HILGARDIA

A Journal of Agricultural Science Published by the California Agricultural Experiment Station

VOLUME 12

JANUARY, 1939

NUMBER 3

CONTENTS

TOXICITY STUDIES WITH ARSENIC IN EIGHTY CALIFORNIA SOILS

A. S. CRAFTS and R. S. ROSENFELS

ARSENIC FIXATION IN RELATION TO THE STERILIZATION OF SOILS WITH SODIUM ARSENITE R. S. ROSENFELS and A. S. CRAFTS

TOXICITY STUDIES WITH SODIUM CHLORATE IN EIGHTY CALIFORNIA SOILS A. S. CRAFTS

UNIVERSITY OF CALIFORNIA · BERKELEY, CALIFORNIA

I L A R (<u>`</u>

A Journal of Agricultural Science Published by the California Agricultural Experiment Station

Vol.	12
------	----

JANUARY, 1939

No. 3

TOXICITY STUDIES WITH ARSENIC IN EIGHTY CALIFORNIA SOILS^{1. 2}

A. S. CRAFTS³ AND R. S. ROSENFELS⁴

INTRODUCTION

THE INCREASING USE of arsenic in herbicides, insecticides, and soil sterilants presents problems of great economic importance. The farmer, needing practical methods for controlling pests, seeks the cheapest and most effective reagents, whereas the soils investigator must try to conserve our agricultural areas for present and future generations.

Arsenic, being cheap, readily available, and extremely toxic, is in constant demand for weed and insect-pest control and is recommended by many companies, often without specific knowledge of dosages required, effective methods of application, or ultimate effects upon the soil.

In the field use of arsenic, workers naturally ask what form is most effective for the particular type of treatment being used, how much will be needed for the desired results, and how long the results will last. The soils investigator wants to know what the effects of long-time accumulation of arsenicals in soils will be, whether the soil is permanently harmed when crop yields have been reduced, and how one may remove or remedy the toxic condition resulting from arsenic in the soil.

A previous publication (6)⁵ presented data on arsenic toxicity⁶ in four

³ Assistant Professor of Botany and Assistant Botanist in the Experiment Station. Assistant Physiologist, Division of Cereal Crops and Diseases, Bureau of Plant

Industry, United States Department of Agriculture. ⁵ Italic numbers in parentheses refer to "Literature Cited" at the end of this paper. ⁶ The term "toxicity" has acquired a wide variety of meanings. For purposes of the

present group of papers (7, 8, 13) the criterion adopted is the application of chemical causing an almost complete suppression of growth. This use of the word has developed because in the control of weeds the practical object is to inhibit development completely.

¹ Received for publication January 17, 1938.

² This paper was made possible by the coöperative project on control of noxious weeds conducted by the California Agricultural Experiment Station and the Division of Cereal Crops and Diseases, Bureau of Plant Industry, United States Department of Agriculture.

т,	0				-	iigu	<i>i</i> 1 (1)									Γ.		• •	., .				
	Soil used in each culture		<i>gm</i> 500 500 500 500 500		am	200	009	500	500	909 200	009	600	900 200	500	500 600	500	500	500	200	500	500	500 500	
	Moisture content of cultures		per cent 12.8 10.0 6.5 12.4 12.3 12.3	-	ner cent	13.3	13.0	18.0	12.2	16.2	15.0	15.0	14.0 13.8	18.3	15.6 10.8	10.7	13.3	17.9	12.5	13.5	12.0	20.0	7.77
* 20	Remarks†		Silightly acid Calcarcous; saline Silightly acid Alkali; calcareous Calcareous Neutral			Slightly acid	Neutral	Neutral	Moderately acid	Basic Nautral	Alkaline	Neutral	Neutral Neutral	Alkali; calcareous	Neutral	Neutral	Moderately acid	Slightly acid	Neutral Moderately acid	Moderately acid	Moderately acid	Calcareous	TRIMAN
TABLE 1 CHARACTERISTICS OF CALIFORNIA SOILS USED IN TOXICITY SERIES* (All samples from surface 4 inches)	Color		Brown Light brown-gray Light brown Light brown-gray Light gray Light brown-gray			Red	Бгомп Dark brown	Light gray-brown	Brown-red	Light red-brown	Brown-gray	Brown	Light brown Light brown	Light gray-brown	Dark gray	Brown	Brown-red	Brown-red	Bark brown-gray	Brown-red	Brown-red	Light gray	Brown
TABLE 1 RNIA SOILS USED from surface 4 i	Stage of development	Sands	Immature Youthful Youthful Recent Youthful	Gravelly and sandy loams		Semimature	Immature	Recent	Semimature	Immature Docent	Mature	Youthful	Recent	Recent	Semimature	Immature	Mature	Mature	Immature	Semimature	Semimature	Immature	Recent
TABLE 1 ICS OF CALIFORNIA SOILS USED IN TO (All samples from surface 4 inches)	Mode of formation	Sa	Primary Primary alluvial Secondary acolian Secondary alluvial Secondary alluvial Secondary alluvial	Gravelly an		Primary	Secondary alluvial Secondary alluvial	Secondary alluvial	Secondary alluvial	Secondary alluvial	Secondary alluvial Secondary alluvial	Secondary alluvial	Secondary alluvial Secondary alluvial	Secondary alluvial	Secondary alluvial	Secondary anuvial Secondary alluvial	Secondary alluvial	Secondary alluvial	Secondary alluvial	Frimary	Primary	Secondary alluvial	Secondary alluvial
JHARA CTERIST	Origin	•	Acid igneous Mixed Mixed Mixed Mixed Acid igneous		-	Basic igneous	Sedimentary Acid igneous	Mixed	Mixed	Acid igneous	Acid igneous Acid igneous	Acid igneous	Acid igneous Acid igneous	Mixed	Acid igneous	Acid igneous	Mixed	Acid igneous	Mixed	Acid igneous	Sedimentary	Mixed	Sedimentary
	Soil type		Holland loamy gravelly sand Naind gravelly sand Oakley sand Rositas fine sand Superstition gravelly sand Tujunga sand.			Aiken gravelly loam	Arbuckle gravelly sandy loam Chueler fine sendy loam	Columbia fine sandy loam	Corning gravelly loam	Delano fine sandy loam	Foster fine sandy loam. Fresno sandy loam f	Greenfield coarse sandy loam	Hanford sandy loam	Meloland fine sandy loam	Merced fine sandy loam	Uakdale coarse sandy loam		Rocklin sandy loam	Salinas fine sandy loam	Sierra gravelly loam	Sites fine sandy loam.	Tulare fine sandy loam	Yolo fine sandy loam
	No.	1			-	7	x 0	, 10 10	Π	12	14	15	16	18	19	202	3 2	23	24	5 29	27	28	29

178

Hilgardia

[Vol. 12, No. 3

-
Basic igneous Secondary alluvial
Acid igneous Secondary alluvial
Sedimentary Secondary alluvia
Sedimentary Secondary alluvial
Acid igneous Secondary alluvial
_
Acid igneous Secondary alluvial
Secondary alluvial
Basic igneous Secondary alluvial
Sedimentary Secondary alluvial
Codimontour Connection
Acid igneous Secondary alluvial
Sedimentary Primary
Secondary alluvial
Secondary alluvial
Secondary alluvial
Sedimentary Secondary alluvial
Sedimentary Secondary alluvial
Sedimentary Secondary alluvial

† Data given in this column were taken from (14, 15, and 16). They apply to the soil types in general. No such determinations were made on the samples collected. ‡ The Fresno sandy loam used in this and in previous tests is designated as brown phase. Shaw now classifies this soil in the Dinuba series (14). § Soil 54a harvested December 22, 1934; soil 54b harvested June 4, 1935.

179

(Table concluded on next page.)

180

California soils. The range of concentrations used in these early trials was not sufficient to show what changes in toxicity take place with repeated cropping; furthermore, two of the soils used were not quite typical. The Stockton adobe clay for the first experiment was taken near a drainage ditch and proved to be mostly subsoil that behaved anomalously. The Columbia fine sandy loam was not so fertile and was coarsertextured than that used in later tests. A retest was therefore devised to correct these difficulties.

When the results, which are presented in a later section, were compared with those of the previous experiment, it was impossible to formulate general relations between toxicity and soil type suitable for prescribing dosages. Therefore a simpler test was devised that could be used simultaneously on many soils. The results of these simple comparative tests form the main subject of this report.

MATERIALS AND METHODS

Selection and Sampling of Soils.—In conjunction with the Division of Soil Technology at Davis, sampling areas for type soils were located on soil-survey maps. The samples, taken from the top 4 inches after removal of the surface débris, were collected during the summer dry season, and wherever possible, near fence lines or from similar locations where they had not recently been disturbed.

After transportation to Davis, they were pulverized to pass a $\frac{1}{4}$ -inch screen and were stored in burlap bags in a dry place until used. Table 1 presents descriptive data obtained from various sources (14, 15, 16). A casual survey will indicate the wide variety tested. Collected throughout the length and breadth of the state, the soils illustrate almost every textural grade, mode of formation, color, and reaction; and most important agricultural soils are represented by one or more types.

Biological Testing of Toxicity.—The biological testing method used in studying arsenic toxicity in these soils has been described (6, 9). It consists of growing a series of cultures in No. 2 cans in the greenhouse. The air-dry soils are weighed into the cans, which have been tared, bits of coarse gravel being added to bring them to a standard weight. The arsenic is added in solution in the water used to bring the soils to field capacity. Dry soil and solution are rapidly mixed, each in 3 successive portions to insure uniform distribution. After moistening, 13 Kanota oat seeds are planted in each can; and wrapping paper is laid over the cultures to prevent drying. The paper is removed as soon as the seeds germinate, and the plants are thinned to 10 at the end of the first week of growth. There-

after, they are watered as required by growth, sunshine, and humidity. After 30 days, they are cut off at the soil level. The fresh weights of the tops are recorded, and are used as a measure of toxicity of the arsenic applied.

The stock arsenic solution is prepared by mixing 4 parts of screened, dry, arsenic trioxide, 1 part of C.P. stick caustic soda, and 3 parts of water. When heated slightly, this mixture goes into solution, giving a clear sirupy liquid containing 50 per cent As_2O_3 by weight. The diluted solution for application to the soils is prepared by making up 10 grams of this to a liter. The resulting solution, containing 5,000 p.p.m. of As_2O_3 , is measured out with a burette and further diluted to the appropriate strength. This concentration of 5,000 p.p.m. is particularly convenient in making up cultures in 500-gram lots of soil, since the number of cubic centimeters added, multiplied by 10, gives the p.p.m. based on the weight of the air-dry soil.

The concentration series used in the tests on the 80 soils ran as follows: 0, 15, 40, 80, 140, 220, 340, 490, 680, and 920 p.p.m. As_2O_3 in the air-dry soil. All series were run in triplicate. In determining the amount of water required to moisten these soils, a simple method has been used. When 50-gram lots of the soils have been weighed into test tubes, water is added—2.5 cc, 5.0 cc, 7.5 cc, or 10.0 cc, according to the textural grade of the soil. After 24 hours, the depth of the soil column moistened is measured, and the volume of water necessary to wet 100 grams of soil calculated. By an appropriate factor, the volume needed in the cultures is determined. This method has proved simpler and more satisfactory than determining the moisture equivalent, since it allows for the moisture present in the air-dry soil and for factors of soil preparation that must be considered in the latter method.

Data on the water-holding capacities of the soils and on the weights of soil used in the cultures are reported in table 1.

EXPERIMENTAL RESULTS

Retests on Four Soil Types.—In order to remedy some of the difficulties experienced in the initial trial, a more extended experiment was set up, with an expanding series of concentrations ending with cultures containing 3,000 p.p.m.

The soils for this retest were more carefully selected than those in the earlier experiment. The Stockton adobe clay was carefully selected from an area along a fence, undisturbed for many years and never affected except by shallow plowing. The Columbia fine sandy loam of this and Jan., 1939]

later experiments was somewhat more fertile and a bit finer-textured than that of the previous tests. The Yolo clay loam and the Fresno sandy loam were the same.

TABLE 2

TOXICITY OF SODIUM ARSENITE IN 4 CALIFORNIA SOILS AS SHOWN BY GROWTH OF INDICATOR PLANTS; EFFECTS OF TIME AND CROPPING*

Sodium arsenite expressed as	Yolo cla	ay loam	Stockto clı		Fresno sa	ndy loam	Columb sandy	
p.p.m. As ₂ O ₃ in air-dry soil	Height	Fresh weight	\mathbf{Height}	Fresh weight	Height	Fresh weight	Height	Fresh weight
		First ru	n, harveste	ed Decemb	oer 29, 1933			
p.p.m.	cm	gm	cm	gm	cm	gm	cm	gm
10	36	8.5	18	1.9	29	5.1	32	6.8
30	35	8.0	16	1.7	26	3.6	32	6.7
								0.7
60	35	7.8	14	1.2	20	1.9	31	5.9
60 100	35 35	7.8 7.5	14 12				31 30	
				1.2	20	1.9		5.9

60	35	7.8	14	1.2	20	1.9	31	5.9
100	35	7.5	12	1.0	8	0.7	30	5.5
150	33	6.6	10	0.9	7	0.5	27	4.8
210	33	6.2	9	0.8	5	0.1	20	2.6
280	31	4.9	10	0.8	0	0.0	9	0.7
360	26	3.3	8	0.6	0	0.0	7	0.5
450	16	2.0	7	0.5	0	0.0	3	0.3
550	8	0.8	5	0.4	0	0.0	0	0.0
660	8	0.6	4	0.3	0	0.0	0	0.0
780	6	0.4	5	0.3	0	0.0	0	0.0
910	4	0.2	4	0.2	0	0.0	0	0.0
1,050	3	0.1	4	0.1	0	0.0	0	0.0
Check	36	9.1	21	2.0	28	5.5	33	7.3
		1						

			,		,			
p.p.m.	cm	gm	cm	gm	cm	gm	cm	gm
10	34	9.6	21	3.4	26	4.4	29	5.4
30	34	9.8	21	3.2	26	4.3	28	6.1
60	34	9.8	22	3.0	25	3.9	28	5.6
100	32	8.4	20	2.3	23	3.4	26	4.5
150	30	6.2	19	2.1	20	2.7	21	2.7
210	28	5.3	15	1.4	16	1.8	18	2.0
280	24	3.5	11	1.0	13	1.5	14	1.5
360	21	2.5	9	0.5	14	1.3	12	1.2
450	18	2.1	8	0.4	9	0.8	11	0.9
550	16	1.8	8	0.3	7	0.5	10	0.6
660	13	1.3	8	0.4	6	0.2	9	0.5
780	11	0.9	8	0.4	6	0.3	8	0.3
910	11	0.9	8	0.4	5	0.1	6	0.2
,050	11	0.6	8	0.4	0	0.0	6	0.1
,200	10	0.5	7	0.2	0	0.0	0	0.0
,360	9	0.5	7	0.1	Ő	0.0	0	0.0
,530	8	0.2	0	0.0	Ŏ	0.0	Ő	0.0
,710	7	0.1	0	0.0	Ő	0.0	Ő	0.0
heck	30	8.1	20	3.1	23	4.3	26	5.1
HOUR	50	0.1	0	0.1	40	2.0	20	0.1

Third run, harvested May 31, 1934

* Each value given is an average of 5 replicates.

183

Sodium arsenite expressed as	Yolo cla	ay loam	Stockto		Fresno sa	ndy loam	Columb sandy	
p.p.m. As ₂ O ₃ in air-dry soil	Height	Fresh weight	Height	Fresh weight	Height	Fresh weight	\mathbf{Height}	Fresh weight
		Fifth 1	run, harves	sted Janua	ry 9, 1935			
<i>p.p.m.</i>	cm	gm	cm	gm	cm	gm	cm	gm
10	29	5.9	21	2.4	25	3.7	28	4.8
30	30	6.3	22	2.8	26	3.5	27	4.8
60	29	6.0	22	2.6	25	3.5	28	5.3
100	29	6.5	23	3.4	26	3.5	29	5.4
150	31	6.9	25	3.7	26	3.4	29	5.4
210	31	6.4	23	3.0	23	2.8	27	4.6
280	30 27	6.1	22	2.8	23	2.6	25 23	$\frac{3.4}{2.7}$
360	27	4.9	17	1.9	19	1.9	23 20	
4 50 5 50	20 24	4.5	18 12	1.7 1.2	15 11	1.4 0.8	20 18	1.9 1.5
660	24 23	3.1	12	1.2	11	0.8	18	1.5
780	23 22	2.7	13	1.5	10	0.7	14	1.4
910	22	2.4	11	1.2	9	0.5	14	0.9
1,050	19	2.4	11	1.2	9	0.5	15	0.3
1,200	17	1.5	11	1.0	8	0.3	11	0.6
1,350	15	1.2	11	0.8	8	0.3	10	0.5
1,530	13	1.0	10	0.7	7	0.2	9	0.4
1,710	10	0.9	10	0.5	6	0.1	8	0.4
1,900	12	0.9	9	0.5	6	0.1	8	0.3
2,100	11	0.7	8	0.5	5	0.1	7	0.3
2,310	10	0.7	8	0.4	0	0.0	7	0.3
2,530	9	0.5	7	0.3	0	0.0	7	0.3
2,760	9	0.5	7	0.3	Ő	0.0	6	0.3
3,000	9	0.5	6	0.3	0	0.0	6	0.3
Check	26	5.0	20	3.0	25	3.5	26	4.5
		Seventh	run, harves	sted Nover	nber 14, 193			
<i>p.p.m.</i>	cm	gm	cm	gm	cm	gm	cm	gm
150					16	1.9		
210					15	1.9	18	2.7
280			14	1.8	14	1.6	16	1.8
360	24	5.4	14	1.6	12	1.5	14	1.5
450	24	4.8	12	1.2	11	1.1	13	1.3
550	23	3.9	10	1.0	9	0.7	12	1.0
660	21	3.1	10	1.0	8	0.6	10	0.9
780	20	2.7	10	1.1	8	0.5	9	0.7
910	18 15	2.3	11	1.1	7	0.4	9	0.6
1,050	1 .		-	1	6	0.4	5	
1,200	14 13	1.5	11 10	1.1	6	0.3	5 4	0.2
1,360	13	1.4	8	1.0	5	0.3	4	0.1
1,530 1,710	12	1.1		0.8	5	0.2	4	0.1
1,900	10	0.8	7	0.0	4	0.2	4	0.1
	10	0.8	6	0.4	4	0.2	3	0.1
2,100	8	0.6	5	0.4	0	0.1	3	0.1
2,310	7	0.5	5	0.2	0	0.0	0	0.0
2,530	6	0.4	4	0.2	0	0.0	0	0.0
3,000	6	0.5	3	0.2	0	0.0	0	0.0
Check	21	4.2	15	2.2	16	2.3	18	3.0
OHCUR		1.4	10	4.4	10	4.0	10	0.0

TABLE 2—(Concluded)

When complete, this experiment contained 24 concentrations and 4 checks, each consisting of 5 replicates. Similar series were established at about the same time for sodium chlorate and borax. The first 3 crops on the chlorate series were reported earlier (6), as were the first, third, and fifth crops of the borax tests (9). The first, third, fifth, and seventh crops of the present experiment on the arsenic series are given in table 2. In each run only the cultures having growth in one or more of the soils are reported, all higher concentrations having no growth. By the fifth run all concentrations in the Yolo and Stockton soils had so greatly decreased in toxicity that plants survived in them. Since the lower concentrations were producing crops as heavy as the checks or heavier, the first 4 were not included in the seventh run in table 2; and even higher concentrations were omitted in 3 of the soils.

The most noticeable result of the retest is the difference in behavior of the Stockton soil. Though producing a low yield, the plants survived through the lowest 13 concentrations; a fact indicating a toxicity similar to that of the Yolo clay loam. The change in toxicity, furthermore, practically kept pace with that of the Yolo soil. Evidently the results reported earlier (6) gave an inaccurate picture of the toxicity in adobe soils.

Tests on Eighty Soils.—Yield data on the eighty soils tested are presented in table 3. Obviously the toxicity results follow a definite pattern, toxicity being highest in the sands and lowest in the clays. There are a few notable exceptions, later to be considered in detail. The general relation may be more easily scrutinized in the summary in table 4, where averages for the 5 soil groups are compiled.

The water-holding capacities of the various soil groups, as shown in these averaged results, may be correlated with textural grade; and the arsenic toxicities show a related change. Conceivably, certain factors that enable the soil to hold water against the force of gravity are involved in the availability of applied arsenic to plants.

For comparing soil groups, a series of toxicity values have been calculated, based upon the yield of the untreated checks; these results, presented in table 4, are graphed in figure 1. Although the numbers in these averages are not great enough to give perfectly smooth curves and although the exceptional results on a few individual soils tend in places to overshadow the general relations, the correlation of toxicity and textural grade is obvious. The expression of this relation, regardless of the crops produced, is the principal finding in this study.

The relation of toxicity to textural grade is further illustrated by the crops in Oakley sand, Farwell loam, and Aiken clay loam shown in figure 2. These series all contain a 5 p.p.m. culture ; and all concentrations being

185

TABLE 3

TOXICITY OF SODIUM ARSENITE IN 80 CALIFORNIA SOILS AS SHOWN BY GROWTH OF INDICATOR PLANTS

			Arsei	nic con	ncentr	ation	-As ₂ C	D₃ in p	.p.m.	basis	air-dr	y soi
No.	Soil type	Date of harvest	0	15	40	80	140	220	340	490	680	920
						Fres	h weig	ght of	plant	s		
		l	Sand	ls								
	 		gm	gm	gm	gm	gm	gm	gm	gm	gm	gm
1	Holland loamy gravelly										ľ	
	sand	Dec. 23, 1934	1.8	2.0	1.5	1.3	0.6	0.3	*			
2	Niland gravelly sand	June 5, 1935	1.0	0.7	0.4			*				
3	Oakley sand	Jan. 10, 1936	1.9	1.6	1.3	0.8	0.4	*				
4	Rositas fine sand	June 5, 1935	1.2	1.1	0.9	0.1		*				
5	Superstition gravelly											
	sand	June 5, 1935	1.6	1.3	1.4	0.9	0.1	*				
6	Tujunga sand	June 4, 1935	0.5	0.4	0.6	0.1	*					
	I	Gravelly	and	andy	loam	s	1		1			
		1	gm	gm gm	gm	gm	gm	gm	gm	gm	gm	gm
7	Aiken gravelly loam	Dec. 23, 1934	1.6	1.7	1.6	1.8	1.7	1.8	1.6	0.4	0.3	0.1
8	Arbuckle gravelly sandy											
	loam	Dec. 23, 1934	2.1	2.3	1.8	1.9	0.9	0.3	*			
9	Chualar fine sandy loam.	Jan. 10, 1936	5.3	4.9	2.8	1.9	0.1	1	*			
10	Columbia fine sandy											[
	loam	June 4, 1935	4.4	4.8	4.0	3.0	1.5	0.3	*			
11	Corning gravelly loam	Dec. 23, 1934	1.6	1.5	1.4	1.2	0.8	0.3	0.2	•		
12	Delano fine sandy loam.	Jan. 10, 1936	4.5	4.5	3.9	2.6	0.9	0.7	0.1			
13	Foster fine sandy loam.	Jan. 10, 1936	3.3	2.8	0.4	0.1		l T				
14	Fresno sandy loam Greenfield coarse sandy	June 4, 1935	3.0	2.2	1.4	0.1						
15	loam	Jan. 10, 1936	4.3	3.8	1.2	0.3	0.1	*				
16	Hanford sandy loam	Jan. 10, 1936	4.3	4.0	2.5	0.3	0.1	0.1	*			
10	Hanford fine sandy loam	Jan. 10, 1936	4.0	3.4	2.9	1.0	0.2	*				
18	Meloland fine sandy	Jan. 10, 1800	1.0	0.1	2.0	1.0	0.2		1			
10	loam	June 5, 1935	1.9	1.9	1.5	1.0	0.2	*				
19	Merced fine sandy loam.	1	4.4	3.8	3.1	1.7	0.4	*				
20	Oakdale coarse sandy							1				1
	loam	Jan. 10, 1936	3.0	2.8	2.4	0.8	0.1		*			
21	Ramona sandy loam	June 5, 1935	3.0	3.0	2.6	1.6	0.3			*		
22	Redding gravelly loam.	Jan. 10, 1936	3.3	3.1	2.8	2.5	2.1	0.7	0.1	*		
23	Rocklin sandy loam	Dec. 23, 1934	1.5	1.3	1.2	0.8	0.5	0.2	0.1		*	
24	Salinas fine sandy loam		3.7	3.5	3.0	1.9	1.3	0.5	*			
25	Sierra gravelly loam		1.8	1.9	1.6	1.8	1.6	1.5	0.7	0.6	0.2	1
26	Sierra sandy loam		3.2	3.1	2.7	2.4	1.2	0.3	0.1			
27	Sites fine sandy loam		1.9	1.9	1.4	1.3	0.7	0.2	0.1	1		
28	Tulare fine sandy loam.	Jan. 10, 1936	2.1	1.8	1.3	0.3	0.2	0.6	0.3	0.2		
29	Yolo fine sandy loam	Dec. 22, 1934	3.5	3.3	3.1	2.9	2.0	0.0	0.5	0.2		
	·····	·	Loa	ms	-i							
			gm	gm	gm	gm	gm	gm	gm	gm	gm	gm
30	Egbert loam		3.9	3.4	3.2	2.7	2.2	1.6	1.0	0.2	1	1
31	Farwell loam		7.3	7.2	6.1		3.2	1.0		-	1	
32 33	Gridley loam		2.5	2.7	2.6			0.5		+	1	1
33 34	Honcut loam Madera loam		4.1	2.7	2.6	1	1.3	0.5				
34 35	Panoche light loam		3.2	2.4	2.0			0.5				
36	Pinole loam		1.4	1.4	1.4			0.7			*	
			1	1				1				

* Seeds in cultures at this and higher concentrations failed to germinate. Fresh weight of plants in cultures between reported weight and point of no germination was less than 0.1 gram.

			Arse	nic com	ncent	ation	-As ₂		.p.m.	basis	air-dr	y soi
No.	Soil type	Date of harvest	0	15	40	80	140	220	340	490	680	920
						I						l
						Fres	h weig	ght of	plant	8		
		Loam	s - (Ca)	ontinu	ed)							
			gm	gm	gm	gm	gm	gm	gm	gm	gm	gm
37	Placentia light loam	June 4, 1935	2.7	2.4	2.2	1.7	0.1		*			1
38	Pleasanton loam	Jan. 10, 1936	4.4	4.2	4.0	2.4	0.6	0.2	*			
39 40	Pond heavy loam	Jan. 10, 1936	0.0	0.0		1.8	1 9	0.6	0.2		*	
41	San Joaquin loam Tehama loam	June 5, 1935 Jan. 10, 1936	3.4 2.6	2.6 2.4	2.7 2.2	0.8	1.3 0.2	0.6	0.2 *			
42	Vina loam	Jan. 10, 1936	3.3	3.6	3.4	3.2	3.0	0.9	0.2		*	
43	Yolo loam	Dec. 22, 1934	3.8	3.6	3.5	3.1	2.2	0.3	0.2	0.1	*	
		2 001 22, 2002	0.0	0.0	0.0	0.1		0.0				
		Silts	and cl	ay loa	ms							
			gm	gm	gm	gm	gm	gm	gm	gm	gm	gm
44	Aiken clay loam	Jan. 10, 1936	1.0	1.0	0.9	0.9	0.9	0.8	0.7	0.6	0.6	0.3
45	Antioch clay loam	Jan. 10, 1936	3.9	4.5	3.9	4.0	2.8	1.2	0.5	*		
46	Arbuckle clay loam	Dec. 23, 1934	2.4	2.4	1.9	1.9	1.1	1.3	0.3	0.1	•	
47 48	Chino silty clay loam Columbia silty clay	June 5, 1935	1.6	1.5	1.5	1.4	0.7	0.1		-		
10	loam	June 5, 1935	4.2	3.8	3.7	2.8	2.7	2.4	2.4	1.5	1.1	0.3
49	Mariposa silt loam	Dec. 22, 1934	2.0	1.9	1.8	1.4	1.5	0.7	0.6	0.3	*	0.0
50	Marvin silty clay loam	Jan. 10, 1936	3.4	3.9	3.5	3.1	1.9	0.7	0.4		*	
51	Ramada silt loam	Jan. 10, 1936	6.5	6.3	6.2	3.8	1.6	0.3	0.1	*		
52	Sacramento clay loam	June 5, 1935	4.1	4.2	3.9	2.7	2.0	0.8	0.5			+
53	Yolo silt loam	Dec. 22, 1934	8.9	8.6	6.9	6.5	3.4	0.9	0.3	0.2	*	
54a	Yolo clay loam	Dec. 22, 1934	9.8	9.4	9.5	8.8	5.1	1.4	0.4	0.2	*	
54b	Yolo clay loam	June 4, 1935	8.7	8.8	7.6	6.9	5.8	4.0	0.6	0.4	•	
	I	I	Cla	vs	<u> </u>	!	I				I	
	 		gm	g m	gm	gm	gm	gm	gm	gm	gm	gm
55	Alamo adobe clay	Jan. 10, 1936	1.7	1.7	1.6	1.4	1.3	0.7	0.5	0.3	0.2	0.1
56	Anita adobe clay	Jan. 10, 1936	2.1	2.1	1.8	1.7	1.2	1.1	0.9	0.7	0.2	0.1
57	Capay adobe clay	Dec. 23, 1934	3.7	3.7	3.4	3.5	3.1	2.1	1.4	1.5		
				10.1		1 .	1				0.5	0.5
58	Clear Lake adobe clay	June 4, 1935	1.6	1.5	1.4	1.1	1.1	0.7	0.4	0.2	0.5	0.5
58 59				1	1.4 1.5	$1.1 \\ 1.2$	1.1 0.8	0.7	0.4	1		
59 60	Clear Lake adobe clay	June 4, 1935	1.6	1.5						0.2	0.1	
59 60 61	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936	1.6 1.8	1.5 1.9	1.5 1.9 4.6	1.2	0.8 0.8 4.3	0.8 0.4 3.7	0.7 0.2 3.2	0.2 0.5 0.2 2.0	0.1 0.3	0.2
59 60 61 62	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Dunnigan clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934	1.6 1.8 2.6 4.7 1.8	1.5 1.9 2.4 4.9 1.8	$ \begin{array}{r} 1.5 \\ 1.9 \\ 4.6 \\ 1.6 \end{array} $	1.2 1.5 4.4 1.1	0.8 0.8 4.3 0.3	0.8 0.4 3.7 0.3	0.7 0.2 3.2 0.2	0.2 0.5 0.2 2.0 0.2	0.1 0.3 0.1 0.5 *	0.2
59 60 61 62 63	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Dunnigan clay Esparto clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934	1.6 1.8 2.6 4.7 1.8 4.4	1.5 1.9 2.4 4.9 1.8 4.5	1.5 1.9 4.6 1.6 4.0	1.2 1.5 4.4 1.1 3.9	0.8 0.8 4.3 0.3 3.2	0.8 0.4 3.7 0.3 2.5	0.7 0.2 3.2 0.2 1.4	0.2 0.5 0.2 2.0 0.2 0.5	0.1 0.3 0.1 0.5 * 0.1	0.2
59 60 61 62 63 64	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Dunnigan clay Esparto clay Farwell adobe clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936	1.6 1.8 2.6 4.7 1.8 4.4 2.5	1.5 1.9 2.4 4.9 1.8 4.5 2.4	1.5 1.9 4.6 1.6 4.0 2.4	1.2 1.5 4.4 1.1 3.9 1.9	0.8 0.8 4.3 0.3 3.2 1.6	0.8 0.4 3.7 0.3 2.5 1.2	0.7 0.2 3.2 0.2 1.4 0.8	0.2 0.5 0.2 2.0 0.2 0.5 0.7	0.1 0.3 0.1 0.5 *	0.2
59 60 61 62 63 64 65	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Dunnigan clay Esparto clay Farwell adobe clay Fresno light clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5	1.5 1.9 4.6 1.6 4.0 2.4 1.3	1.2 1.5 4.4 1.1 3.9 1.9 0.6	0.8 0.8 4.3 0.3 3.2 1.6 0.4	0.8 0.4 3.7 0.3 2.5 1.2 0.3	0.7 0.2 3.2 0.2 1.4 0.8 0.2	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2	0.1 0.3 0.1 0.5 * 0.1	0.2
59 60 61 62 63 64 65 66	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Dunnigan clay Farwell adobe clay Fresno light clay Imperial clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936 June 5, 1935	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0 3.0	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.9	1.5 1.9 4.6 1.6 4.0 2.4 1.3 2.8	1.2 1.5 4.4 1.1 3.9 1.9 0.6 2.4	0.8 0.8 4.3 0.3 3.2 1.6 0.4 2.1	0.8 0.4 3.7 0.3 2.5 1.2 0.3 1.6	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5	0.1 0.3 0.1 0.5 * 0.1 0.3	0.2
59 60 61 62 63 64 65 66 67	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Dunnigan clay Esparto clay Farwell adobe clay Fresno light clay Imperial clay Landlow adobe clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936 June 5, 1935 Jan. 10, 1936	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0 3.0 1.8	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.9 2.2	1.5 1.9 4.6 1.6 4.0 2.4 1.3 2.8 2.1	1.2 1.5 4.4 1.1 3.9 1.9 0.6 2.4 2.0	0.8 0.8 4.3 0.3 3.2 1.6 0.4 2.1 1.7	0.8 0.4 3.7 0.3 2.5 1.2 0.3 1.6 1.6	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8 0.8	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5 0.6	0.1 0.3 0.1 0.5 * 0.1 0.3 0.2	0.2
59 60 61 62 63 64 65 66 67 68	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Esparto clay Farwell adobe clay Fresno light clay Imperial clay Landlow adobe clay Madera clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936 June 5, 1935 Jan. 10, 1936 Jan. 10, 1936	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0 3.0 1.8 2.3	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.9 2.2 2.1	1.5 1.9 4.6 1.6 4.0 2.4 1.3 2.8 2.1 1.7	1.2 1.5 4.4 1.1 3.9 1.9 0.6 2.4 2.0 1.6	0.8 0.8 4.3 0.3 3.2 1.6 0.4 2.1 1.7 1.1	0.8 0.4 3.7 0.3 2.5 1.2 0.3 1.6 1.6 0.9	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8 0.8 0.8 0.5	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5 0.6 0.5	0.1 0.3 0.1 0.5 * 0.1 0.3 0.2 0.1	0.2
59 60 61 62 63 64 65 66 67	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Dunnigan clay Esparto clay Farwell adobe clay Fresno light clay Imperial clay Landlow adobe clay Madera clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936 June 5, 1935 Jan. 10, 1936 Jan. 10, 1936	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0 3.0 1.8 2.3 1.5	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.9 2.2 2.1 1.5	1.5 1.9 4.6 1.6 4.0 2.4 1.3 2.8 2.1 1.7 1.5	1.2 1.5 4.4 1.1 3.9 1.9 0.6 2.4 2.0 1.6 1.3	0.8 0.8 4.3 0.3 3.2 1.6 0.4 2.1 1.7 1.1 1.1	0.8 0.4 3.7 0.3 2.5 1.2 0.3 1.6 1.6 0.9 1.1	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8 0.8 0.5 0.7	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5 0.6 0.5 0.4	0.1 0.3 0.1 0.5 * 0.1 0.3 0.2 0.1 0.3	0.2
59 60 61 62 63 64 65 66 67 68 69	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Dunnigan clay. Esparto clay. Farwell adobe clay Fresno light clay. Imperial clay. Landlow adobe clay Madera clay. Merced adobe clay. Montezuma adobe clay.	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936 June 5, 1935 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 June 4, 1935	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0 3.0 1.8 2.3 1.5 2.3	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.9 2.2 2.1 1.5 2.1	1.5 1.9 4.6 1.6 4.0 2.4 1.3 2.8 2.1 1.7 1.5 1.8	1.2 1.5 4.4 1.1 3.9 1.9 0.6 2.4 2.0 1.6 1.3 1.2	0.8 0.8 4.3 0.3 3.2 1.6 0.4 2.1 1.7 1.1 1.1 1.1	0.8 0.4 3.7 0.3 2.5 1.2 0.3 1.6 1.6 0.9 1.1 0.9	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8 0.8 0.5 0.7 0.5	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5 0.6 0.5 0.4 0.3	0.1 0.3 0.1 0.5 * 0.1 0.3 0.2 0.1	0.2
 59 60 61 62 63 64 65 66 67 68 69 70 	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Dunnigan clay Esparto clay Farwell adobe clay Fresno light clay Imperial clay Landlow adobe clay Madera clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936 June 5, 1935 Jan. 10, 1936 Jan. 10, 1936	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0 3.0 1.8 2.3 1.5	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.9 2.2 2.1 1.5	1.5 1.9 4.6 1.6 4.0 2.4 1.3 2.8 2.1 1.7 1.5	1.2 1.5 4.4 1.1 3.9 1.9 0.6 2.4 2.0 1.6 1.3	0.8 0.8 4.3 0.3 3.2 1.6 0.4 2.1 1.7 1.1 1.1	0.8 0.4 3.7 0.3 2.5 1.2 0.3 1.6 1.6 0.9 1.1	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8 0.8 0.5 0.7	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5 0.6 0.5 0.4	0.1 0.3 0.1 0.5 * 0.1 0.3 0.2 0.1 0.3 0.2 *	0.2 0.3 0.1
 59 60 61 62 63 64 65 66 67 68 69 70 71 	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Esparto clay Farwell adobe clay Fresno light clay Landlow adobe clay Madera clay Montezuma adobe clay Montezuma adobe clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 June 4, 1935 Jan. 10, 1936	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0 3.0 1.8 2.3 1.5 2.3 2.1	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.9 2.2 2.1 1.5 2.1 2.3	1.5 1.9 4.6 1.6 4.0 2.4 1.3 2.8 2.1 1.7 1.5 1.8 2.0	$1.2 \\ 1.5 \\ 4.4 \\ 1.1 \\ 3.9 \\ 1.9 \\ 0.6 \\ 2.4 \\ 2.0 \\ 1.6 \\ 1.3 \\ 1.2 \\ 2.1 \\$	0.8 0.8 4.3 0.3 3.2 1.6 0.4 2.1 1.7 1.1 1.1 1.1 1.1	0.8 0.4 3.7 0.3 2.5 1.2 0.3 1.6 1.6 0.9 1.1 0.9 1.0	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8 0.5 0.7 0.5 0.5	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5 0.6 0.5 0.4 0.3 0.1	0.1 0.3 0.1 0.5 * 0.1 0.3 0.2 0.1 0.3	0.5 0.2 0.3 0.1 0.2
 59 60 61 62 63 64 65 66 67 68 69 70 71 72 	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Esparto clay Farwell adobe clay Fresno light clay Imperial clay Landlow adobe clay Madera clay Montezuma adobe clay Panoche adobe clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936 June 5, 1935 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0 3.0 1.8 2.3 1.5 2.3 2.1 8.1	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.9 2.2 2.1 1.5 2.1 2.3 8.1	1.5 1.9 4.6 1.6 4.0 2.4 1.3 2.8 2.1 1.7 1.5 1.8 2.0 6.9	$1.2 \\ 1.5 \\ 4.4 \\ 1.1 \\ 3.9 \\ 1.9 \\ 0.6 \\ 2.4 \\ 2.0 \\ 1.6 \\ 1.3 \\ 1.2 \\ 2.1 \\ 6.6 \\ 1.6 $	0.8 0.8 4.3 0.3 3.2 1.6 0.4 2.1 1.7 1.1 1.1 1.1 1.9 5.4	0.8 0.4 3.7 0.3 2.5 1.2 0.3 1.6 1.6 0.9 1.1 0.9 1.0 3.7	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8 0.2 0.8 0.5 0.7 0.5 0.5 2.5	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5 0.6 0.5 0.4 0.3 0.1 0.7	0.1 0.3 0.1 0.5 * 0.1 0.3 0.2 0.1 0.3 0.2 *	0.2 0.3 0.1
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Esparto clay Farwell adobe clay Fresno light clay Imperial clay Landlow adobe clay Madera clay Merced adobe clay Montezuma adobe clay Panoche adobe clay Porterville adobe clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0 3.0 1.8 2.3 1.5 2.3 2.1 8.1 4.2	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.9 2.2 2.1 1.5 2.1 2.3 8.1 3.8	1.5 1.9 4.6 1.6 4.0 2.4 1.3 2.8 2.1 1.7 1.5 1.8 2.0 6.9 3.5	$1.2 \\ 1.5 \\ 4.4 \\ 1.1 \\ 3.9 \\ 1.9 \\ 0.6 \\ 2.4 \\ 2.0 \\ 1.6 \\ 1.3 \\ 1.2 \\ 2.1 \\ 6.6 \\ 2.0 \\ 1.6 \\ 1.3 \\ 1.2 \\ 2.1 \\ 1.2 $	0.8 0.8 4.3 0.3 3.2 1.6 0.4 2.1 1.7 1.1 1.1 1.1 1.1 1.9 5.4 0.9	0.8 0.4 3.7 0.3 2.5 1.2 0.3 1.6 1.6 0.9 1.1 0.9 1.0 3.7 0.3	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8 0.2 0.8 0.5 0.7 0.5 0.5 2.5 0.2	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5 0.6 0.5 0.4 0.3 0.1 0.7	0.1 0.3 0.1 0.5 * 0.1 0.3 0.2 0.1 0.3 0.2 * 0.4 *	0.2 0.3 0.1 0.2 0.2
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Esparto clay Farwell adobe clay Fresno light clay Imperial clay Landlow adobe clay Merced adobe clay Montezuma adobe clay Panoche adobe clay Panoche adobe clay Salinas clay Sites adobe clay Sites adobe clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0 3.0 1.8 2.3 2.1 8.1 4.2 3.5 2.8 2.9	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.9 2.2 2.1 1.5 2.1 2.3 8.1 3.8 3.5 3.0 2.3	$1.5 \\ 1.9 \\ 4.6 \\ 1.6 \\ 4.0 \\ 2.4 \\ 1.3 \\ 2.8 \\ 2.1 \\ 1.7 \\ 1.5 \\ 1.8 \\ 2.0 \\ 6.9 \\ 3.5 \\ 3.3 \\ 2.5 \\ 1.8 $	$1.2 \\ 1.5 \\ 4.4 \\ 1.1 \\ 3.9 \\ 1.9 \\ 0.6 \\ 2.4 \\ 2.0 \\ 1.6 \\ 1.3 \\ 1.2 \\ 2.1 \\ 6.6 \\ 2.0 \\ 3.2 \\ 2.0 \\ 1.8 \\$	$\begin{array}{c} 0.8\\ 0.8\\ 4.3\\ 0.3\\ 3.2\\ 1.6\\ 0.4\\ 2.1\\ 1.7\\ 1.1\\ 1.1\\ 1.1\\ 1.9\\ 5.4\\ 0.9\\ 1.1\\ 1.6\\ 1.5\\ \end{array}$	$\begin{array}{c} 0.8\\ 0.4\\ 3.7\\ 0.3\\ 2.5\\ 1.2\\ 0.3\\ 1.6\\ 1.6\\ 1.6\\ 0.9\\ 1.1\\ 0.9\\ 1.0\\ 3.7\\ 0.3\\ 0.3\\ 1.1\\ 0.8 \end{array}$	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8 0.2 0.8 0.5 0.7 0.5 2.5 0.2 0.2	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5 0.6 0.5 0.4 0.3 0.1 0.7 0.2	0.1 0.3 0.1 0.5 * 0.1 0.3 0.2 0.1 0.3 0.2 * 0.4 *	0.2 0.3 0.1 0.2 0.2
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Esparto clay Farwell adobe clay Frawell adobe clay Fresno light clay Imperial clay Madera clay Madera clay Mortezuma adobe clay Montezuma adobe clay Montezuma adobe clay Porterville adobe clay Sites adobe clay Sites adobe clay Stockton adobe clay Tulare clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 June 5, 1935 Jan. 10, 1936 Jan. 10, 1936	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0 3.0 1.8 2.3 1.5 2.3 2.1 8.1 4.2 3.5 2.8 2.9 1.6	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.9 2.2 2.1 1.5 2.1 2.3 8.1 3.8 3.5 3.0 2.3 1.5	$\begin{array}{c} 1.5\\ 1.9\\ 4.6\\ 1.6\\ 4.0\\ 2.4\\ 1.3\\ 2.8\\ 2.1\\ 1.7\\ 1.5\\ 1.8\\ 2.0\\ 6.9\\ 3.5\\ 3.3\\ 2.5\\ 1.8\\ 1.4 \end{array}$	$1.2 \\ 1.5 \\ 4.4 \\ 1.1 \\ 3.9 \\ 1.9 \\ 0.6 \\ 2.4 \\ 2.0 \\ 1.6 \\ 1.3 \\ 1.2 \\ 2.1 \\ 6.6 \\ 2.0 \\ 3.2 \\ 2.0 \\ 1.8 \\ 0.5 $	0.8 0.8 4.3 0.3 3.2 1.6 0.4 2.1 1.7 1.1 1.1 1.1 1.1 1.1 1.9 5.4 0.9 1.1 1.6 1.5 0.3	0.8 0.4 3.7 0.3 2.5 1.2 0.3 1.6 1.6 0.9 1.1 0.9 1.0 3.7 0.3 0.3 1.1 0.8 0.1	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8 0.2 0.8 0.5 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.5 0.6 *	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5 0.7 0.2 0.5 0.6 0.5 0.4 0.3 0.1 0.7 0.2	0.1 0.3 0.1 0.5 * 0.1 0.3 0.2 0.1 0.3 0.2 * 0.1 0.3 0.2 * 0.1 0.3 0.2 * 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.5 * 0.5 * 0.1 0.5 * 0.1 0.5 * * 0.5 * 0.5 * * 0.5 * * 0.5 * * 0.5 * * * * * * * * * * * * * * * * * * *	0.2 0.3 0.1 0.2 0.2 0.2
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Esparto clay Farwell adobe clay Fresno light clay Imperial clay Imperial clay Madera clay Madera clay Montezuma adobe clay Montezuma adobe clay Panoche adobe clay Salinas clay Sites adobe clay Stockton adobe clay Yulare clay Willows adobe clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936 Dec. 22, 1934	$\begin{array}{c} 1.6\\ 1.8\\ 2.6\\ 4.7\\ 1.8\\ 4.4\\ 2.5\\ 1.0\\ 3.0\\ 1.8\\ 2.3\\ 1.5\\ 2.3\\ 2.1\\ 8.1\\ 4.2\\ 3.5\\ 2.8\\ 2.9\\ 1.6\\ 2.0\\ \end{array}$	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.4 2.9 2.2 2.1 1.5 2.1 2.3 8.1 3.8 3.5 3.0 2.3 1.5 2.2	$\begin{array}{c} 1.5\\ 1.9\\ 4.6\\ 1.6\\ 4.0\\ 2.4\\ 1.3\\ 2.8\\ 2.1\\ 1.7\\ 1.5\\ 1.8\\ 2.0\\ 6.9\\ 3.5\\ 3.3\\ 2.5\\ 1.8\\ 1.4\\ 1.9 \end{array}$	$\begin{array}{c} 1.2\\ 1.5\\ 4.4\\ 1.1\\ 3.9\\ 1.9\\ 0.6\\ 2.4\\ 2.0\\ 1.6\\ 1.3\\ 1.2\\ 2.1\\ 6.6\\ 2.0\\ 3.2\\ 2.0\\ 1.8\\ 0.5\\ 1.6\end{array}$	0.8 0.8 4.3 0.3 3.2 1.6 0.4 2.1 1.7 1.1 1.1 1.1 1.1 1.9 5.4 0.9 1.1 1.6 1.5 0.3 1.2	0.8 0.4 3.7 0.3 2.5 1.2 0.3 1.6 1.6 0.9 1.1 0.9 1.0 3.7 0.3 0.3 1.1 0.8 0.1 0.7	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8 0.8 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.5 0.6 * 0.7	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5 0.6 0.5 0.4 0.3 0.1 0.7 0.2 0.3	0.1 0.3 0.1 0.5 * 0.1 0.3 0.2 0.1 0.3 0.2 * 0.4 * * 0.1	0.2 0.3 0.1 0.2 0.2 0.2
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	Clear Lake adobe clay Conejo adobe clay Diablo adobe clay Dublin adobe clay Esparto clay Farwell adobe clay Frawell adobe clay Fresno light clay Imperial clay Madera clay Madera clay Mortezuma adobe clay Montezuma adobe clay Montezuma adobe clay Porterville adobe clay Sites adobe clay Sites adobe clay Stockton adobe clay Tulare clay	June 4, 1935 Jan. 10, 1936 Jan. 10, 1936 Dec. 23, 1934 Dec. 22, 1934 Jan. 10, 1936 Jan. 10, 1936 Jan. 10, 1936 June 5, 1935 Jan. 10, 1936 Jan. 10, 1936	1.6 1.8 2.6 4.7 1.8 4.4 2.5 1.0 3.0 1.8 2.3 1.5 2.3 2.1 8.1 4.2 3.5 2.8 2.9 1.6	1.5 1.9 2.4 4.9 1.8 4.5 2.4 1.5 2.9 2.2 2.1 1.5 2.1 2.3 8.1 3.8 3.5 3.0 2.3 1.5	$\begin{array}{c} 1.5\\ 1.9\\ 4.6\\ 1.6\\ 4.0\\ 2.4\\ 1.3\\ 2.8\\ 2.1\\ 1.7\\ 1.5\\ 1.8\\ 2.0\\ 6.9\\ 3.5\\ 3.3\\ 2.5\\ 1.8\\ 1.4 \end{array}$	$1.2 \\ 1.5 \\ 4.4 \\ 1.1 \\ 3.9 \\ 1.9 \\ 0.6 \\ 2.4 \\ 2.0 \\ 1.6 \\ 1.3 \\ 1.2 \\ 2.1 \\ 6.6 \\ 2.0 \\ 3.2 \\ 2.0 \\ 1.8 \\ 0.5 $	0.8 0.8 4.3 0.3 3.2 1.6 0.4 2.1 1.7 1.1 1.1 1.1 1.1 1.1 1.9 5.4 0.9 1.1 1.6 1.5 0.3	0.8 0.4 3.7 0.3 2.5 1.2 0.3 1.6 1.6 0.9 1.1 0.9 1.0 3.7 0.3 0.3 1.1 0.8 0.1	0.7 0.2 3.2 0.2 1.4 0.8 0.2 0.8 0.2 0.8 0.5 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.5 0.6 *	0.2 0.5 0.2 2.0 0.2 0.5 0.7 0.2 0.5 0.7 0.2 0.5 0.6 0.5 0.4 0.3 0.1 0.7 0.2	0.1 0.3 0.1 0.5 * 0.1 0.3 0.2 0.1 0.3 0.2 * 0.1 0.3 0.2 * 0.1 0.3 0.2 * 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.5 * 0.5 * 0.1 0.5 * 0.1 0.5 * * 0.5 * 0.5 * * 0.5 * * 0.5 * * 0.5 * * * * * * * * * * * * * * * * * * *	0.2 0.3 0.1

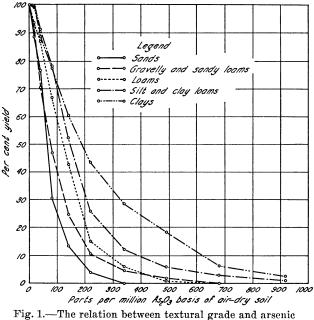
TABLE 3—(Concluded)

* Seeds in cultures at this and higher concentrations failed to germinate. Fresh weight of plants in cultures between reported weight and point of no germination was less than 0.1 gram.

comparable in the 3 series, the heavier soils show obviously lower toxicities, while crop-producing power (table 3) varies in no regular way with textural grade.

Figure 3, showing 3 toxicity series in adobe soils, further illustrates this point. Although the crop yields vary widely, being high in the Panoche soil, intermediate in Dublin, and low in Merced (table 3), toxicities are strictly comparable in the 3 soils. These series lack the 5-p.p.m. cultures but have the 920-p.p.m. ones.

TABLE 4
SUMMARY OF RESULTS: TOXICITY OF SODIUM ARSENITE IN CALIFORNIA SOILS
AS SHOWN BY GROWTH OF INDICATOR PLANTS


Soils	Water	Arsen	ic conc	entrati	ion—A	s2O3 in	p.p.m.	on the	basis o	of air-d	ry soi
Sons	water	0	15	40	80	140	220	340	490	680	920
		Fre	sh wei	ght of	plants	•					
	per cent	ģm	gm	gm	gm	gm	gm	gm	gm	gm	gm
Sands	11.4	1.33	1.18	1.02	0.53	0.18	0.05				
Gravelly and sandy loams	14.3	3.12	2.88	2.20	1.46	0.77	0.33	0.14	0.05		
Loams	17.9	3.49	3.26	3.04	2.33	1.48	0.52	0.21	0.02		
Silt and clay loams	22.7	4.71	4.69	4.28	3.68	2.46	1.22	0.57	0.28	0.14	0.05
Clays	27.6	2.82	2.79	2.50	2.18	1.70	1.23	0.81	0.52	0.18	0.08

Results expressed as a percentage of checks

	per cent										
Sands	11.4	100	88.8	76.7	30.6	13.5	3.8				
Gravelly and sandy loams	14.3	100	91.6	70.5	46.8	24.6	10.6	4.5	1.6		
Loams	17.9	100	93.5	87.1	66.8	42.4	14.9	6.0	0.6		
Silt and clay loams	22.7	100	99.5	91.0	78.1	52.3	25.9	12.1	5.9	3.0	1.1
Clays	27.6	100	99.2	88.6	77.4	60.3	43.6	28.7	18.4	6.4	2.8

A more detailed study of the data in table 3 shows many minor variations in toxicity within the groups designated on the basis of soil texture. Though the general relation shown between texture and toxicity is valuable, its usefulness would be enhanced if the exceptions could be explained and anticipated in the field, as is possible in several cases.

The soils most obviously out of agreement are Aiken gravelly loam, Aiken clay loam, and Columbia silty clay loam. The two Aiken soils residual soils from basic igneous rock—are deep red. They have demonstrated an immense capacity to render phosphate unavailable and by analogy should do the same with arsenic. Tests in the field and greenhouse show this to be true. Earlier, the red iron oxide content of these soils was thought to explain their immense capacity to reduce arsenic toxicity (10). Judging from recent experiments, however, peculiar colloids at least partly account for this phenomenon. This property of rendering arsenic unavailable, though common to all red soils, is less pronounced in those from acid igneous rocks. Among the gravelly and sandy loams (in addition to the Aiken), the Corning, Delano, Redding, Rocklin, Sierra, and Sites soils all contain more or less of this material and all show relatively low toxicities. Incidentally, red iron oxide has been used to lower

toxicity from the summarized results of table 4.

arsenic solubility in filter beds made of soil (10). A great capacity for reducing arsenic toxicity is apparently characteristic of all red soils used in these tests, so that dosages must be set with this factor in mind, more arsenic being required than would ordinarily be applied on the basis of textural grade alone.

The Columbia soils, recent alluvial deposits from the floodwaters of the Sacramento River, come from a mixture of acid and basic igneous rocks from the Sierras with sedimentary rocks from the Coast Range. During deposition, the heavier particles settle out along the river banks, while the finer ones are deposited farther from the main channel. To obtain a silty clay loam it was necessary to visit the very edge of the alluvial deposits. The source of soil used in these experiments was a spot

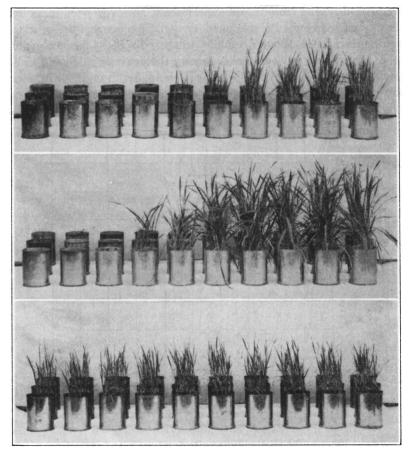


Fig. 2.—Culture series in Oakley sand, Farwell loam, and Aiken clay loam illustrating the relation between textural grade and arsenic toxicity. The As_2O_s concentrations are 680, 490, 340, 220, 140, 80, 40, 15, 5, and 0 p.p.m., based on the air-dry soil.

about 3 miles west of Sacramento near the main highway, where the Columbia soil occurs as a thin layer about 18 inches deep, overlying an extremely heavy, black Sacramento clay. Such a soil might be expected to contain a large proportion of the colloidal fractions characteristic of the soils from the three available rock sources. Though the sample used contained considerable silt, it undoubtedly had, in addition, enough colloids from the red Aiken and Sierra soils and the brown Yolo soils to explain the low toxicity. The coarser Columbia fine sandy loam obtained only a few miles farther north consisted largely of fine sand and silt, without enough of these active colloids to give it an unusual behavior.

191

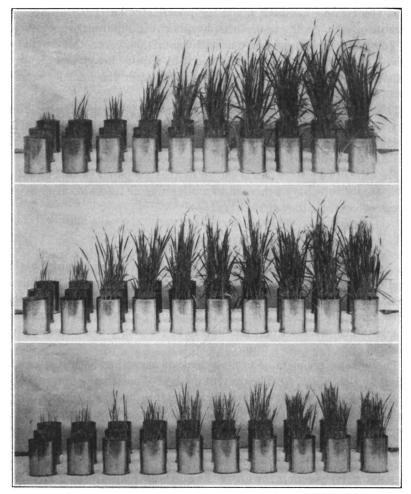


Fig. 3.—Culture series showing arsenic toxicity in Panoche adobe clay, Dublin adobe clay, and Merced adobe clay. Although fresh-weight yields of crops on these soils vary widely, the toxicity is approximately the same in all three. These series lack the 5 p.p.m. cultures. The As_2O_3 concentrations are 920, 680, 490, 340, 220, 140, 80, 40, 15, and 0 p.p.m.

Exceptional results are also shown by the Yolo soil in these experiments. Being easily obtainable, a full series of textural grades of this soil was used to show the effect of particle size within a single soil series. The choice of the Yolo series for this purpose was unfortunate in that the two lighter types act like heavy soils, whereas the adobe behaved like a lighter type. The behavior of the lighter types may be explained by their colloids, which have an extreme capacity to render arsenic unavailable.

This observation has been made for phosphates but has no important bearing on crop production, since phosphorus is apparently not deficient in Yolo soils. In soil sterilization with arsenic, however, this capacity is a critical factor, for Yolo soils in the field require heavy arsenic applications (5), and toxicity decreases rapidly after the initial treatment (5, 6, and table 2).

The abnormal behavior of the Yolo adobe clay is less readily explained. This soil required no more water for moistening than the clay and less than the clay loam. Though its colloids are of such a form as to give this soil adobe characteristics, the total colloid content may be less than that of the other two grades. As is shown in another paper in this issue (13, table 3), the capacity of this soil to render arsenic insoluble after several weeks is less than that of the clay.

DISCUSSION

To be widely applicable, the general relations brought out by these studies should rest upon chemical interpretation and practical confirmation through field-plot testing. Chemical studies on a number of these soils appear in an accompanying paper (13); a few field-plot tests will be mentioned here, but plot results will be presented more completely in a later paper.

The general problem of toxicity measurement has been discussed in detail by Cook (2, 3, 4). The present method of measuring and reporting height and fresh weight of the indicator plants 30 days after planting in soils moistened with the herbicide solutions was standardized several years ago and has proved entirely satisfactory. These values, however, are only comparative; for practical use they must be calibrated by checking against graded series of treated plots. Although this checking has not been extensively done, growing of the indicator plants on soils from plots having known degrees of sterility has shown that yields of 0.2 gram or less per can represent practical sterilization. Such comparisons seem sufficiently reliable to justify a tentative schedule of dosages, offered later in this paper.

Since fresh weight is by far the more valuable of the two toxicity criteria used, height has been omitted from tables 3, 4, and 5. Obviously, relative growth rate (4) cannot be used as a criterion of toxicity in the type of testing reported here, since the soil cultures could not be returned to the original weight for determination of growth increments. The work involved in repeated weighings on the large numbers of cultures run simultaneously in these tests was, furthermore, not feasible.

193

Before making the more practical interpretations, the errors and limitations of the biological testing methods used should be considered. Since the greenhouse in which these tests were conducted had only partial temperature control and practically no control of light, humidity, and length of day, results from culture series run at different seasons vary. Table 5 reports tests conducted at different dates upon the same soils. These data illustrate variations in toxicity resulting from the lack of constant culture conditions and, in the cases of Yolo clay loam and Stockton adobe clay, from the use of different samples. They emphasize the desirability of conducting comparative tests simultaneously on as many samples as possible. The soils in table 3 were tested in 3 lots, 2 of 20 each and 1 of 40. Though testing all 80 at one time would have been better, the work presents practical difficulties. Had it been done, the general relation shown between texture and toxicity would probably not have been appreciably changed.

The moisture conditions of the cultures are another matter for consideration. One might think that allowing the cultures to dry down periodically to the permanent wilting point would increase the arsenic concentration and hence the toxicity. In certain series, the moisture was varied in a number of soils (footnotes \P and ||, table 5). Judging from the results, arsenic toxicity is not seriously affected by the method of watering. This matter will be discussed more fully in a companion paper (13).

The biological test is definitely limited in scope by the sensitivity of the indicator plant. Since, however, the practical application of the results is in weed control, this drawback is not serious. The biological method, furthermore, gives a direct index to the availability and hence to the toxicity or crop-limiting power of the toxicant, which is impossible to obtain by chemical analysis. Considering the easy operation and the simple, inexpensive equipment needed, this method is very practical for testing toxicity of herbicides in soils.

RECOMMENDED DOSAGES OF ARSENIC FOR SOIL STERILIZATION

Clearly, these studies show that arsenic dosages for soil sterilization will vary between wide limits. Recommendations can at best be only approximate because of the complex relations between toxicity as related to availability, permanence as affected by leaching, and susceptibility as determined by the arsenic tolerance of the weed species concerned. Table 6 presents a dosage schedule based on plots and the present toxicity

TABLE 5

Comparative Results of Toxicity Tests on Repeated Runs with Sodium Arsenite in California Soils

			Ars	enic c	oncen	tratio		2O3 in ry soil	p.p.m	. on t	he bas	is of
Soil type	Run No.	Date of harvest	0	15	40	80	140	220	340	490	680	920
			Fresh weight of plants									
Columbia fine sandy loam	1* 2† 3‡	June 10, 1933* Dec. 29, 1933† June 4, 1935‡	gm 4.6 7.3 4.4	gm 4.6 6.8 4.8	gm 4.4 6.5 4.0	gm 4.1 5.7 3.0	gm 3.0 5.0 1.5	gm 1.7 2.2 0.3	gm 0.3 0.5	gm 0.1 0.1	gm	gm
Delano fine sandy loam	$ \begin{array}{c} \left\{\begin{array}{c} 4\$\\ 2\P\\ 3\parallel\end{array}\right. \end{array} $	Apr. 24, 1936§ Jan. 10, 1936‡ Mar. 16, 1937¶ Mar. 16, 1937∥	13.5 4.5 2.9 2.6	11.1 4.5 2.5 2.2	9.9 3.9 1.8 1.7	5.5 2.6 0.7 0.6	1.4 0.9 0.3 0.3	0.2 0.7 0.5 0.2	0.1			
Fresno sandy loam	(1* 2† 3‡ 4§ 5¶	June 10, 1933* Dec. 29, 1933† June 4, 1935‡ Apr. 24, 1936§ Mar. 16, 1937¶	2.9 5.5 3.0 7.2 4.7	2.4 4.6 2.2 4.0 3.8	1.4 3.1 1.4 2.6 2.2	0.6 1.2 0.1 0.5 0.7	0.4 0.5 0.2 0.2	0.2 0.1 0.2				
Greenfield coarse sandy loam	$\begin{cases} 1 \\ 2 \\ 3 \\ \end{bmatrix}$	Mar. 16, 1937 Jan. 10, 1936‡ Mar. 16, 1937¶ Mar. 16, 1937	4.4 4.3 3.2 1.4	4.3 3.8 2.7 1.7	2.3 1.2 1.1 0.9	0.6 0.3 0.7 0.6	0.2 0.1 0.3 0.2					
Sierra sandy loam	$\begin{cases} 1 \ddagger \\ 2 \P \\ 3 \parallel \end{cases}$	Dec. 23, 1934‡ Mar. 16, 1937¶ Mar. 16, 1937∥	3.2 3.0 2.3	3.1 2.5 2.2	2.7 2.3 2.0	2.4 1.6 0.3	1.2 0.7 0.1	0.3	0.1			
Yolo fine sandy loam.	$ \begin{cases} 1 \ddagger \\ 2 \$ \end{cases} $	Dec. 22, 1934‡ Apr. 24, 1936§	3.5 5.4	3.3 5.5	3.1 4.7	2.9 4.4	2.6 2.4	0.6 0.4	0.3	0.2		
Egbert loam	$\begin{cases} 1 \ddagger \\ 2 \P \\ 3 \parallel \end{cases}$	June 4, 1935‡ Mar. 16, 1937¶ Mar. 16, 1937∥	3.9 8.2 5.8	3.4 8.6 5.2	3.2 8.4 5.6	2.7 8.5 5.3	2.2 5.7 4.1	1.6 3.7 3.8	1.0 2.3 1.6	0.2 1.1 0.6	1.1 0.7	0.4 0.1
Aiken clay loam	${ 1 \ddagger \\ 2 \$ }$	Jan. 10, 1936‡ Apr. 24, 1936§	1.0 3.2	1.0 3.5	0.9 3.4	0.9 2.9	0.9 2.4	0.8 2.2	0.7 2.1	0.6 1.8	0.6 1.1	0.3 0.7
Arbuckle clay loam	$ \begin{cases} 1 \ddagger \\ 2 \$ \end{cases} $	Dec. 23, 1934‡ Apr. 24. 1936§	2.4 4.5	2.4 4.2	1.9 3.6	1.9 3.3	1.1 3.0	1.3 2.9	0.3 1.5	0.1 0.4		
Sacramento clay loam	$\begin{cases} 1 \ddagger \\ 2 \P \\ 3 \parallel \end{cases}$	June 5, 1935‡ Mar. 16, 1937¶ Mar. 16, 1937∥	4.1 5.2 2.1	4.2 5.3 3.5	3.9 5.4 3.5	2.7 4.9 3.1	2.0 4.0 2.6	0.8 3.7 2.8	0.5 2.6 2.1	1.9 0.7	0.8 0.1	0.1

* By interpolation from Crafts (6).

† By interpolation from table 2.

‡ From table 3.

§ From Crafts (7).

¶ From Rosenfels and Crafts (13); watered daily.

|| From Rosenfels and Crafts (13); watered as needed.

:			Arsenic concentration—As ₂ O ₃ in p.p.m. on the basi air-dry soil					is of				
Soil type	Run No.	Date of harvest	0	15	40	80	140	220	340	490	680	920
			Fresh weight of plants									
	(1*,ª	June 10, 1933*,ª	gm 8.6	gm 8.6	gm 7.6	gm 7.2	gm 5.7	gm 4.8	gm 2.3	$\frac{gm}{1.0}$	gm 0.3	gm
	2†,ª	Dec. 29, 1933 [†] , ^a	9.1	8.4	7.9	7.6	6.7	5.8	3.7	1.5	0.5	0.2
Yolo clay loam	{3‡,⊳ 4‡,⋼	Dec. 22, 1934‡, ^b June 4, 1935‡, ^b	9.8	9.4	9.5 7.6	8.8 6.9	5.1 5.8	1.4	0.4 0.6	0.2 0.4		
	58,0	Apr. 24, 1936§,¢	18.6	17.5		12.4	8.9	5.4	0.3	0.1		
Stockton adobe clay	{1*,a 2†,b	June 10, 1933*,ª Dec. 29, 1933†, ^b	2.9	2.3	2.0	1.6	0.5	0.2	0.1	0.1 0.5	0.1	0.2
Stockton adobe clay	3‡,0	Apr. 24, 1936 [‡] , ^c	2.0	2.3	1.8	1.1	1.5	0.8	0.6	0.3	0.3	0.2
	(1‡	Dec. 22, 1934‡	4.4	4.8	4.4	4.5	4.1	3.9	2.6	2.2	1.0	0.1
Yolo clay	2¶ 3	Mar. 16, 1937¶ Mar. 16, 1937∥	4.1 3.5	3.8 3.3	3.6 3.2	3.1 3.3	2.8 2.9	2.5 1.5	0.9	1.0 1.3	0.1 0.5	0.3
	(1‡	Jan. 10, 1936‡	1.9	1.9	1.7	1.5	0.7	0.2	0.1			
Yolo adobe clay	{2¶ 3∥	Mar. 16, 1937¶ Mar. 16, 1937∥	3.2 2.8	3.3 2.8	3.3 2.7	2.8 2.8	1.6 2.0	1.1 1.7	0.1 0.1	0.1		

TABLE 5—(Concluded)

* By interpolation from Crafts (6). † By interpolation from table 2. ^a Soil sample collection in 1932.

^b Soil sample collection in 1933.
^c Soil sample collection in 1935.

‡ From table 3.

§ From Crafts (7).

¶ From Rosenfels and Crafts (13); watered daily.

|| From Rosenfels and Crafts (13); watered as needed.

studies in the greenhouse. The groupings are somewhat arbitrary and require liberal interpretation to meet specific problems.

In the high-toxicity group are the coarse, gritty soils having little colloidal matter. Such soils not only are common on the alluvial fans and upper flood-plain areas of the large valleys of California but also occur as surface material in many foothill and mountain regions, on old valley fills, bench lands, wind-modified areas, and heavily leached areas. Lands of this type are developed by man by the deposition of gravel and rock in roadways, railroad roadbeds, parking areas, and various yards and lots used for stacking lumber and the raw materials for manufacture. Vast areas of such lands could be profitably sterilized with arsenic with little poisoning hazard to livestock and at a great saving of hand labor.

In the intermediate-toxicity range lie the loams, silt loams, and those clay loams that are developed directly from acid igneous rocks or highly weathered from other rocks; also lighter soils from basic igneous and sedimentary rocks. Many agricultural soils of California lie in this range, and their successful sterilization requires appreciably heavier dosages than with the high-toxicity type.

The heavier soils of the clay and adobe clay types, together with the intermediate red soils from basic igneous rocks and brown soils from sedimentary rocks, demand heavy arsenic dosages; and their successful sterilization requires special technique in application.

In soil sterilization, two factors should be kept in mind : first, the immediate effect of the application; second, the persistence of the treatment. Application of a heavy dosage to sterilize the soil for a long time

	Soil	Toxicity	Dosage,* As2O3†	
Texture	Type Factors affectin arsenic availabili		group	pounds per square rod
Light and coarse	Sands and gravels, sandy and fine sandy loams	Normal Red or recent alluvial.	High Intermediate	2-4 4-8
Medium	Loams and silt loams	$\left\{ \begin{array}{l} \mathbf{Normal} \dots \dots \\ \mathbf{Red \ or \ recent \ alluvial} \end{array} \right.$	Intermediate Low	4-6 12
Heavy	Clay loams‡, clays, and adobe clays	Normal Red or recent alluvial.	Low Very low	8-12 12-20

TABLE 6 Dosage Recommendations for the Use of Arsenic in Soil Sterilization on California Soils

* Values given in this table represent total dosages; this amount may be applied in several light treatments to meet the requirements of heavy soils or conditions of severe leaching.

† Since commercial sodium arsenite varies in As₂O₃ content, the weight of sodium arsenite required per square rod will depend upon the composition of the particular product being used.
 ‡ Clay loams from acid igneous rocks belong in the intermediate toxicity group and require a dosage

t Clay loams from acid igneous focks belong in the intermediate toxicity group and require a dosage of about 6 pounds per square rod.

would on first thought seem most economical. Where, however, leaching is severe (annual precipitation of 30 inches or more) or where the soil colloids cause low toxicity, losses of arsenic will be high, and the persistence of the treatment may not meet expectations. Under these latter conditions, a light annual application, though increasing the cost, minimizes losses from leaching and other causes. Evidently soils in the lowtoxicity range require this type of treatment.

Leaching is an important factor in arsenic treatment of soils. Thus, Raynor found (12, p. 28–29) that the depth of penetration of sodium arsenite was influenced by the date of application since this was related to the rainfall. Under constant leaching, as in the banks of an unlined irrigation ditch, soil sterilization is not effective, all of the arsenic being removed by the seeping water. In regions of heavy rainfall, sterilization upon a given soil type is less permanent than in arid regions. In connection with sterilization methods, arsenic trioxide (white arsenic) should be mentioned. This material, already used in plot studies (5), promises to become more popular when its special characteristics are better understood. Being relatively insoluble, it will lie in the soil for a year or more and gradually pass into solution, becoming tied up in high concentration in the top soil. According to experiments under central California conditions, one year is required to develop an effective toxicity in the soil. After the first year it is as effective as sodium arsenite, and because of its slow solution it lasts somewhat longer. This dry material, mixed with enough chlorate to give sterilization during the first year, should be the best reagent on heavy soils. Plot tests apparently bear out this conclusion (5).

In contrast to the retention of arsenic in the surface layer, common on heavy soils, a 12- to 20-inch penetration of sodium arsenite solution is common in light soils (5). This may be advantageous in controlling shallow-rooted perennials (5, 12). Consequently, the form of arsenic used should be related to the problem, and its varied behavior utilized to accomplish the ends in view.

The problems posed in the Introduction may be answered, at least in part, from the results of these studies. Concerning the type of arsenic compound to use in soil sterilization, the answer has already been indicated. For immediate results and for deep penetration on sandy soils from acid igneous rocks, sodium arsenite is preferable. In many other soils, especially heavy ones, red ones, and those from sedimentary rocks, decrease in toxicity is a serious factor; and to avoid excessive loss, either light annual application of sodium arsenite or the use of the less soluble trioxide seems advisable.

RECLAMATION OF ARSENIC-TREATED SOILS

From the soil-conservation standpoint, the slow accumulation of arsenic from compounds of low solubility to a toxic level in the soil is a serious problem (11). It means that a large reserve of insoluble arsenic is present, and that reduction in available arsenic must depend largely upon extensive leaching or upon the supplying of additional material capable of rendering arsenic unavailable. Though the use of iron oxides, or possibly red soils like Aiken clay loam, as soil amendments to reduce such toxicity offers an interesting field for research (1), nevertheless the slow solution of the residual, slightly soluble arsenic in the soil presents further difficulties. Apparently the continued use of arsenicals of low solubilty as insecticides on crops should be avoided, at least on light soils, for this method seems the best for providing lasting soil sterilization.

Where crop reduction follows the application of sodium arsenite, table 2 (p. 183) indicates that the toxicity may be greatly reduced over a period of time; and if the damage is not excessive, the soil may be reclaimed for agricultural use. But crop reduction following the continued use of slightly soluble arsenicals is a different matter; for the large reserve of arsenic present constitutes a supply capable of producing a long-continued toxicity. For reasons indicated above, even the use of soil amendments may not solve this problem. Where serious sterilization occurs, leaching would seem the only answer. Arsenic applications have not been effective below the water line in unlined irrigation ditches, and apparently the slow percolation of water will carry away almost any amount of arsenic in time.

SUMMARY

Biological tests show that arsenic toxicity is high in Fresno sandy loam, intermediate in Columbia fine sandy loam, and low in Yolo clay loam and Stockton adobe clay. Variation from previous tests may be explained by differences in the soil samples.

Repeated cropping shows that arsenic toxicity decreased in all 4 of these soils until, with the seventh crop, plants in the Yolo and Stockton soils survived in cultures containing 3,000 p.p.m. As_2O_3 in the air-dry soil. In the first crop test, no plants grew in cultures having more than 1,050 p.p.m. As_2O_3 .

With repeated cropping, differences between Fresno and Columbia soils diminished. Though the limiting arsenic concentrations with the first crop were 280 and 550 p.p.m. As_2O_3 , respectively, plants survived in cultures having 2,100 p.p.m. or more by the seventh cropping.

According to extensive tests involving short toxicity series in 80 California soils, arsenic toxicity can be correlated with texture, being high in sandy soils and low in clays. The most notable exceptions occur among the red soils, all of which, by rendering much arsenic unavailable, act like heavier types.

Arsenic sterilization on coarse, gritty soils in California requires a dosage of 2 pounds As_2O_3 per square rod.

Loams, silt loams, and those clay loams that are developed directly from acid igneous rocks or are highly weathered from other rocks require from 4 to 6 pounds per square rod.

Clays and adobe clays and some clay loams demand applications of from 8 to 12 pounds per square rod.

Red soils or recent alluvial soils from sedimentary rocks require approximately twice as much arsenic for a given type.

Light annual applications of soluble arsenic or use of dry arsenic trioxide with the addition of about 10 per cent sodium chlorate may be less wasteful on soils that render much arsenic unavailable.

Heavy leaching tends to reduce the concentration of available arsenic in the soil.

ACKNOWLEDGMENT

The writers are indebted to Mr. Jack Matley, Agent in the Bureau of Plant Industry, United States Department of Agriculture, who did much of the greenhouse-culture work reported in this paper.

LITERATURE CITED

. LITERATURE CITED
1. Albert, W. B.
1932. Arsenic toxicity in soils. South Carolina Exp. Sta. 45th Ann. Rept. p. 44–46.
2. Cook, W. H.
1937. Chemical weed killers. I. Relative toxicity of various chemicals to four
annual weeds. Canadian Jour. Research C, 15:299-323.
3. Cook, W. H.
1937. Chemical weed killers. II. Factors affecting estimation of toxicity of leaf
sprays. Canadian Jour. Research C, 15:380–90.
4. Cook, W. H.
1937. Chemical weed killers. V. Relative toxicity of selected chemicals to plants
grown in culture solution, and the use of relative growth rate as a criterion
of toxicity. Canadian Jour. Research C, 15:520–37.
5. CRAFTS, A. S.
1935. Plot tests with sodium arsenite and sodium chlorate as soil sterilants in
California. California State Dept. Agr. Mo. Bul. 24(4, 5, 6):247–59.
6. CRAFTS, A. S.
1935. Toxicity of sodium arsenite and sodium chlorate in four California soils.
Hilgardia 9(9):459–98.
7. CRAFTS, A. S.
1938. The relation of nutrients to toxicity of arsenic, borax, and chlorate in soils.
Jour. Agr. Research. (In press.)
8. CRAFTS, A. S.
1939. Toxicity studies with sodium chlorate in eighty California soils. Hilgardia
12(3):231-47.
9. CRAFTS, A. S., and R. N. RAYNOR.
1936. The herbicidal properties of boron compounds. Hilgardia $10(10):343-74$.
10. DRATSCHEW, S. M.
1933. Die Adsorption des Arsenitions $(AsO_3\equiv)$ durch die Boden. Ztschr. Pflan-
zenernähr, Düngung u. Bodenk. 30:156-76.
11. JONES, J. S., and M. B. HATCH.
1937. The significance of inorganic spray residue accumulations in orchard soils.
Soil Sci. 44:37-63.
12. RAYNOR, R. N.
1937. Chemical control of St. Johnswort. California Agr. Exp. Sta. Bul. 615:1-38.
13. ROSENFELS, R. S., and A. S. CRAFTS.
1939. Arsenic fixation in relation to the sterilization of soils with sodium arsenite.
Hilgardia 12(3):201–29. 14. SHAW, C. F.
1927. The basis of classification and key to the soils of California. First Internatl.
Cong. Soil Sci. Proc. 4:1–39.
15. Shaw, C. F.
1937. Some California soils and their relationships. Univ. of California Sylla-
bus JD :1–117. (Mimeo.)
16. STORIE, R. EARL.
1937. An index for rating the agricultural value of soils. California Agr. Exp.
Sta Bul 556:1-48 Revised ed