University of California

Ontogeny and structure of collenchyma and of vascular tissues in celery petioles


Katherine Esau

Author Affiliations

Katherine Esau was Junior Botanist in the Experiment Station.

Publication Information

Hilgardia 10(11):429-476. DOI:10.3733/hilg.v10n11p429. December 1936.

PDF of full article, Cite this article


Abstract does not appear. First page follows.


Efforts to obtain stringless varieties of celery (Apium graveolens L.) drew attention to the nature of the so-called celery strings. The two structures that constitute these strings, the vascular bundles and the collenchyma strands, differ greatly from each other in their development, their histology, and their physical properties. This paper deals with the ontogeny and structure of the tissues that make up the strings and gives some information regarding their relative strength.

The present work treats of the histological part of the problem in considerable detail and adds to our knowledge of histogenesis and tissue differentiation. It compares the mode of origin of collenchyma with that of the vascular tissue and describes in detail the phloem and its transformation, in the final stages, into the collenchymatous bundle cap.

Material and Methods

In preparing the material for histological study, the procedure was as follows. Pieces of petioles were killed and fixed for 48 hours in Karpechenko’s chrom-acetic-formalin solution (Rawlins, 1933,3 p. 13). The fixed material, washed in three changes of pure dehydrated dioxan (Graupner and Weissberger, 1931), was placed in a paraffin oven in a mixture of dioxan and paraffin. The latter was changed four times to expel the dioxan. Three to four days after placement in the oven the material was embedded in paraffin.

Without being soaked in water, the embedded material was cut 10 microns thick on a rotary microtome. Instead of a microtome knife, Gillette razor blades, clamped into a Spencer razor-blade holder, were used. Very little difficulty was experienced in cutting the material, even the collenchyma and xylem of the oldest petioles. The protoplasts, however, commonly shrank throughout the material, though no attempt was made to determine at what stage of the process this shrinkage occurred.

Literature Cited

Ambronn H. Ueber die Entwickelungsgeschichte und die mechanischen Eigenschaften des Collenchyms. Ein Beitrag zur Kenntniss des mechanischen Gewebesystems. Jahrb. Wiss. Bot. 1881. 12:473-541.

Anderson D. Ueber die Struktur der Kollenchymzellwand auf Grund mikrochemischer Untersuchungen. Sitzber. Akad. Wiss. Wien. Math.-Naturw. Kl. 1927. 136:429-40.

Bary A. de., Bower F. O., Scott D. H. Comparative anatomy of the vegetative organs of the phanerogams and ferns 1884 [English translation by. Oxford: Clarendon Press. 659p.

Cohn J. Beiträge zur Physiologie des Collenchyms. Jahrb. Wiss. Bot. 1892. 24:144-72.

Crafts A. S. Sieve-tube structure and translocation in the potato. Plant Physiology. 1933. 8:81-104.

Eames A. J., MacDaniels L. H. An introduction to plant anatomy. 1925. New York: McGraw-Hill. 364p.

Esau K. Pathologic changes in the anatomy of leaves of the sugar beet, Beta vulgaris L affected by curly top. Phytopathology. 1933. 23:679-712.

Esau K. Ontogeny of phloem in the sugar beet (Beta vulgaris L. Amer. Jour. Bot. 1934. 21:632-44. DOI: 10.2307/2436282 [CrossRef]

Foster A. S. A histogenetic study of foliar determination in Carya buckleyi var. arkansana. Amer. Jour. Bot. 1935a. 22:88-147. DOI: 10.2307/2436175 [CrossRef]

Foster A. S. Comparative histogenesis of foliar transition forms in Carya. Univ. California Pubs., Bot. 1935b. 19:149-86.

Graupner H., Weissberger A. Ueber die Verwendung des Dioxans beim Einbetten mikroskopischer Objekte. Mitteilungen zur mikroskopischen Technik I. Zool. Anz. 1931. 96:204-6.

Hance R. T. Improving the staining action of iron haematoxylin. Science. 1933. 77:287 DOI: 10.1126/science.77.1994.287 [CrossRef]

Kerr Th., Bailey I. W. The cambium and its derivative tissues. No. X. Structure, optical properties, and chemical composition of the so-called middle lamella. Jour. Arnold Arboretum. 1934. 15:327-49.

Priestley J. H. Studies in the physiology of cambial activity. II. The concept of sliding growth. New Phytol. 1930. 29:96-140. DOI: 10.1111/j.1469-8137.1930.tb06983.x [CrossRef]

Priestley J. H., Scott L. I., Malins M. E. Vessel development in the angiosperm. Leeds Phil. Soc. Proc. 1935. 3:42-54.

Rawlins T. E. Phytopathological and botanical research methods. 1933. New York: J. Wiley &; Sons. 156p.

Sayre C. B. Quality in celery as related to structure. Illinois Univ. Agr. Exp. Sta. Bul. 1929. 336:559-88.

Schüepp Otto. Meristeme 1926. p.114. p. In: K. Linsbauer’s Handbuch der Pflanzenanatomie 1. Abt. 2. Teil: Histologie Bd. IV, Lief. 16. Gebrüder Borntraeger, Berlin

Schwendener S. Das mechanische Princip im anatomischen Bau der Monocotylen. 1874. Leipzig: Wilhelm Engelman. 179p.

Strasburger E. Ueber den Bau und die Verrichtungen der Leitungsbahnen in den Pflanzen. Histologische Beiträge. 1891. 3: Jena: Gustav Fischer. 1,000p.

Wisselingh C. van. Contribution à la connaissance du collenchyme. Arch. Néerland. Sci. Exact. et Nat. 1882. 17:23-58.

Esau K. 1936. Ontogeny and structure of collenchyma and of vascular tissues in celery petioles. Hilgardia 10(11):429-476. DOI:10.3733/hilg.v10n11p429
Webmaster Email: wsuckow@ucanr.edu