, and rostrum. (Enlargements indicated. Drawings by Frieda Abernathy).
insecticides. Among the many references to this destructive pest, the most important are Pergande (1904, p. 21–23), Davis (1915), and Soliman (1927, p. 132–33).

C. D. Harrington (1941, p. 461–66) has shown that a number of more or less distinct strains of the pea aphid occur in various parts of the country. Members of these strains may vary considerably in size, reproductive capacities, rate of development, destructiveness to the host plants, and resistance to insecticides. The adult apterous parthenogenetic females may attain a length of 2.5 to 3.5 mm.

In California the pea aphid is not known to produce sexual forms, although the latter may occur at higher altitudes of the Sierra Nevada. The aphid continues throughout the entire year as parthenogenetic apterous and alate females. During the winter, adults hibernate or may continue to reproduce young on perennial hosts. During the spring, summer, and fall, many generations are born and very large populations may occur in any month of the year. The greatest numbers appear in early spring and continue abundant until midsummer.

Nomenclature. Some authors believe that Schrank's name, *ulmariae*, should supersede *pisi* as the specific name. But the original description by Schrank seems to indicate that *ulmariae* is not synonymous with *pisi* Kalt. His statements that the antennae are shorter than half the length of the body and that the cornicles (*Seftspizen*) are longer than the very short cauda ("*Schwänzchen am After"*) are certainly not characteristic of *pisi*, in which the antennae are as long as the body or longer and the cauda is conspicuously well developed.

Aphis onobrychis B. de Fonscolombe may well have precedence over all other specific names. *Macrosiphum onobrychis* B. de Fonse is the name being used in the publications of the Imperial Institute, London, England. But the combination *Macrosiphum pisi* (Kalt.) has been used so extensively in entomological literature in North America that changing it seems unwise.

The genus *Adactynus* was erected by Rafinesque (1817, p. 18).

The genus *Illinoia* was erected by Wilson (1910b, p. 318) for this species but has not been generally adopted. It has precedence over *Metopeurum* Mordvilko (1914, p. 56, 67) and *Acyrthosiphon* Mordvilko (1914, p. 55, 62).

The generic name *Acyrthosiphon* has been extensively used for the pea aphid in Europe and by some American authors. The long array of names now being given to this insect indicates the need of greater attention to these matters by national and international commissions of nomenclature.

Distribution. The pea aphid has been reported from all of the continents and is widely distributed throughout the world wherever food plants are available.

It occurs in every state in this country and in all the provinces of Canada. Its powers of flight are great and it often swarms in tremendous numbers and is carried long distances by air currents during the night as well as the day, especially in warm summer weather.

Host Plants. Although the preferred host plants are confined to the single family, Leguminosae, the members of this plant group are so extremely numerous that they cover much of the habitable areas of the world. Many of
the host plants produce valuable crops for man and his domestic animals. The injuries caused by the pea aphid may result in great loss to these crops and even complete failure. Such injuries may result from the aphid’s feeding on and actually stunting or killing the plant or from the aphid’s inoculating the hosts with virus diseases which may weaken or completely destroy the plants. Plants, other than legumes, are frequently listed as hosts of the pea aphid. The adults or young may feed on some of those plants and thus transmit a virus disease. However, rearing of the young is usually impossible on the non-leguminous hosts, and on many of these plants the insect may be only a casual visitor.

The pea aphid may be able to feed intermittently on violets and pansies as well as upon many other plants. The feeding in itself is not injurious; the damage the aphid does to these hosts is to infect them with the virus disease which may destroy them.

The pea aphid was reported from Viola by Swain (1919, p. 176) and Patch (1938, p. 181). As already pointed out, however, this aphid is a strong traveler, both on foot and on the wing, and is a casual visitor on many plants upon which it may not actually feed.

A complete list of the known host plants follows:

- Alhagi maurorum
- Capsella bursa-pastoris
- Celastrus scandens
- Cianthus puncticus
- Colutea arborescens
- Cytisus scoparius
- Genista tinctoria
- Glycine soja
- Igatium janium
- Lathyrus hirsutus
- Lathyrus latifolius
- Lathyrus maritimus
- Lathyrus odoratus
- Lathyrus pisiformis
- Lathyrus pratensis
- Lathyrus sativus
- Lathyrus sylvestris
- Lespedeza cytisoides
- Lotus corniculatus
- Lotus oblongifolius
- Lupinus spp.
- Medicago falcata
- Medicago hispida
- Medicago lupulina
- Medicago sativa
- Melilotus alba
- Melilotus indica
- Melilotus officinalis
- Onobrychis vicieefolia
- Ononis repens
- Peganum harmala
- Phaseolus vulgaris
- Pisum sativum
- Pisum sativum var. arvense
- Psoralea macrostachya
- Robinia pseudoacacia
- Trifolium agrarium
- Trifolium alexandrinum
- Trifolium arvense
- Trifolium hybridum
- Trifolium incarnatum
- Trifolium pratense
- Trifolium procumbens
- Trifolium repens
- Trifolium scabrum
- Trigonella foenum-graecum
- Vicia americana
- Vicia amoena
- Vicia atropurpurea
- Vicia angustifolia
- Vicia cracea
- Vicia faba
- Vicia gigantea
- Vicia ludoviciana
- Vicia sativa
- Vicia sepium
- Vicia villosa
- Vigna sinensis
- Viola spp., (casual?)
- Zizia aurea

THE COTTON OR MELON APHID

Aphis gossypii Glover

The cotton or melon aphid, *Aphis gossypii* Glover, is a prolific, widely distributed, and omnivorous species, which is responsible for transmitting many mosaic and virus diseases of plants. It is very common and abundant throughout much of California and is widely distributed in the United States. It also occurs abundantly in the tropics.
This aphid is fully discussed in a previous paper (Essig, 1938a, p. 468–70). It is a small species, often blackish or very dark olive green in color, but frequently pale white, yellow, orange, or green, on different host plants.

Distribution. The cotton aphid has been recorded from the following countries:

Asia: Armenia, Asiatic Russia, Astrakhan, Ceylon, China, India, Japan, Malaya, Palestine, Pescadores Islands, Syria, Taiwan, Transcaucasia, and Turkestan.

Europe: Belgium, Crimea, Cyprus, Denmark, France, Germany, Great Britain, Italy, Netherlands, U.S.S.R., Sweden, Switzerland.

Central America: Canal Zone, Panama.

North America: Bermuda, Canada, Mexico, United States, West Indies (Cuba, Jamaica, Puerto Rico).

South America: Argentina, Brazil, British Guiana, Chile, Dutch Guiana, Paraguay, Peru, Trinidad Island.

Oceania and the Pacific: Australia, Dutch East Indies, Fiji, Guam, Hawaii, Philippine Islands, Samoa.

In California it is found abundantly throughout the state except in high altitudes above 6,000 feet.
Host Plants. The cotton aphid is an omnivorous feeder, being specially destructive to cacao, citrus, cotton, cucumbers, melons, squashes, hibiscus, lilies, and many other plants. A complete list of host plants follows:

- Abutilon theophrastii
- Acalypha boemeroides
- Acalypha virginica
- Acalypha theophrastii
- Acalypha virginica
- Acanthopanax trifoliatus
- Acanthus ilicifolius
- Ageratum conyzoides
- Allium cepa
- Althaea nudiflora
- Althaea officinalis
- Althaea rosea
- Annona muricata
- Antirrhinum spp.
- Ardisia esculenta
- Asclepias mexicana
- Asclepias speciosa
- Asclepias verticillata
- Asparagus officinalis
- Atriplex sp.
- Avena fatua
- Bauhinia variegata
- Begonia semperflorens
- Benincasa hispida
- Bidens frondosa
- Bidens pilosa
- Blumea balsamifera
- Boerhaavia plumbaginea
- B. viscosa
- Brassica (all species)
- Brevia officinalis
- Brunnera macrophylla
- Buddleia officinalis
- Bursera simaruba
- Caladium sp.
- Calliandra dichotoma
- Calliandra formosana
- Callistephus chinensis
- Calophyllum inophyllum
- Capsella bursa-pastoris
- Capsicum frutescens
- Capsicum dulce
- Cassia tora
- Casuarina equisetifolia
- Catalpa sp.
- Celosia densiflora
- (C. hortorum, C. sinensis)
- Chrysanthemum morifolium
- Chrysanthemum frutescens
- Chrysanthemum morifolium
- Chrysanthemum indicum
- Chrysanthemum morifolium
- Chloranthus sp.
- Cicerbita maxima
- Cicerbita meloriculatus
- Cicerbita moschata
- Cicerbita pepo
- Cipaea micropetala
- Ciclamen europaeum
- Ciclamen indicum
- Cynometra rami flora
- (C. cauliflora)
- Cyphomandra betacea
- Datura stramonium
- Delphinium sp.
- Dentella repens
- Dianthus sp.
- Dickocephala latifolia
- Dioscorea sp.
- Dioscorea latifolia
- Dipeltis serotina
- Dodartia sp.
- Dolichos lablab
- Duranta repens
- (D. plumieri)
- Echinochloa brachiata
- Echinochloa lobata
- Echeveria spp.
- Eclipta erecta
- Elephantsus scaber
- (E. mollis)
- Erechtites praetum
- Erechtites hieracifolia
- Erechtites valerianaefolia
- Eriobotrya deflexa
- Eriobotrya japonica
- Erodium cicutarium
- Eucalyptus cladocalyx
- (E. corynocalyx)
- Eucalyptus globulus
- Eugenia aqua
- Euphorbia pilulifera
- Ficus benjamina
- Ficus carica
- Ficus elastica
- Flemingia congesta
- Forsythia viridissima
- Fragaria chiloensis
- Fuchsia sp.
- Galinsoga sp.
- Galium circinatum
- Gardenia jasminoides
- (G. floridana)
- Gladiolus halaeus
- Glycine max (G. soja)
<table>
<thead>
<tr>
<th>Plant Common Name</th>
<th>Plant Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gomphalium japonicum</td>
<td>Gnaphalium japonicum</td>
</tr>
<tr>
<td>Gomphalium spathulatum</td>
<td>Gomphalium spathulatum</td>
</tr>
<tr>
<td>Gossypium herbaceum</td>
<td>Gossypium herbaceum</td>
</tr>
<tr>
<td>Gossypium hirsutum</td>
<td>Gossypium hirsutum</td>
</tr>
<tr>
<td>Helianthus annuus</td>
<td>Helianthus annuus</td>
</tr>
<tr>
<td>Heliotropium indicum</td>
<td>Heliotropium indicum</td>
</tr>
<tr>
<td>Heptapleurum venulosum</td>
<td>Heptapleurum venulosum</td>
</tr>
<tr>
<td>Hibiscus abelmoschus</td>
<td>Hibiscus abelmoschus</td>
</tr>
<tr>
<td>Hibiscus acetosella</td>
<td>Hibiscus acetosella</td>
</tr>
<tr>
<td>Hibiscus alpinus</td>
<td>Hibiscus alpinus</td>
</tr>
<tr>
<td>Hibiscus androsaemum</td>
<td>Hibiscus androsaemum</td>
</tr>
<tr>
<td>Hibiscus barbatus</td>
<td>Hibiscus barbatus</td>
</tr>
<tr>
<td>Hibiscus cristatus</td>
<td>Hibiscus cristatus</td>
</tr>
<tr>
<td>Hibiscus esculentus</td>
<td>Hibiscus esculentus</td>
</tr>
<tr>
<td>Hibiscus rosa-sinensis</td>
<td>Hibiscus rosa-sinensis</td>
</tr>
<tr>
<td>Hibiscus syriacus</td>
<td>Hibiscus syriacus</td>
</tr>
<tr>
<td>Hibiscus trionum</td>
<td>Hibiscus trionum</td>
</tr>
<tr>
<td>Hoffmannia sp.</td>
<td>Hoffmannia sp.</td>
</tr>
<tr>
<td>Humulus lupulus</td>
<td>Humulus lupulus</td>
</tr>
<tr>
<td>Hydrocotyle prolifera</td>
<td>Hydrocotyle prolifera</td>
</tr>
<tr>
<td>Impatiens</td>
<td>Impatiens</td>
</tr>
<tr>
<td>Ipomoea batatas</td>
<td>Ipomoea batatas</td>
</tr>
<tr>
<td>Ipomoea pandurata</td>
<td>Ipomoea pandurata</td>
</tr>
<tr>
<td>Ixia chinensis</td>
<td>Ixia chinensis</td>
</tr>
<tr>
<td>Lactuca</td>
<td>Lactuca</td>
</tr>
<tr>
<td>Lactuca sativa</td>
<td>Lactuca sativa</td>
</tr>
<tr>
<td>Lagenaria siceraria</td>
<td>Lagenaria siceraria</td>
</tr>
<tr>
<td>Lawsonia inermis</td>
<td>Lawsonia inermis</td>
</tr>
<tr>
<td>Leonurus</td>
<td>Leonurus</td>
</tr>
<tr>
<td>Lepidium virginicum</td>
<td>Lepidium virginicum</td>
</tr>
<tr>
<td>Leucas lavandulaefolia</td>
<td>Leucas lavandulaefolia</td>
</tr>
<tr>
<td>Leucas zeylanica</td>
<td>Leucas zeylanica</td>
</tr>
<tr>
<td>Liliaceae</td>
<td>Liliaceae</td>
</tr>
<tr>
<td>Lilium candidum</td>
<td>Lilium candidum</td>
</tr>
<tr>
<td>Lilium formosanum</td>
<td>Lilium formosanum</td>
</tr>
<tr>
<td>Lilium longiflorum</td>
<td>Lilium longiflorum</td>
</tr>
<tr>
<td>Lilium regale</td>
<td>Lilium regale</td>
</tr>
<tr>
<td>Lilium speciosum</td>
<td>Lilium speciosum</td>
</tr>
<tr>
<td>Litsicum barbatum</td>
<td>Litsicum barbatum</td>
</tr>
<tr>
<td>Lonicera</td>
<td>Lonicera</td>
</tr>
<tr>
<td>Loranthus sp.</td>
<td>Loranthus sp.</td>
</tr>
<tr>
<td>Luffa</td>
<td>Luffa</td>
</tr>
<tr>
<td>Lycopersicon esculentum</td>
<td>Lycopersicon esculentum</td>
</tr>
<tr>
<td>Malus domestica</td>
<td>Malus domestica</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Malvaceae</td>
</tr>
<tr>
<td>Malus</td>
<td>Malus</td>
</tr>
<tr>
<td>Malva alcea</td>
<td>Malva alcea</td>
</tr>
<tr>
<td>Malva parviflora</td>
<td>Malva parviflora</td>
</tr>
<tr>
<td>Malva rotundifolia</td>
<td>Malva rotundifolia</td>
</tr>
<tr>
<td>Malva sylvestris</td>
<td>Malva sylvestris</td>
</tr>
<tr>
<td>Malvastrum fasciculatum</td>
<td>Malvastrum fasciculatum</td>
</tr>
<tr>
<td>Mammea americana</td>
<td>Mammea americana</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>Mangifera indica</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>Medicago sativa</td>
</tr>
<tr>
<td>Melastoma candidum</td>
<td>Melastoma candidum</td>
</tr>
<tr>
<td>Melilotus alba</td>
<td>Melilotus alba</td>
</tr>
<tr>
<td>Melochia corchorifolia</td>
<td>Melochia corchorifolia</td>
</tr>
<tr>
<td>Melonchrysa maderaspatana</td>
<td>Melonchrysa maderaspatana</td>
</tr>
<tr>
<td>Mentha spicata</td>
<td>Mentha spicata</td>
</tr>
<tr>
<td>Mentzelia lindleyi</td>
<td>Mentzelia lindleyi</td>
</tr>
<tr>
<td>Monarda fistulosa</td>
<td>Monarda fistulosa</td>
</tr>
<tr>
<td>Morinda</td>
<td>Morinda</td>
</tr>
<tr>
<td>Mosla formosana</td>
<td>Mosla formosana</td>
</tr>
<tr>
<td>Nasturtium indicum</td>
<td>Nasturtium indicum</td>
</tr>
<tr>
<td>Nemesia strumosa</td>
<td>Nemesia strumosa</td>
</tr>
<tr>
<td>Nepeta hederacea</td>
<td>Nepeta hederacea</td>
</tr>
<tr>
<td>Nicotiana alata</td>
<td>Nicotiana alata</td>
</tr>
<tr>
<td>Nicotiana tabacum</td>
<td>Nicotiana tabacum</td>
</tr>
<tr>
<td>Nymphaea</td>
<td>Nymphaea</td>
</tr>
<tr>
<td>Ochrocoma pyramidal</td>
<td>Ochrocoma pyramidal</td>
</tr>
<tr>
<td>Ocimum basilicum</td>
<td>Ocimum basilicum</td>
</tr>
<tr>
<td>Oenothera biennis</td>
<td>Oenothera biennis</td>
</tr>
<tr>
<td>Oldenlandia sp.</td>
<td>Oldenlandia sp.</td>
</tr>
<tr>
<td>Orobanche aegyptica</td>
<td>Orobanche aegyptica</td>
</tr>
<tr>
<td>Ourouparia formosana</td>
<td>Ourouparia formosana</td>
</tr>
<tr>
<td>Paeonia</td>
<td>Paeonia</td>
</tr>
<tr>
<td>Passiflora</td>
<td>Passiflora</td>
</tr>
<tr>
<td>Perilla ocymoides</td>
<td>Perilla ocymoides</td>
</tr>
<tr>
<td>Persea americana</td>
<td>Persea americana</td>
</tr>
<tr>
<td>Petasites japonicus</td>
<td>Petasites japonicus</td>
</tr>
<tr>
<td>Petunia</td>
<td>Petunia</td>
</tr>
<tr>
<td>Phaseolus coccineus</td>
<td>Phaseolus coccineus</td>
</tr>
<tr>
<td>Phaseolus vulgaris</td>
<td>Phaseolus vulgaris</td>
</tr>
<tr>
<td>Philadelphus coronarius</td>
<td>Philadelphus coronarius</td>
</tr>
<tr>
<td>Piper</td>
<td>Piper</td>
</tr>
<tr>
<td>Pittosporum oblongifolium</td>
<td>Pittosporum oblongifolium</td>
</tr>
<tr>
<td>Pittosporum tomentum</td>
<td>Pittosporum tomentum</td>
</tr>
<tr>
<td>Pterocarpus</td>
<td>Pterocarpus</td>
</tr>
<tr>
<td>Poria</td>
<td>Poria</td>
</tr>
<tr>
<td>Potentilla</td>
<td>Potentilla</td>
</tr>
<tr>
<td>Potentilla</td>
<td>Potentilla</td>
</tr>
<tr>
<td>Pottedia vulgaris</td>
<td>Pottedia vulgaris</td>
</tr>
<tr>
<td>Pseudelephantopus</td>
<td>Pseudelephantopus</td>
</tr>
<tr>
<td>Prunus</td>
<td>Prunus</td>
</tr>
<tr>
<td>Psidium guacum</td>
<td>Psidium guacum</td>
</tr>
<tr>
<td>Psidium guajava</td>
<td>Psidium guajava</td>
</tr>
<tr>
<td>Punica granatum</td>
<td>Punica granatum</td>
</tr>
<tr>
<td>Pyrus communis</td>
<td>Pyrus communis</td>
</tr>
<tr>
<td>Pyrus pyrifolia</td>
<td>Pyrus pyrifolia</td>
</tr>
<tr>
<td>Pseudopodium</td>
<td>Pseudopodium</td>
</tr>
<tr>
<td>Raphylepis sp.</td>
<td>Raphylepis sp.</td>
</tr>
<tr>
<td>Rhamnus purshiana</td>
<td>Rhamnus purshiana</td>
</tr>
<tr>
<td>Rhapis exselsa</td>
<td>Rhapis exselsa</td>
</tr>
<tr>
<td>Richardia scabra</td>
<td>Richardia scabra</td>
</tr>
<tr>
<td>Rosa</td>
<td>Rosa</td>
</tr>
<tr>
<td>Ruellia</td>
<td>Ruellia</td>
</tr>
<tr>
<td>Sambucus</td>
<td>Sambucus</td>
</tr>
<tr>
<td>Staphylea</td>
<td>Staphylea</td>
</tr>
<tr>
<td>Sida acuta</td>
<td>Sida acuta</td>
</tr>
<tr>
<td>Solanum aculeatissimum</td>
<td>Solanum aculeatissimum</td>
</tr>
<tr>
<td>Solanum melongena</td>
<td>Solanum melongena</td>
</tr>
<tr>
<td>Solanum nigrum</td>
<td>Solanum nigrum</td>
</tr>
<tr>
<td>Solanum seaforthianum</td>
<td>Solanum seaforthianum</td>
</tr>
<tr>
<td>Solanum tomentosum</td>
<td>Solanum tomentosum</td>
</tr>
<tr>
<td>Solanum tuberosum</td>
<td>Solanum tuberosum</td>
</tr>
<tr>
<td>Solanum verbascifolium</td>
<td>Solanum verbascifolium</td>
</tr>
<tr>
<td>Sonchus oleraceus</td>
<td>Sonchus oleraceus</td>
</tr>
<tr>
<td>Sophy sp.</td>
<td>Sophy sp.</td>
</tr>
<tr>
<td>Symphytum</td>
<td>Symphytum</td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>Taraxacum officinale</td>
</tr>
<tr>
<td>Tephrosia grandiflora</td>
<td>Tephrosia grandiflora</td>
</tr>
<tr>
<td>Theobroma cacao</td>
<td>Theobroma cacao</td>
</tr>
<tr>
<td>Tribulus terrestris</td>
<td>Tribulus terrestris</td>
</tr>
</tbody>
</table>
Fig. 3.—The lily aphid, *Myzus circumflexus* (Buckton): *A*, adult winged female: *a*, section of the costal vein showing fenestralike areas; *d*, cornicle; *f*, cauda; *k* and *l*, fenestras near the base of the subcostal vein; *W ant.*, antennae; *B*, adult apterous female: *A ant.*, antennae; *b* and *c*, setas on segments I and III of antenna; *e*, cornicle; *g*, cauda; *h*, rostrum; *i*, basal margin of cornicle; *j*, tip of cornicle. (All greatly enlarged.)
The lily aphid is a common species in greenhouses throughout the country. It also occurs outdoors along the coast of California. It feeds and propagates on a wide variety of plants, on which it sometimes produces dense colonies, although it shows decided preferences for members of the family Liliaceae. The aphids are pale yellow, the alates being partly black, whereas the apterae often have distinct black or dusky patches on the dorsum as shown in figure 3. An extensive treatment of this species is given in a previous paper (Essig, 1938α).

Distribution. This aphid has been widely distributed, in commerce, on bulbs and ornamentals. At the present time it is known to occur in the following continents, countries, and states:

- **Asia**: Japan.
- **Europe**: England, Wales, Holland, Russia, Sweden, Switzerland.
- **North America**: Canada; United States, in California, Colorado, Indiana, Illinois, Maine, Michigan, New York, Oregon, Utah, Wisconsin, and possibly in many other states not yet reported.
- **South America**: Argentina.
- **Pacific**: Java, Hawaii.

Host Plants. The lily aphid has been recorded from the following plants:
Fig. 4.—The foxglove aphid, *Myzus solani* (Kaltenbach), adult winged female; *W* ant., antennal segment iii; *c*, cornicle; *c'*, tip of cornicle; *d*, cauda; *e* and *f*, fenestras; *g*, gland pores as arranged in the dark transverse bands on the dorsum of the abdomen; *A* ant., antennal segment iii of apterous female; *a*, cornicle of apterous female; *b*, cauda of apterous female. (All greatly enlarged.)
The foxglove aphid was so designated by Patch (1928) because of its importance as a pest of the common foxglove, Digitalis purpurea, a European ornamental extensively cultivated throughout much of North America. Along the Pacific Coast, especially in northern California and Oregon, this plant has become naturalized and is regarded as a pest of some importance on grazing lands. In these areas this host plant affords an abundance of food for the aphid.

This aphid may be distinguished from its nearest relatives by its more than medium size; its long antennae, which are much longer than the body; the large wings extending well beyond the tip of the abdomen; the dark, broken, transverse bands on the dorsum of the abdomen of the alates; and the long, almost cylindrical cornicles, which have a few broken concentric rings or reticulations around the apices. The apices are well flared and dusky black.
The apterous forms are usually without markings, except that in mounted specimens two longitudinal rows of groups of small dorsal glands are often evident on the sides of the abdomen. The prevailing colors may vary from whitish and yellowish, to pale or dark green with dusky areas at tips of the paler antennal segments, the apices of the leg segments, and the tips of the cornicles. (See figs. 4 and 5.)

The species is variable in size and color, a characteristic which has caused considerable confusion among aphidologists and resulted in the large number of synonyms. A fuller discussion of this aphid may be found in a previous paper (Essig, 1938a) and in one by Mason (1940).

Nomenclature. In recent years this aphid has been most often designated as *Myzus convolvuli* (Kalt.) and *Myzus solani* (Kalt.). The Imperial Institute of Entomology, London, has adopted *Macrosiphum solani*. This specific name has page precedence over *convolvuli* in Kaltenbach’s work (1843, p. 15–16, 40–41). In this country the genus *Myzus* is preferred to *Macrosiphum* for this species.

The genus *Aulacorthum* was erected by Mordvilko in 1914 (1914, p. 68) and has been accepted for this species by Hille Ris Lambers and some other European aphidologists.

Myzus convolvuli (Kalt.) is the name that has been most frequently used for this aphid in North America. It has now been accepted as a synonym of *M. solani* (Kalt.) in Europe and by many in this country.
Distribution. The foxglove aphid is widely distributed in the temperate regions and occurs in greenhouses in even colder areas. It is reported from the following places:

Africa: Egypt.
Asia: China, Japan.
Europe: Belgium, England, France, and Italy.
North America: Canada, in British Columbia (Victoria) and Ontario (Vineland); United States, in California (Berkeley, Lagunitas, Lompoc, Los Angeles, Niles, Pepperwood, Point Reyes, Riverside, San Francisco, San Jose, Shafter, Stanford University, Ukiah, Ventura, Vichi Springs, Woodacre).
South Pacific: Territory of Hawaii (Hawaii, Oahu, and Maui).

Host Plants. The foxglove aphid is an omnivorous feeder and has been reported as feeding upon many hosts. Doubtless in some instances the insects were merely casuals which may have been only transitory visitors. The list compiled to date includes the following:

- Acer negundo
- Althea sp.
- Amaranthus spp.
- Ambrosia sp.
- Anemone sp.
- Anthemis sp.
- Anthirrhinum sp.
- Apium graveolens
- Aquilegia formosa
- Arctium lappa
- Asarum sp.
- Asclepias spp.
- Atropa belladonna
- Aucuba japonica
- Auricula sp.
- Begonia spp.
- Brassica spp.
- Capsella bursa-pastoris
- Carum spp.
- Castilleja latifolia
- Cestrum spp.
- Chenopodium album
- Chrysanthemum spp.
- Cineraria spp.
- (Senecio spp.?)
- Citrus maxima
- Clintonia andrewsiana
- Conium spp.
- Convolvulus sepium
- Convolvulus tricolor
- (C. minor)
- Coprosma baueri
- Crataegus spp.
- Crotalaria anagyrôides
- Cucurbita pepo
- Digitalis purpurea
- Epipactis gigantea
- Eriodictyon californicum
- Erodium cicuinatum
- Erodium moschatum
- Euphorbia booleani
- Fragaria spp.
- Fuchsia arborescens
- Galium verum
- (G. luteum)
- Geranium spp.
- (including G. dissectum)
- Geum alleppicum var. structum
- Geum urbanum
- Gladiolus spp.
- Glaucium flavium
- (G. luteum)
- Glycine max
- (G. soja)
- Gnaphalium spp.
- Helianthus tuberosus
- Helichrysum sp.
- Heracleum lanatum
- Hieracium aurantiacum
- Hieracium mucorum
- Hydrangea spp.
- Hydrocotyle vulgaris
- Hyoscyamus sp.
- Ipomoea purpurea
- Ipomea batatas
- Ipomoea tricolor
- Ipomoea indica
- Ipomoea batatas
- Ipomoea hederacea
- Ipomoea nil
- Lactuca sativa
- Lamium purpureum
- Lathyrus spp.
- Leonotis leonurus
- Lespedeza bicolor
- Lilium spp.
- Lycopersicon esculentum
- Lysimachia sp.
- Malus communis
- (M. sylvestris)
- Melilotus spp.
- Mentha arvensis
- var. piperascens
- Mentzelia lindleyi
- (Bartonia aurea)
- Mimulus aurantiacus
- (Diplacus aurantiacus, D. glutinosus)
- Musa paradisiaca
- Nembophila heterophylla
- Oxalis spp.
- Phalaenopsis sp.
- Phaseolus vulgaris
- Phaseolus angulatus
- Physalis sp.
- Picea abies (P. excelsa)
- (casual?)
- Pisum sativum
- Pittosporum spp.
- Plantago sp.
- Portulaca sp.
- Potentilla sp.
- Primula polyantha
- (Polyanthus sp.)
- Primula sieboldii
- Primula vulgaris
- Radicula curvisiliqua
- Ranunculus spp.
- Rubus hawaiensis
- Rubus idaeus
- Rubus idaeus var. strigosus
- Rubus lacinatus
- Rumex acetosa
- Rumex crispus
- Sambucus racemosa
- Sanicula menziesii
- Senecio spp.
- Solanum giganteum
Fig. 6.—The ornate aphid, *Myzus ornatus* Laing: A, adult alate female; a, cauda; c, rostrum; d, front of head and antenna; f, cornicles; h, lateral abdominal dusky area; i, group of abdominal gland pores; j, fenestras near base of subcostal vein; B, adult apterous female; b, cauda; e, front of head and antenna; g, cornicles; l, gland pores arranged in dark broken bands on abdomen; k, lateral gland pores. (All greatly enlarged.) (From Pan-Pacific Entomologist 14:94, 1938.)
Solanum jasminoides
Solanum melongena
Solanum tuberosum
Solidago sp.
Sonchus spp.
Stachys ajugoides
Stachys bullata
Stachys californica
Stellaria media
Symphoricarpos albus

Tanacetum sp.
Taraxacum officinale
Trifolium incarnatum
Trifolium pratense
Trifolium repens
Ulmus sp.
Urtica dioica
Urtica gracilis
Verbascum sp.
Verbena sp.

Veronica beccabunga
Vinca major
Vinca minor
Viola spp.
Wisteria sinensis
Zantedeschia sp.
Zanthoxylum pterota
(Z. fagara).

THE ORNATE APHID

Myzus ornatus Laing (1932, p. 52–53; Essig, 1938a, p. 92–95; Mason, 1940, p. 14–15)

The ornate aphid, Myzus ornatus Laing is very small and is quite easily rec­ognized by the transverse, dusky, broken dark bands, on the dorsum of the apterae, as shown in figure 6. A more complete discussion of his aphid is given in a previous paper (Essig, 1938b).

Distribution. The ornate aphid is a newcomer in California, having first been taken in Berkeley, April 4, 1936, by the writer. It is rather widely distributed in Northern Europe. It was first reported in England in 1932 (Laing, 1932, p. 52–53). Since then it has been collected in Scotland, Ireland, and Belgium (Essig, 1938a). In 1941 it was discovered in New South Wales by Zeck (1941). In Honolulu, Hawaii, it was first collected in 1944 by E. C. Zimmerman, who also found it on the Island of Maui, 1945. In the United States it is now known to occur only in California and Oregon. In California it has been collected at Alton (H. T. Osborn), Berkeley (in greenhouses and outdoors, E. O. Essig), Lompoc (R. M. Bohart, K. F. Baker, W. C. Snyder), Los Angeles (R. H. Smith), and Sacramento (J. B. Steinweden); in Oregon, at Portland and Yakchats (J. H. Schuh).

Host Plants. A list of known host plants follows:

Achyranthes spp.
Apium graveolens var. dulce
Artemisia vulgaris
Baccharis vimeinea
Bellis perennis
Brassica spp.
Buddleia orientalis
Calceolaria sp.
Camellia sp.
Capsicum frutescens
Chrysanthemum sp.
Cineraria sp.
(Senecio sp.)
Clematis sp.
Coleus sp.
Crepis virens
Crotalaria anagroides
Dianthus barbatus
Digitalis purpurea
Dipsacus fullonum
Erodium sp.
Fragaria sp.
Fuchsia elegans
(G. globosa)
F. coccinea
Geum urbanum
Hedera helix
Helenium peregrinum
Helianthemum sp.
Heliotropium arborescens
Hydrangea sp.
Ilex sp.
Lantana sp.
Lapsana communis
Loiseleuria procumbens
(Azalea procumbens)
Malus communis
(Pyrus malus)
Matricaria chamomilla
Medicago sativa
Nasturtium officinale
(Roripa nasturtium)
Panax lancastieri
Picris sp.
Plantago major
Potentilla sp.
Primula sp.
Ranunculus repens
Rheum rhaponticum
Richardia rehmannii
Rubus procerus
Rumex acetosella
Rumex obtusifolius
Salvia sp.
Scabiosa sp.
Taraxacum officinale
Teesdalia nudicaulis
Trifolium pratense
Ulmus procera
Urtica dioica
Valeriana sp.
Veronica spp.
Viola sp.
Fig. 7.—The violet aphid, *Micromyzus violae* (Pergande): winged female with antenna, cauda, and cornicle greatly enlarged; apterous female with antenna, rostrum, cauda, and cornicle. (All enlarged as indicated.) (Drawings by Frieda Abernathy.)
THE VIOLET APHID

Micromyzus violae (Pergande)
Rhopalosiphum violae Pergande (1900, p. 29–30)
Rhopalosiphum violae Essig (1909, p. 4–8)
Fullawayella violae (Pergande) Baker, 1919, p. 45–46; Takahashi, 1921, p. 29; Hardy, 1931, p. 34–35)
Neotoxoptera violae Theobald (1915a, p. 131–32; Baker, 1919, p. 45–46)

The violet aphid may at once be recognized by the pictured or cloudy wings and its very dark red, maroon, brownish, or even greenish-black body. The long antennae, slightly swollen cornicles, and short cauda also aid in separating it from other species infesting violets and pansies. It is slow and sluggish and appears to move only with considerable exertion. For more extended descriptions see Sanborn (1904, p. 64–65) and Essig (1935, p. 157). The winged and apterous females are shown in figure 7.

Nomenclature. Although this species has been shifted among at least four genera, the genus *Micromyzus* van der Goot (1916) now appears to be most logical.

The species *Rhopalosiphum violae* Essig was described without knowledge of Pergande’s description. It is a synonym.

The genus *Neotoxoptera* was erected for what appears to be a variant of *Micromyzus violae* (Pergande). Specimens of this species frequently diverge from the type.

Distribution. The violet aphid has become widely distributed through commerce and now occurs in many parts of the subtropical and temperate regions where violets and pansies are cultivated or grow wild in the open. The aphid also abounds on the host plants grown in greenhouses or in other sheltered places. It has been reported from the following localities:

Africa: Onderstepoort, Transvaal.
Asia: Formosa.
Australia: Queensland.
North America: British Columbia; California (Claremont, Berkeley, Porterville, Riverside, Santa Ana, Santa Paula, Stanford University, Ventura), Connecticut, Illinois, Kansas, Mississippi, New Jersey, New Mexico, New York, and Washington.

Host Plants. The violet aphid feeds chiefly on the tender new growth of violets and pansies, including the leaves, leaf stems, and flowers; when abundant, it may occur on the entire plants and especially on the undersides of the leaves close to the ground. Infested plants often appear dwarfed, the foliage curled and sickly—no doubt the result of the virus diseases transmitted by the aphid. The only recorded host plants of this aphid are:

Lilium spp.
Maizus japonicus
Viburnum sp.
Viola spp.—many, but apparently not all species, are infested.

Adult alates may be found resting on many other plants upon which young are not reared.
OTHER SPECIES OF APHIDS REPORTED AS FEEDING ON VIOLETS AND PANSES

Species of aphids feeding on violets and pansies and on other members of the family Violaceae are not numerous. In addition to the species already discussed, the following aphids have also been reported by Patch (1928, p. 180–81) as feeding upon these plants:

The buckthorn aphid, *Aphis abbreviata* Patch, on *Viola tricolor*; Maine (Patch, 1924, p. 38). Patch has made this a synonym of *Aphis rhamni* Boyer de Fonseolombe (1841, p. 177).

Aphis certa Walker on *Viola tricolor* England (Theobald, 1929, p. 63).

Aphis malvae (Koch) on *Viola tricolor*; Lahore (Das, 1918, p. 273).

Aphis malvaearum v.d. Goot (= *A. malvoides* Das) on *Viola tricolor*; Lahore (Das, 1918, p. 273).

Aphis plantaginis Schrank on *Viola* sp.; England, Belgium, France, Germany, Italy (Theobald, 1927, p. 131).

Aphis violae Schouteden on *Viola tricolor*; Belgium (Schouteden, 1900, p. 127; 1906, p. 229).

Macrosiphum malvae (Mosely) on *Viola odorata* and *V. tricolor*; England and Italy (Macchiati, 1883, p. 230; Theobald, 1926, p. 124). Theobald considers this species to be a synonym of *Macrosiphum pelargonii* (Kalt.). This latter species has so often been confused with *Myzus solani* (Kalt.) that it is possible *Macrosiphum malvae* may be a synonym of it.

The tulip leaf aphid, *Rhopalosiphoninus tulipella* (Theobald), on *Viola* sp.; England (Theobald, 1926, p. 222). This species has been found on tulip bulbs from Washington state (Essig collection, 1934), and alates resting on *Hesperis matronalis* at Corvalis, Oregon, April 15, 1941, by J. Schuh (Essig collection). It has been taken in quarantine on tulip bulbs from Holland (California State Department of Agriculture, March 6, 1945).

The green peach aphid, *Myzus persicae* (Sulzer), has been successfully used by H. H. P. Severin in transmitting celery calico to pansies. This insect does not appear to have been recorded as regularly feeding and reproducing on pansies and violas, although it has been listed on more than 200 host plants. It has been fully discussed by the author in a previous paper (Essig 1938a, p. 482–85).

Saltusaphis insessa Walker reported on *Viola* sp. by Walker in England, represents perhaps casual visitors on violets or an error (Theobald 1927, p. 199). This aphid was subsequently taken on *Juncus maritima* in England.
PERTINENT LITERATURE

Baker, A. C.

Bartholomew, P. S.

Boyer de Fonscolombe.

Buckton, G. B.

Das, B.

Davis, J. J.

Essig, E. O.

Hardy, G. H.

Harrington, C. D.

Hori, M.

Johnson, W. G.

Kaltenbach, J. H.

Laing, F.

Mason, P. W.

Macchiati, L.

Matsumura, S.

Mordvilko, A.

Oestlund, O. W.
PASSERINI, G.

PATCH, E. M.

PERGARDE, THEO.

Rafinesque, C. S.

SANBORN, C. E.

SCHOUTEDEN, H.

Schrank, F. von Paula.

Severin, H. H. P.
1938. Western celery mosaic. Hilgardia 11(9):493–558. 9 figs. 8 pls.

1938. Western celery mosaic. Hilgardia 11(9):493–558. 9 figs. 8 pls.

Soliman, L. B.

Swain, A. F.

Takahashi, R.

Theobald, F. V.
1917. Notes on new and little known British aphides III. Entomologist 50:76–82.

VAN DER GROOT, P.

WALKER, FRANCIS.

WILSON, H. F.

WILSON, H. F., and R. A. VICKERY.

ZECK, E. H.